
ACM Symposium on Solid Modeling and Applications (2004)
G. Elber, N. Patrikalakis, P. Brunet (Editors)

Actual Morphing: A Physics-Based Approach to Blending

Shi-Min Hua, Chen-Feng Lib, Hui Zhanga

aTsinghua University, Beijing, People’s Republic of China
bUniversity of Wales Swansea, UK

Abstract
When two topologically identical shapes are blended, various possible transformation paths exist from the source shape to the
target shape. Which one is the most plausible? Here we propose that the transformation process should obey a quasi-physical
law. This paper combines morphing with deformation theory from continuum mechanics. By using strain energy, which reflects
the magnitude of deformation, as an objective function, we convert the problem of path interpolation into an unconstrained
optimization problem. To reduce the number of variables in the optimization we adopt shape functions, as used in the finite
element method (FEM). A point-to-point correspondence between the source and target shapes is naturally established using
these polynomial functions plus a distance map.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

Morphing, the process of transforming one shape into another
via intermediate shapes, plays an important role in computer an-
imation, industrial design, and simulation. Extensive investiga-
tions have been conducted on this subject and existing meth-
ods can be classified into four categories according to how
the objects are represented: image morphing [BN92, LCSW95],
2D shape blending [SG92, SGWM93], volume-based morph-
ing [Hug92, LGL95, TO99, TPG01] and boundary-based morph-
ing [KCP92].

There are two main aspects to a morphing problem: vertex cor-
respondence and path interpolation. For image morphing, the main
problem is to find a pixel-to-pixel correspondence. For 2D shape
blending, there are algorithms that automatically determine vertex
correspondence between the polygons [Shi99]. The principal task
is to identify the right path. Sederberg and Greenwood [SG92] pre-
sented an algorithm whereby the first shape is bent and/or stretched
into the second with the minimum amount of work. Sederberg et
al. [SGWM93] subsequently proposed a solution that works by in-
terpolating the intrinsic parameters—angles and edge lengths—of
the initial and final shapes. In 3D cases, as in volume-based mor-
phing and boundary-based morphing, both vertex correspondence
and path interpolation are non-trivial. The main techniques used to
set up 3D vertex correspondence are harmonic mapping [KSK00],
MAPS [LDSS99] and consistent mesh parameterization [PSS01].
The path problem has also been comprehensively studied: Cohen-
or et al. [CLS98] presented a warp transformation method of de-
composing the transformation into a rigid component and an elastic
component, based on distance field interpolation. The interpolation
technique of Alexa et al. [ACL00] aims to make body elements,
i.e. triangles for 2D or tetrahedrons for 3D, as rigid as possible dur-

ing shape interpolation. Breen et al. [BW01] proposed a level-set
approach for 3D morphing which has the advantage of being able
to cope with shapes of different topological genus.

Although some efficient techniques have been proposed for both
vertex correspondence and path interpolation, most concentrate on
only one of these two aspects. For example, Lee et al. [LDSS99]
used the MAPS algorithm to parameterize source and target meshes
over simple base domains and an additional harmonic map, and to
bring the latter into correspondence, while only using simple inter-
polation for path determination. Alaxa et al. [ACL00] considered
only the path problem, and assumed the availability of a bound-
ary vertex correspondence between source and target shapes. It is
generally accepted, however, that setting up boundary vertex cor-
respondence for 3D objects with different numbers of vertices is
non-trivial.

In this paper, we present a novel method which uses a quasi-
physical law to determine the ideal transformation path when
blending two topologically identical shapes . The path is then found
by solving an unconstrained optimization problem, and a point-to-
point correspondence between the source and target shapes is set
up by using the same discrete formulation used in tracing the path,
i.e. shape functions, plus a distance map.

The paper is set out as follows. Section 2 outlines the underlying
mathematical theory of the algorithm from two aspects, i.e. quasi-
physical law with path optimization, and numerical solution with
vertex correspondence. In Section 3 we explain the algorithm in
detail for the 3D case. Section 4 gives some examples in both 2D
and 3D. Finally we give some conclusions in Section 5.
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2. Mathematical basis

2.1. Quasi-physical law and path optimization

As shown in Fig.1, given a bodyB’s source configurationB0 and
target configurationBM , the objective of morphing is to find inter-
mediate configurationsBi , wherei = 1,2, . . . ,M−1, which trans-
form the object fromB0 to BM smoothly.

Figure 1: Schematic illustration of morphing.

Using visual inspection, a user can judge the quality of the mor-
phing sequence. But how can quality bemeasured? A practical
criterion is that the object should undergo the least distortion and
travel along the simplest path. Using ideas from deformation the-
ory from continuum mechanics [Fun65], material properties should
be assigned to a geometric object, and its strain energy should be
used to measure its distortion during a morphing process. Using
these ideas, we can now suggest that the ideal path should be the
one with the minimum strain energy. We call this path interpolation
criterion aquasi-physical law.

Going fromB0 to BM , each new configuration serves as an equi-
librium position from which the next deformation is computed, and
the strain energy is calculated for a succession of deformations tak-
ing place at each animation step. LetX = [x,y,z]T be a vector in<3

that denotes the location of a point. Thus,

X i = X i−1 +ui , i = 1,2, . . . ,M (1)

defines the path of the point during morphing,X0 u1

−→ X1 u2

−→
X2, . . . , XM−2 uM−1

−−−→ XM−1 uM

−−→ XM , whereui denotes the rela-
tive displacement of the point between configurationsBi andBi−1.
Here, X0 and XM are pre-defined by source and target configu-
rationsB0 andBM of the body respectively. From these displace-
ments, the strain energyU which reflects the magnitude of defor-
mation in a morphing process can be obtained by

εi =
1
2
(ui∇+∇ui) (2)

σi = C : εi (3)

U i =
∫

Ωi

1
2

σi : εidΩ (4)

U =
M

∑
i=1

U i(X i) (5)

where the strain tensorεi describes the deformation of the object,
the stress tensorσi denotes the internal “force”,C is the elastic
stiffness tensor—a rank four constant tensor with only two inde-
pendent parameters for isotropic elastic material,: represents tensor
contraction, and∇ is the gradient operator. (For concepts of tensor
analysis refer to [Flü72]).

Using our quasi-physical law, intermediate configurationsBi(i =
1,2, . . . ,M− 1) are determined by solving an unconstrained opti-
mization problem:

min
X i

(U) = min
X i

M

∑
i=1

U i(X i) (6)

2.2. Numerical solution and vertex correspondence

To solve the optimization problem in Eq.6 efficiently, a finite ele-
ment mesh is generated for the object and the coordinates of points
on theith configurationBi , i = 0,1, . . . ,M are approximated by

X i = NX i
(e) = [N j1,N j2, . . . ]





X j1
X j2

...





(e)

(7)

whereX(e) denotes the node coordinates of the mesh andN j i (ξl )
is the shape function at nodej i . A shape functionN j i (ξl ) [ZT00]
can take various polynomial forms; the formulation used here pro-
duces exact coordinates on nodes. Substitution of Eq.7 into Eqs.1–
6 yields the minimization problem

min
X i

M

∑
i=1

∑
∀Ωe∈Ω

ui
(e)

T
K (e)u

i
(e) (8)

where the stiffness matrixK (e) is calculated by Gaussian numeri-
cal integration. Given the predefined finite element meshes on con-
figurationsB0 andBM , Eq. 8 is the final numerical form of path
optimization, from which a succession of intermediate meshes rep-
resenting configurationBi , i = 1,2, . . . ,M− 1 can be determined.

Sinceui
(e)

T
K (e)u

i
(e) is a positive definite quadratic form with good

properties (it is unimodal and adequately smooth), the above opti-
mization can be solved efficiently with any classical optimization
algorithm such as the gradient method or the quasi-Newton method.

Shape functions within a finite element mesh grid define a lo-
cally smooth patch with regular parametric range, i.e.,[−1,1] for
each coordinate variable, and combination of these patches pro-
duces a geometrically continuous interpolated surface for the ap-
proximate configurationBi , i = 0,1, . . . ,M. Since the topology of
the mesh stays unchanged during a morphing procedure, the mesh
surface provides a grid-to-grid correspondence. In order to compute
the accurate configurationBi , i = 0,1, . . . ,M and the point-to-point
correspondence, the interpolated surface is taken as one component
of the original configurationB0 or final configurationBM . The other
component, i.e. the elevation map (the distance between the inter-
polated surface and the original shape surface), is calculated by re-
sampling configurationB0 or BM at the appropriate resolution. The
elevation map for configurationBi , i = 1,2, . . . ,M−1 is calculated
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by linear interpolation between the elevation maps forB0 andBM .
Then, the configurationBi , i = 0,1, . . . ,M can be represented as a
superimposition of the interpolated surface and the corresponding
elevation map. An example is shown in Fig.2, where four nodes
(yellow) and corresponding shape functions define the parametric
patch (yellow), with a local coordinate system and regular paramet-
ric range[−1,1] for each coordinate valuable. Re-sampling is done
on the original shape surface (blue), with a vector from the paramet-
ric anchor point (red dot) which is perpendicular to the parametric
patch (red dashed segment).

Figure 2: Schematic illustration of re-sampling.

Finite element meshes over the source and target objects aid the
task of shape correspondence from grid to grid; incorporating shape
functions and elevation maps, with the same resolution, into each
mesh grid, enables the creation of a point-to-point correspondence
between the source and target shapes.

3. Algorithm

In order to illustrate the morphing technique in detail, 3D morph-
ing is used as an example. From the known configurationsB0 and
BM , configurationsBi , i = 1,2, . . . ,M− 1 are calculated with our
algorithm using the following steps.

3.1. Generating FE meshes and calculating elevation maps

To reduce the number of unknown optimization variables, a surface
finite element model is used rather than a volumetric model. First,
a succession of point pairs is selected by inspection of the source
and target shapes. Each of these point pairs is given a unique serial
number and defines a pair of corresponding characteristic points on
the source and target shapes. Now, by connecting these points in ac-
cordance with their serial numbers, two finite element meshes with
the same topology are obtained, one for the source shape and the
other for the target. Sometimes, these two meshes may not be fine
enough to capture the source and target shapes in detail. It is trivial
to refine them, and this is done by adding nodes and edges to the
initial mesh grids. Elevation maps for configurationB0 andBM are
calculated according to the method described in Section 2.2. Using
these finite element meshes, a grid-to-grid correspondence is de-
fined on the object; with the elevation maps re-sampled at identical
resolutions, a point-to-point correspondence is further set up.

3.2. Material properties

Two independent material parameters for isotropic elastic mate-
rial are used in this paper: Young’s modulusE and Poisson’s ratio
v [Fun65]. Since these material properties are at the user’s disposal,
it is not necessary to choose these two parameters appropriate to
real materials. Actually, one can freely select values for Young’s
modulusE and Poisson’s ratiov within their individual definition
domains, i.e.(0,+∞) for E and [1/2,1] for v. Furthermore, our
experimental tests show that the morphing results obtained are not
particularly sensitive to choice of these two parameters.

3.3. Tracing the morphing path

Initial values for iterative solution of the optimization problem in
Eq.8 i.e., a family of coarse intermediate nodal coordinates, are ob-
tained from linear interpolation between the nodal coordinates for
configurationsB0 andBM . A family of optimal nodal coordinates is
then obtained using the gradient method. We use a gradual refine-
ment procedure, where the number of animation frames is doubled
at each step. For example, starting atn = 1, we (i) generate2n+1
animation frames by interpolation and optimization, then (2) take
these optimized animation frames as input values and updaten by
replacing it by2n. The procedure is then repeated as necessary.

3.4. Rebuilding the shape at each animation step

We compute the local parametric patches defined in Eq.7 using
the nodal coordinates calculated above together with the elevation
maps found for configurationsBi , i = 1,2, . . . ,M− 1 by means of
linear interpolation between configurationsB0 andBM . Thus, the
ith intermediate shape is rebuilt by superimposing the parametric
patches and the corresponding elevation maps.

4. Examples

4.1. Morphing a colored bar from straight to arched

A simple morphing sequence for a colored bar going from a straight
shape to an arched shape is shown in Figs.3.1–3.3. The shape func-
tions used in this example are listed as follows:

Ni =
1
4
(1+ξiξ)(1+ηiη) i = 1, . . . ,4 (9)

where (ξi ,ηi), i = 1, . . . ,4 take values(−1,−1), (1,−1), (1,1),
(−1,1) respectively.

Figure3.1shows the finite element meshes of the source and tar-
get shapes. Figures3.2 and 3.3 show morphing results produced
using our proposed method and linear interpolation, respectively.
Comparison of Figs3.2and3.3shows that the length and the width
of the bar remain unchanged during morphing, unlike the result
produced by linear interpolation, which causes drastic shape dis-
tortion.

4.2. Morphing of gymnastic patterns

Figures4.1 and4.2 show a morphing example involving three 2D
gymnastic patterns in which the shape functions in Eq.9 are again
applied. Figure4.1 shows the finite element meshes of the three
gymnastic patterns, and Fig.4.2shows the morphing sequence pro-
duced; the three key patterns are circled. The arms and legs of the

c© The Eurographics Association 2004.



Shi-Min Hu , Chen-Feng Li , Hui Zhang / Actual Morphing

(a)Straight source bar (b) Arched target bar

3.1: FE meshes for the two bars

3.2: Animation frames by the proposed method

3.3: Animation frames by linear interpolation.

Figure 3: Morphing a colored bar

gymnastic patterns undergo large and different translations and ro-
tations, which cannot be handled using traditional methods for de-
termining the transformation path. Note that purely rigid rotation
consumes zero strain energy; by minimizing the strain energy a sat-
isfactory morphing result that has the least distortion is achieved.

(a)Key pattern 1 (b) Key pattern 2 (c) Key pattern 3

4.1: FE meshes of gymnastic patterns

4.2: Animation frames by the proposed method

Figure 4: Morphing gymnastic patterns

4.3. Morphing between two 3D human heads

A classical morphing test case used in previous research [LDSS99]
involves two 3D human heads from a man and a woman. We use
it here to test the new morphing algorithm. The man’s head has
13,408 triangle facets and the woman’s 100,000; the number of
vertices is 6,738 for the man’s head and 50,002 for the woman’s
head. In this case we let

Ni =
1
8
(1+ξξi)(1+ηηi)(1+ζζi) i = 1,2, . . . ,8 (10)

where(ξi ,ηi ,ζi) equal(1,1,1), (−1,1,1), (−1,−1,1), (1,−1,1),
(1,1,−1), (−1,1,−1), (−1,−1,−1), and(1,−1,−1) in turn, with
i ranging from 1 to 8. The shape functions [Par95] can be written
as:

{
Ni = Ni −Ni+4
Ni+4 = Ni +Ni+4

i = 1,2,3,4. (11)

Fig.5.1shows the finite element meshes of the two human heads,
while Fig. 5.2 a few typical animation frames. This example illus-
trates that a complex 3D model can be accurately represented by
shape functions and elevation maps. The proposed morphing tech-
nique demonstrates good performance in such 3D cases as well as
in the 2D cases.

(a)Male source head (b) Female target head

5.1: FE meshes of human heads

5.2: Animation frames of human heads

Figure 5: Morphing heads

4.4. Morphing from a disk to a 3D vase

This example shows morphing from a circular disk to a vase using
the shape functions in Eq.11. Fig. 6.1 illustrates the finite element
meshes of the source disk and the target vase, and Fig.6.2 shows
the morphing results. The results show that smooth shapes can be
well captured by only a few mesh grids.

4.5. Performance of the algorithm

All the computations were done using a Pentium 4 1.7GHz PC. The
total animation frames, the total mesh grids and the CPU time for
the optimization are listed in Table1.
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(a)Source disk (b) Target vase

6.1: FE meshes of a disk and a vase

6.2: Animation frames between a circular disk and a vase

Figure 6: Morphing a disk into a vase

Example Frames Grids Time

Colored bar 65 14 1 minute

Gymnastic pattern 65 36 8 minutes

Human head 65 51 15 minutes

Disk to vase 65 52 15 minutes

Table 1: Computation times

5. Conclusions

This work has described a simple morphing method in which,
an object is described by a superimposition of a shape-function-
interpolated surface with an elevation map. A point-to-point corre-
spondence between the source shape and the target shape is built
up by re-sampling the models at the same resolution, and both the
motion and deformation path are found by minimizing strain en-
ergy accumulated during the morphing process (using a so-called
quasi-physical law). Several animations were presented, showing
that the algorithm generates good quality morphing results closely
maintain much of the original shape and volume of the two models.

The approach is philosophically similar to that described
in [TM91] but differs in the details of the model representation
and purpose of the analysis. In particular, morphing can be seen as
a boundary value problem without any predefined forces, whereas
Terzopoulos [TM91] considers shape registration as an initial value
problem in which external forces must be defined in advance. While
Terzopoulos’ outstanding work has achieved great success in medi-
cal image registration, it is well known that deriving external forces
from data constraints is non-trivial. This is overcome here by only
including coordinate variables in the algorithm.

Some areas of future research we intend to investigate are as
follows:

• To reduce the number of unknown optimization variables and
time cost involved in generating finite element meshes, a surface
elastic model has been used for blending 3D shapes rather than a
volumetric one. A volumetric model is better suited to minimiz-

ing volume variations. More work needs to be done to see how
these conflicting issues can best be resolved.

• There are presently few research results on morphing control.
Since nodal coordinates at each animation step have been taken
as the independent variables for optimization, constraints can
easily be incorporated into the morphing, especially location
constraints. This will certainly be useful in manipulating anima-
tion.

• The finite element meshes used in the algorithm are defined man-
ually, which is cumbersome. More work is needed on automat-
ically generating simple meshes based on the characteristics of
the source and the target objects.
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