JDet
Github: https://github.com/Jittor/JDet
Introduction
JDet is an object detection benchmark based on Jittor, and mainly focus on aerial image object detection (oriented object detection).
Install
JDet environment requirements:
System: Linux(e.g. Ubuntu/CentOS/Arch), macOS, or Windows Subsystem of Linux (WSL)
Python version >= 3.7
CPU compiler (require at least one of the following)
g++ (>=5.4.0)
clang (>=8.0)
GPU compiler (optional)
nvcc (>=10.0 for g++ or >=10.2 for clang)
GPU library: cudnn-dev (recommend tar file installation, reference link)
Step 1: Install the requirements
git clone https://github.com/Jittor/JDet
cd JDet
python -m pip install -r requirements.txt
If you have any installation problems for Jittor, please refer to Jittor
Step 2: Install JDet
cd JDet
# suggest this
python setup.py develop
# or
python setup.py install
If you don’t have permission for install,please add --user
.
Or use PYTHONPATH
:
You can add export PYTHONPATH=$PYTHONPATH:{you_own_path}/JDet/python
into .bashrc
, and run
source .bashrc
Getting Started
Datasets
The following datasets are supported in JDet, please check the corresponding document before use.
DOTA1.0/DOTA1.5/DOTA2.0 Dataset: dota.md.
FAIR Dataset: fair.md
SSDD/SSDD+: ssdd.md
You can also build your own dataset by convert your datas to DOTA format.
Config
JDet defines the used model, dataset and training/testing method by config-file
, please check the config.md to learn how it works.
Train
python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=train
Test
If you want to test the downloaded trained models, please set resume_path={you_checkpointspath}
in the last line of the config file.
python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=test
Test on images / Visualization
You can test and visualize results on your own image sets by:
python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=vis_test
You can choose the visualization style you prefer, for more details about visualization, please refer to visualization.md.
Build a New Project
In this section, we will introduce how to build a new project(model) with JDet. We need to install JDet first, and build a new project by:
mkdir $PROJECT_PATH$
cd $PROJECT_PATH$
cp $JDet_PATH$/tools/run_net.py ./
mkdir configs
Then we can build and edit configs/base.py
like $JDet_PATH$/configs/retinanet.py
.
If we need to use a new layer, we can define this layer at $PROJECT_PATH$/layers.py
and import layers.py
in $PROJECT_PATH$/run_net.py
, then we can use this layer in config files.
Then we can train/test this model by:
python run_net.py --config-file=configs/base.py --task=train
python run_net.py --config-file=configs/base.py --task=test
Models
Models |
Dataset |
Sub_Image_Size/Overlap |
Train Aug |
Test Aug |
Optim |
Lr schd |
mAP |
Paper |
Config |
Download |
---|---|---|---|---|---|---|---|---|---|---|
S2ANet-R50-FPN |
DOTA1.0 |
1024/200 |
flip |
- |
SGD |
1x |
74.11 |
|||
S2ANet-R50-FPN |
DOTA1.0 |
1024/200 |
flip+ra90+bc |
- |
SGD |
1x |
76.40 |
|||
S2ANet-R50-FPN |
DOTA1.0 |
1024/200 |
flip+ra90+bc+ms |
ms |
SGD |
1x |
79.72 |
|||
S2ANet-R101-FPN |
DOTA1.0 |
1024/200 |
Flip |
- |
SGD |
1x |
74.28 |
|||
Gliding-R50-FPN |
DOTA1.0 |
1024/200 |
Flip |
- |
SGD |
1x |
72.93 |
|||
Gliding-R50-FPN |
DOTA1.0 |
1024/200 |
Flip+ra90+bc |
- |
SGD |
1x |
74.93 |
|||
RetinaNet-R50-FPN |
DOTA1.0 |
600/150 |
- |
- |
SGD |
- |
62.503 |
|||
FasterRCNN-R50-FPN |
DOTA1.0 |
1024/200 |
Flip |
- |
SGD |
1x |
69.631 |
|||
RoITransformer-R50-FPN |
DOTA1.0 |
1024/200 |
Flip |
- |
SGD |
1x |
73.842 |
|||
FCOS-R50-FPN |
DOTA1.0 |
1024/200 |
flip |
- |
SGD |
1x |
70.40 |
|||
OrientedRCNN-R50-FPN |
DOTA1.0 |
1024/200 |
Flip |
- |
SGD |
1x |
75.62 |
Notice:
ms: multiscale
flip: random flip
ra: rotate aug
ra90: rotate aug with angle 90,180,270
1x : 12 epochs
bc: balance category
mAP: mean Average Precision on DOTA1.0 test set
Plan of Models
:heavy_check_mark:Supported :clock3:Doing :heavy_plus_sign:TODO
:heavy_check_mark: S2ANet
:heavy_check_mark: Gliding
:heavy_check_mark: RetinaNet
:heavy_check_mark: Faster R-CNN
:heavy_check_mark: SSD
:heavy_check_mark: ROI Transformer
:heavy_check_mark: fcos
:heavy_check_mark: Oriented R-CNN
:heavy_check_mark: YOLOv5
:clock3: ReDet
:clock3: R3Det
:clock3: Cascade R-CNN
:heavy_plus_sign: CSL
:heavy_plus_sign: DCL
:heavy_plus_sign: GWD
:heavy_plus_sign: KLD
:heavy_plus_sign: Double Head OBB
:heavy_plus_sign: Oriented Reppoints
:heavy_plus_sign: Guided Anchoring
:heavy_plus_sign: …
Plan of Datasets
:heavy_check_mark:Supported :clock3:Doing :heavy_plus_sign:TODO
:heavy_check_mark: DOTA1.0
:heavy_check_mark: DOTA1.5
:heavy_check_mark: DOTA2.0
:heavy_check_mark: SSDD
:heavy_check_mark: SSDD+
:heavy_check_mark: FAIR
:heavy_check_mark: COCO
:heavy_plus_sign: LS-SSDD
:heavy_plus_sign: DIOR-R
:heavy_plus_sign: HRSC2016
:heavy_plus_sign: ICDAR2015
:heavy_plus_sign: ICDAR2017 MLT
:heavy_plus_sign: UCAS-AOD
:heavy_plus_sign: FDDB
:heavy_plus_sign: OHD-SJTU
:heavy_plus_sign: MSRA-TD500
:heavy_plus_sign: Total-Text
:heavy_plus_sign: …
Contact Us
Website: http://cg.cs.tsinghua.edu.cn/jittor/
Email: jittor@qq.com
File an issue: https://github.com/Jittor/jittor/issues
QQ Group: 761222083
The Team
JDet is currently maintained by the Tsinghua CSCG Group. If you are also interested in JDet and want to improve it, Please join us!
Citation
@article{hu2020jittor,
title={Jittor: a novel deep learning framework with meta-operators and unified graph execution},
author={Hu, Shi-Min and Liang, Dun and Yang, Guo-Ye and Yang, Guo-Wei and Zhou, Wen-Yang},
journal={Science China Information Sciences},
volume={63},
number={222103},
pages={1--21},
year={2020}
}