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Abstract

Determining redundant constraints is a critical task for
geometric constraint solvers, since it dramatically affects
the solution speed, accuracy, and stability. This paper
attempts to determine the numerical redundancies of
three-dimensional geometric constraint systems via a
disturbance method. The constraints are translated into
some unified forms and added to a constraint system
incrementally. The redundancy of a constraint can then be
decided by disturbing its value. We also prove that graph
reduction methods can be used to accelerate the
determination process.
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1. Introduction

Geometric constraint solver is an important tool in
design and manufacturing applications [1, 2, 3, 5, 9, 10, 12,
15]. There are four major approaches in the literature for
solving declarative constraint systems: the numerical
approach [7, 12, 13, 20], symbolic approach [6, 14],
graph-based approach [3, 5, 8, 9, 10, 11, 16], and
rule-based approach [1, 19].

For the sake of flexibility and convenience, usually a
solver allows the user to add arbitrary constraints into the
system. Therefore, it must be determined if the constraint
system has any redundancies, which can be divided into
structural and numerical redundancies [18]. Much work
has addressed the problem of structural redundancies.
Serrano and Gossard [17] applied the graph-theoretic
algorithm to match each equation with a unique variable to
prevent over-constraining. Sridhar et al. [18] presented
some algorithms for the structural diagnosis and
decomposition of sparse, under-constrained design
systems. Fudos and Hoffmann [5] proposed the bottom-up
graph reduction method that works well with over- and

well- constrained problems in two dimensions. Latham
" and Middleditch [9] analyzed the connectivity between
constraints and geometric entities and presented an
algorithm to identify those parts of a geometric
configuration that are over-constrained. In our previous

0-7695-1227-5/01 $10.00 © 2001 IEEE

118

work [11], we also gave the criterion of deciding structural
over-constrained problems based on a graph-reduction
method.

It is more difficult to determine numerical redundancies.
Kondo [14] used Grobner basis method to test whether
two-dimensional constraints are independent, and if not, to
find the relation between them. Gao and Chou [6]
presented complete methods for deciding whether the
constraints are independent and whether a constraint
system is over-constrained based on Wu-Ritt’s
decomposition algorithm. Although many geometric
problems can be solved with these approaches, both of
them may require exponential running times and are too
slow for real time computation.

There are other ways to handle redundancies in
constraint systems. In the approach of Anantha et al. [2],
redundant constraints are identified and checked for
consistency, and degenerate cases are handled. Ge er al.
[71 employed optimization method to handle
over-constrained problems, and it works well for
consistent over-constrained cases.

In this paper, we try to determine the numerical
redundancies of 3D geometric constraint systems. Each
constraint is translated into the distance and/or angle
unified forms, and then added into the system
incrementally. We can decide whether a constraint is
redundant via disturbing its value. In order to accelerate
the determination process, graph reduction methods are
employed to decompose the constraint system. In addition,
we prove that the numerical redundancies of a constraint
system are unchanged after graph reductions.

The remainder of this paper is organized as follows.
Section 2 gives the algebraic representation of geometric
elements and constraints. Section 3 presents the
determination strategy of numerical redundancies. Section
4 describes the acceleration method with graph reductions.
Finally, Section 5 presents a summary and future work.

2. Representation of geometric elements and
constraints

In the following discussions, all the geometric elements
and constraints are in a three-dimensional domain.
The geometric elements include points, lines, planes,



spheres, cylinders, and rigid bodies. Each element g has

a corresponding degree of freedom, which is the maximal

number of independent parameters, denoted as DOF(g).
A point p is represented by
(x,.7,,2,0)

represented by (x,,5,,z,,0). Aline / is represented by

its homogeneous

coordinates and a vector »n is

a point on the line, denoted by p(/), and a unit vector
n(l). Aplane P is represented by its unit normal vector
n(P) and a point on the plane p(P). A sphere S is

represented by its center p(S) and the radius 7(S). A
cylinder C is represented by its  axis
(C)={p(C):n(C)} and the radius r(C) . If these
elements are on a rigid body R, the transformation
matrix between the local and world coordinate systems is

i cosd, siné, sinl, cosg, sind, cosy
€0sd, cosby e e Vi coss L Vi R
—singy, cosy, +sing, siny,
sing, sind, cosi sing, siné, cos
sing, sind, P 'z COSY/R Be =& Wk e |
+ oS¢, COSY/y — COS@, SNy,
—sing, cost, siny, cosb, cosy/y Zp
0 0 0 1 ]

where x,, yp, z; indicate the translation of R, and
6, 6y, Wy are respectively the rotation about the
z-axis (roll), y-axis (pitch), and x-axis (yaw).

The constraint types include awngle, parallelism,
perpendicularity, distance, tangency, and incidence. A
geometric constraint c¢ reduces the DOFs of related
geometric elements by a certain number, called the degree
of constraint of c, denoted as DOC(c). Although some
constraint can be represented by one equation, for example,
plane-plane-parallelism is a special case of constraint
plane-plane-angle where the angle value is zero. The
DOCs of these constraints are more than one, and some
parts of these DOCs may be redundant. Therefore, if a
constraint has more than one DOCs, it should be
substituted by several constraints with one DOC each. For
example, plane-plane-parallelism can be translated into
two vector-vector-angle constraints with the value 7/2.
As illustrated in Figure 1, # and v are two vectors in
plane P, obviously the constraint Parallel(P,P,) is
equal to Angle(u,n(P,))=7/2
Angle(v.n(P,))=7x/2 iff u-v#1.

and
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Figure 1. A plane-plane-parallelism constraint

In this way, all the constraints can be translated into
unified forms. Table 1 gives four basic constraint types
and their representations. Note that the values of the basic
constraint types cannot be zero except for
point-plane-distance.

Table 2 shows how a constraint with more than one
DOC is equivalently represented by several constraints
with one DOC each. We can easily prove the equivalence
between the original constraints-and the substitutes. Note
that the value of angle cannot be zero or 7 /2 and the
value of distance cannot be zero. For simplicity, Table 2
omits some constraint types, for example,
sphere-sphere-distance is the distance between the centers
of two spheres, and its representation is the same as
point-point-distance.

Although some constraints can be equivalently
represented in many ways, usually we adopt the
representations that have explicit geometric meanings. For
example, suppose the vertices p and g of the two

polyhedrons in Figure 2 are to be incidental. We substitute
the constraint Incidence(p,q) with DistpP(p,U)=0,
DistpP(p,V)=0 and DistpP(p,W)=0,where U, V
and # are three planes of the polyhedron incident with
q . In this way, if one constraint, say, DisipP(p,W)=0,
is redundant, point p is still incident with edge /.

Figure 2. An incidence constraint between two points



3. Determining numerical redundancies

When a constraint is added into the constraint system,
first it is substituted with several one-DOC constraints if
its DOC is more than one, and then we decide whether it is
structurally redundant using algorithms such as those in [5,
17, 18]. If not, we determine whether it is numerically
redundant.

Let R[x,,....x,] be the set of all polynomials in the

variables x,,...,x, with coefficients in the field R. A

geometric constraint system can be expressed as a
nonlinear  equation  set F(X)=0 ,  where

X ={x,,%,,...,x,,} is the variable set that characterizes the

Fz{flafzs"-sfm} P

is the equation set that

geometric  elements, and
fi € Rix;50x,] (A<i<m)

denotes the constraints. The solution set of F(X)=0 is
denoted as Zero(F) . The constraint system is dependent
if there exists an equation f,eF that
Zero(F)=Zero(F —{f.}) ; it is inconsistent if
Zero(F)=®. If a constraint ¢ is dependent, obviously
Zero(F)=® when we add a disturbance value to the

value of c. Therefore, if the constraint system cannot be
solved after disturbing a constraint’s value, we consider
that constraint to be numerically redundant. To determine
whether a constraint is inconsistent, it is “safe” to solve
the constraint system with the original constraint value.
However, since the disturbance value is a very small
number, we assume that the disturbance does not affect the
inconsistency status. Thus, we can determine both
dependency and inconsistency by determining whether it
is possible to solve the system with the disturbance value.
Consider the three polyhedrons in Figure 3(a). The
angles of P and ¥V are both 7/3 and those of Q

and W are 27/3 . There are two constraints
Incidence(U,V) and Incidence(U,W) in the constraint

system. When constraint Parallel(P,Q) is added into
the system, it is substituted by Angle(u,n(Q))=7x/2
and Angle(v,n(Q)=x/2 , u-n(P)y=0 ,
v-n(P)=0,and u-v#1. After disturbing the constraint
value, i.e., changing the constraint value from #/2 to
7/2+6 , the constraint Angle(u,n(Q))=7x/2+38 can
be satisfied, as illustrated in Figure 3(b). However, the
constraint Angle(v,n(Q))=7x/2+0 cannot be satisfied
when the angle between u and n(Q) is x/2 .
Therefore, one DOC of Parallel(P,Q) is numerically
redundant.

such

where
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(a) Three polyhedrons with two incidence constraints
Incidence(U,V) and Incidence(U,W)

(b) The angle between u# and »n(Q) is #/2+6
Figure 3. Example of redundant constraints

Now the problem is how to determine whether a
constraint system is solvable. Symbolic methods [6, 14]
can provide a complete yet inefficient solution to the
problem of inconsistency in the general case. For
elementary configurations, which are in the form of a set
of finite number of points, oriented hyperplanes, and
oriented hyperspheres in Euclidean space, Zhang ef al. [21]
provided a complete solution to the problem of whether
the configuration can be implemented with a prescribed
metric for each pair of the geometric elements. After
converting the constraints into the four basic constraint
types in Table 1, and replace each vector with its normal
plane, we can use that method to decide whether the
geometric constraint system can be solved. If there are
some pairs of geometric elements with unknown metric,
we can use variables to represent the metrics, which will
not affect the judgement process.

In practical applications, numerical algorithms are
generally used to solve nonlinear equation systems. We
can convert the system of equations F ={f], Foses fud

into the sum of squares ¢ = Z £? and find the minimal
i=l

value of o using optimization methods. If the minimal

value is not zero, the constraint system cannot be solved.

According to Ge et al. [7], the BFGS method, which is



also called the secant or quasi-Newton method is stable
and effective. For some special cases, we may apply
analytic method to determine whether a system is solvable,
which is fast and reliable.

4. Acceleration
reductions

strategy with graph

Graph reduction methods [3, 5, 8, 10, 11, 16] for
solving geometric constraint systems have two phases: the
analysis phase, followed by the construction phase. In the
analysis phase, a sequence of construction steps is
generated by forming rigid bodies, called clusters. A
cluster is-a set of geometric elements whose positions and
orientations relative to each other are known according to
the constraints between them. The combination operation
of forming a cluster is called reduction. Note that the
clusters are rigid in generic sense, ie., numerical
redundancies are not handled. In the construction phase,
each construction step is evaluated to derive positions and
orientations of the geometric elements by analytical or
numerical algorithms. In this way, a large problem is
divided into several small problems and the solving
efficiency is improved. We can employ graph reduction
methods to accelerate the determination process of
numerical redundancies. When a new constraint is added
into the constraint system, we first convert the system into
a new form using reduction algorithms, and then disturb
the value of that constraint. Below gives the proofs of the
conclusions.

Lemma 1. A reduction does not change the solution set
of a constraint system that has no numerical redundancies.

Proof. Let F={f,f,.fn} » S €RIx,.0x,]
(1<i<m) be the equation set representing the constraint
system, and Zero(F) be its solution set. Since a rigid
body in 3D domain has 6 DOFs, F is divided into two
sets, F ={fusrfir} s J; € RIXp e X061
(r+1<j<r+t) and F-F" after a reduction. In

F—-F", x,.,x%,, can be represented by polynomials in
the coordinate transformation parameters y,,...,y,. We
use Zero(F" ® F—F") to represent the solution set of
the constraint system after a reduction. Our task is to
prove that Zero(F) = Zero(F" @ F—F").

*

Assume x,,..,x; are fixed to values x, ,..,x; to

compute Zero(F™) For
* * [} 0
all §X) s Xg 3 Xy seesX,pq 1€ Zero(F") and
0 0 0 0 *
1 s Ve 35Xy s X, JEZero(F—F") , we can
* * 0 1 1 .
transform x; ,.,X; ,X; ,s X, 10 X s, X, uSiDg
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transformation ~ parameters  y,°....,y,’

According to the coordinate transformation characteristics
of rigid bodies, we know that {x....x,.'}€ Zero(F"),

coordinate

and thus {x,',..., %, > X,.; s X, } € Zero(F) . Therefore,
Zero(F* @ F — F') c Zero(F) .

1 1 .
For all {x,' ..., X, 16 +X,,7 »en X, } € Zero(F), obviously

0 0 3 1 1

we can compute Yy, ,..,ys using x,,.,X; and
* * 1 1

b N A Next, we can transform X, 5ees Xy O
* * 0 0 . 0 0 .

Xy e Xg 5 X7 seeesXppg using  y; ,e Ve Since
1 1 *

{xX, sX, y€ Zero(F') we know that
* * 0 0 *

{X) seeesXg 3 X5 s X, € Zero(F) and
[} 0 0 0 * .

{¥) s Vs sX1i7 sesX, }€ Zero(F—F") according to

the coordinate transformation characteristics of rigid
bodies. Thus Zero(F) c Zero(F* ® F—F™). O

Lemma 2. Let F be a constraint system without
numerical redundancies and f be a numerically
redundant of FU{f}
FU{ft=F'UF? after a reduction, then there are
numerical redundancies in F' or/and FZ. [

Proof{by contradiction). Assume there is no numerical
redundancy in F' and F?. According to Lemma 1, we
know that FU{f} has no numerical redundancy, this is
contrary to the given conditions.

Lemma 3. The graph reduction process terminates.
Proof. See reference [5, 10]. O

constraint Assuming

Theorem. The graph reduction methods can be used to
accelerate the determination process of numerical
redundancies.

Proof. It follows immediately from Lemma 2 and 3. [

5. Discussions

We have presented a disturbance way to determine the
numerical redundancies of three-dimensional geometric
constraint systems. Although our method is very simple in
concept, it can realize effective determination of
numerically redundant constraints.

We have proved that the reduction methods can be used
to accelerate the determination process. For
under-constrained systems, it is common to add some
virtual constraints to structurally well-constrain the system.
These virtual constraints may be numerically redundant.
For example, assume that the constraint system of Figure
3(a) has only two constraints Incidence(U,V) and

Incidence(U,W). If we add a virtual constraint with six
DOCs between the two tetrahedrons, the constraint system



is structurally well-constrained yet has numerical
redundancies. Therefore, future work is needed to deal
with this problem.
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Table 1. Four basic constraint types

Type Related elements Value Representation
point-point-distance DisD; d Distpp(p;,p,;)=d
point-line-distance P, d Distpl(p,)=d
point-plane-distance p,P d DistpP(p,P)=d
vector-vector-angle n,n; o Angle(n,,n,)=o
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Table 2. The constraints and their equivalent representations

Type Related elements | DOC |Value Equivalent representation
plane P, P, 1 & | Angle(n(P,),n(P,))) = a
angle plane P, line / 1 & |Angle(n(P),n())=7/2-
line 7, 1, 1 | @ |dngle(n(,),n())) =
plane P, PJ 2 ! |Angle(u,n(P,))=n 12 , Angle(v,n(P,))=n/2 , where
u-n(P)=0,v-n(P)=0and u-v=1
parallelism plane P ,line !/ 1 ! |Angle(n(P),n()) =7 /2
line 1, I, 2 / Angle(u,n(l )= /2, Angle(v,n(l ) =7 /2,
where u-n(l)=0,v-n(;))=0 and u-v=1
plane P, P, 1 |/ |dngle(n(P),n(P)=7/2
perpendicularity plane P, line / 2 ! \Angle(u,n(P))=712, Angle(v,n(P))=7/2,
where u-n(l)=0,v-n(l)=0 and z-v#1
line 7,, I, 1 I |Angle(n(l),n(,) =7 /2
plane P, P, 3 d |DistpP(p(P,),P,)=d , Parallel(P,,P,)
distance plane P ,line ! 2 d |DistpP(p(l),P)=d , Parallel(l, P)
line 7,, I, 3 | d |Distpl(p(1,),1,) = d, Parallel(,,1,)
plane P, sphere S 1 !/ | DistpP(p(S), P)=r(S)
line 7, sphere S 1 ! | Distpl(p(8),]) = r(S)
sphere S, S, 1 ! |Distpp(p(S,), p(S ) = r(S,)+r(S,)
tangency plane P , cylinder C 2 ! | DistpP(p(C), P) = r(C) , Parallel(n(C), P)
line 7, cylinder C 1 | / |If 1/n(C), Distpl(p(C),I)=r(C);
otherwise DistpP(p(C),Q)=r(C), where Q is a
plane incident with / and parallel to n(C)
sphere S ,cylinder C 1 ! | Distpl(p(S),1(C)) = r(S) + r(C)
plane P, P, 3 /" |DistpP(p(P,),P,)=0, Parallel(P,,P,)
plane P, line [ 2 | 7 |DistpP(p(),P) =0, Parallel(l, P)
point p.cylinderC | 1 | / |Distpl(p,I(C))=r(C)
point p ,sphereS 1 ! |Distpp(p, p(S)) = r(S)
incidence point p, line / 2 !/ |DistpP(p,U) =0, DistpP(p,V)=0,
where U, V aretwoplanesand /=UNV
point p,, p; 3 /" |DistpP(p,;,U)=0 , DistpP(p,,V)=0 ,
DistpP(p , ,W)=0, where U, V , W are three
planesand p, =UNVNW
line /, cylinder C 3 I |Distpl( p(1),1(C)) = r(C), Parallel(l,n(C))
line /,, I, 4 ! |Parallel(l,,] ), Incidence(p(l,),1 )
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