jittor.models.mobilenet 源代码

# ***************************************************************
# Copyright (c) 2022 Jittor. All Rights Reserved. 
# Maintainers: 
#     Wenyang Zhou <576825820@qq.com>
#     Dun Liang <randonlang@gmail.com>. 
# 
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
# This model is generated by pytorch converter.

import jittor as jt
from jittor import init
from jittor import nn
__all__ = ['MobileNetV2', 'mobilenet_v2']

def _make_divisible(v, divisor, min_value=None):
    if (min_value is None):
        min_value = divisor
    new_v = max(min_value, ((int((v + (divisor / 2))) // divisor) * divisor))
    if (new_v < (0.9 * v)):
        new_v += divisor
    return new_v

class ConvBNReLU(nn.Sequential):

    def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
        padding = ((kernel_size - 1) // 2)
        super(ConvBNReLU, self).__init__(nn.Conv(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False), nn.BatchNorm(out_planes), nn.ReLU6())

class InvertedResidual(nn.Module):

    def __init__(self, inp, oup, stride, expand_ratio):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert (stride in [1, 2])
        hidden_dim = int(round((inp * expand_ratio)))
        self.use_res_connect = ((self.stride == 1) and (inp == oup))
        layers = []
        if (expand_ratio != 1):
            layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
        layers.extend([ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), nn.Conv(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm(oup)])
        self.conv = nn.Sequential(*layers)

    def execute(self, x):
        if self.use_res_connect:
            return (x + self.conv(x))
        else:
            return self.conv(x)

[文档]class MobileNetV2(nn.Module): """ MobileNetV2 model architecture. Args: * num_classes: Number of classes. Default: 1000. * width_mult: Width multiplier - adjusts number of channels in each layer by this amount. Default: 1.0. * init_weights: Defualt: True. * inverted_residual_setting: Network structure * round_nearest: Round the number of channels in each layer to be a multiple of this number. Set to 1 to turn off rounding. Default: 8. * block: Module specifying inverted residual building block for mobilenet. If None, use InvertedResidual instead. Default: None. """ def __init__(self, num_classes=1000, width_mult=1.0, inverted_residual_setting=None, round_nearest=8, block=None): super(MobileNetV2, self).__init__() if (block is None): block = InvertedResidual input_channel = 32 last_channel = 1280 if (inverted_residual_setting is None): inverted_residual_setting = [[1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1]] if ((len(inverted_residual_setting) == 0) or (len(inverted_residual_setting[0]) != 4)): raise ValueError('inverted_residual_setting should be non-empty or a 4-element list, got {}'.format(inverted_residual_setting)) input_channel = _make_divisible((input_channel * width_mult), round_nearest) self.last_channel = _make_divisible((last_channel * max(1.0, width_mult)), round_nearest) features = [ConvBNReLU(3, input_channel, stride=2)] for (t, c, n, s) in inverted_residual_setting: output_channel = _make_divisible((c * width_mult), round_nearest) for i in range(n): stride = (s if (i == 0) else 1) features.append(block(input_channel, output_channel, stride, expand_ratio=t)) input_channel = output_channel features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) self.features = nn.Sequential(*features) self.classifier = nn.Sequential(nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes)) def _forward_impl(self, x): x = self.features(x) x = nn.AdaptiveAvgPool2d(1)(x) x = jt.reshape(x, (x.shape[0], -1)) x = self.classifier(x) return x
[文档] def execute(self, x): return self._forward_impl(x)
[文档]def mobilenet_v2(pretrained=False): model = MobileNetV2() if pretrained: model.load("jittorhub://mobilenet_v2.pkl") return model