
Computational Design of Transforming Pop-up Books

NAN XIAO and ZHE ZHU, TNList, Department of Computer Science and Technology, Tsinghua University, China
RALPH R. MARTIN, School of Computer Science and Informatics, Cardiff University, UK
KUN XU*, JIA-MING LU, and SHI-MIN HU, TNList, Department of Computer Science and Technology, Tsinghua
University, China

We present the first computational tool to help ordinary users

create transforming pop-up books. In each transforming pop-up,
when the user pulls a tab, an initial flat 2D pattern, i.e. a 2D

shape with a superimposed picture, such as an airplane, turns into

a new 2D pattern, such as a robot. Given the two 2D patterns, our
approach automatically computes a 3D pop-up mechanism that

transforms one pattern into the other; it also outputs a design

blueprint, allowing the user to easily make the final model. We also
present a theoretical analysis of basic transformation mechanisms;

combining these basic mechanisms allows more flexibility of final

designs. Using our approach, inexperienced users can create models
in a short time; previously, even experienced artists often took

weeks to manually create them. We demonstrate our method on a
variety of real world examples.

CCS Concepts: • Computing methodologies → Mesh geometry

models;

Additional KeyWords and Phrases: paper art, pop-up, transforming

pop-up, mechanism design

ACM Reference Format:

Nan Xiao, Zhe Zhu, Ralph R. Martin, Kun Xu, Jia-Ming Lu,
and Shi-Min Hu. 2017. Computational Design of Transforming
Pop-up Books. ACM Trans. Graph. 1, 1, Article 1 (January 2017),

15 pages. https://doi.org/10.1145/XXXXXXX.YYYYYYY

1 INTRODUCTION
Most youngsters of today are familiar with Transformers toys
produced by Takara and Hasbro, in which a toy can change
shape, for example from a plane into a robot, using a com-
bination of mechanisms. Youngsters of an earlier generation
were perhaps more familiar with pop-up books—when their
pages were opened, objects such as castles or animals would
pop up from the page. More recently, these two ideas were
brought together in such publications as Reinhart’s best-
selling book [2013], which contains sophisticated examples of
transforming pop-ups. When the user pulls a tab, an initial
flat 2D pattern, i.e. a 2D shape with a superimposed picture,

*corresponding author

Authors’ addresses: Nan Xiao, cloudia@126.com; Zhe Zhu, ajex1988@
gmail.com, TNList, Department of Computer Science and Technology,
Tsinghua University, China; Ralph R. Martin, MartinRR@cardiff.ac.uk,
School of Computer Science and Informatics, Cardiff University, UK;
Kun Xu, xukun@tsinghua.edu.cn; Jia-Ming Lu, loyaveforever@gmail.
com; Shi-Min Hu, shimin@tsinghua.edu.cn, TNList, Department of
Computer Science and Technology, Tsinghua University, China.

© 2017 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record
was published in ACM Transactions on Graphics, https://doi.org/10.
1145/XXXXXXX.YYYYYYY.

turns into a new 2D pattern, standing up from the page. We
illustrate one of Reinhart’s transforming pop-ups in Figure 2.

Creating such a book is a big challenge even for experienced
paper artist-engineers. Designing the necessary mechanisms
to create the desired effects, without interference, can take
even a talented professional many weeks of trial and error.
Typically, the designer first creates an initial pop-up from
a combination of mechanisms to transform between the two
desired patterns, and then adjusts the patterns to fit the
pop-up. An iterative process of adjusting the pop-up and
the 2D patterns then follows until satisfactory, aesthetically
pleasing results are achieved.

Researchers have already considered automating the design
process for pop-up books [Le et al. 2014; Li et al. 2011, 2010].
However, the kind of pop-ups so far considered depict only
one meaningful object: an arbitrary flat design turns into
the desired object. In contrast, transforming pop-ups depict
two different meaningful objects, linked by a transformation.
Due to this intrinsic difference, existing automated pop-up
design approaches cannot be directly applied to the design of
transforming pop-ups.

This paper considers automating the design of transforming
pop-ups. We first study the principles of assembling a trans-
forming pop-up. We discuss several basic mechanisms and
types of linkages for combining them. We then show how a
transforming pop-up can be readily composited by combining
appropriate mechanisms via these linkages.

Our main contribution, apart from the discussion of suitable
mechanisms and linkages, is a fully automatic algorithm for
creating a transforming pop-up that approximately transform-
s one user-provided pattern into another. An optimization-
based approach attempts to match the user given patterns
in the initial and final states as closely as possible, while at
the same time ensuring as a hard constraint that interference
between parts of the pop-up cannot occur. After optimization,
the pop-up is painted with colored textures. Finally, a fabri-
cation template is generated, allowing the user to physically
realize the pop-up.

2 RELATED WORK

2.1 Computational pop-ups
There are several kinds of pop-up art, such as V-style pop-
ups [Li et al. 2011], multi-style pop-ups [Ruiz et al. 2014],
sliceform pop-ups [Le-Nguyen et al. 2013] and transform-
ing pop-ups [Glassner 2002b]. They can be categorized as
one-state pop-ups and two-state pop-ups [Glassner 2002b].
[Le-Nguyen et al. 2013; Li et al. 2011; Mitani and Suzuki 2004;

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/XXXXXXX.YYYYYYY
https://doi.org/10.1145/XXXXXXX.YYYYYYY
https://doi.org/10.1145/XXXXXXX.YYYYYYY

1:2 • Xiao, N. et al, Nan Xiao, Zhe Zhu, Ralph R. Martin, Kun Xu, Jia-Ming Lu, and Shi-Min Hu

Fig. 1. A 3D transformation between a fighter jet and a battle robot. Top left: two input patterns. Top right: a transformation sequence with textured patches.
Bottom left: layer relationships between patches in untransformed and transformed states. Bottom right: the transformation sequence showing each patch
in a different color. Photos © TurboSquid.

(a) (b)

Fig. 2. Transforming pop-up by Matthew Reinhart, showing (a) car form
(before transformation), and (b) robot form of the Hornet Transformer (after
transformation). Original artworks © Matthew Reinhart.

Mitani et al. 2003; Ruiz et al. 2014] consider one-state pop-ups:
their transformation process turns a 2D folded shape with
an invisible pattern into a 3D structure. With regard to two-
state pop-ups, while [Glassner 2002b] mentioned transforming
pop-ups with a pull-tab, he did not give an automatic method
for their construction. In computer graphics, the study of
pop-ups has evolved from semi-automatic design [Okamura
and Igarashi 2009] to fully-automatic construction. To assist
in the design process, Lee et al. [1996] simulate the motion
of the pop-up pieces when the pop-up book is opened; in
particular, angles between intersecting pieces are calculated.
However, this approach provides an analysis tool rather than
an automatic design tool. To help automate the design process,
Glassner [2002a] considered the motion paths of the vertices
of slit and 𝑉 -fold mechanisms in pop-ups. Various further
assistance tools, such as collision detectors and printing gen-
erators, were also provided in [Glassner 2002b]. Rather than
providing an analysis tool or assistance tools, Li et al. [2010]
proposed an automated approach to generate pop-ups from
input 3D models. In [Li et al. 2010], two sets of parallel paper
pieces are used to construct the final structure. Later, Li ex-
tended his work to 𝑉 -style pop-ups [2011] for which the final
structure is composed of 𝑉 -fold structures. However, in [Li

et al. 2010], a voxel discretization step is used, leading to dis-
cretization artifacts along the boundaries of the final pop-ups;
these can be visually displeasing. To improve the quality of
the output paper designs, Lee et al. [2014] proposed an ap-
proach that better preserves shape details by taking contours,
surfaces, and volumes of the input models into consideration.
Other types of pop-ups have also been investigated, including
sliceform pop-ups [Le-Nguyen et al. 2013; Mitani and Suzuki
2003], in which the structure is made of two sets of parallel
paper patches slotted together, and multi-style pop-ups [Ruiz
et al. 2014], which combine several previously studied pop-up
elements: step-fold, tent-fold, 𝑉 -fold and box-fold. However,
transforming pop-ups have yet to be considered from a com-
putational point of view. Since previous works have almost
exclusively focused on one-state pop-ups, their approaches
are in general unsuited to transforming pop-ups.

2.2 Mechanical design & analysis
Spurred by the recent interest in 3D printing, researchers in
computer graphics have turned their attention to mechanism
design and analysis. Given a designer specified geometry and
motion for a toy, Zhu et al. [2012] provide an approach to
automatically generate a mechanism assembly located in a
box below a toy character. Kinematic simulation [Winder
et al. 2009] ensures that the fabricated toy functions properly.
However, their approach can only handle simple motions such
as linear, ellipsoidal and circular motions. Coros et al. [2013]
allow more complex, user defined motions, but they must
still be cyclic. In [Coros et al. 2013; Zhu et al. 2012] the user
defines motion curves, each of which indicates the motion
direction of a specific part of the mechanism.
An alternative high-level approach to interaction is to let

the user provide functional relations [Koo et al. 2014]. Given
an approximate 3D model, the user annotates functional
relationships such as part 𝐴 supports parts 𝐵 and 𝐶. Based
on such information, their approach optimizes the geometry
of the model to produce a working design. In our work, we use

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Computational Design of Transforming Pop-up Books • 1:3

a few basic mechanisms which can be regarded as generalized
forms of 4-revolute-joint linkages (4𝑅 linkages) [Norton 2011].
In mechanism design theory, a 4𝑅 linkage is the simplest
movable closed chain linkage comprising four bodies connected
in a loop by four joints. It has one degree of freedom, which
means it can be driven by one body. This is appropriate to
our problem, allowing the pop-up to be controlled by a single
tab pulled by the user. A 3𝑅 linkage is self-locked (i.e. has
no degrees of freedom), while an 𝑛𝑅 linkage for 𝑛 > 4 has
𝑛− 3 degrees of freedom, giving too much freedom. Since we
need the paper pieces to have complex shapes to model the
input shapes, our problem differs from traditional mechanical
design and assembly problems, and cannot readily be solved
using existing methods of mechanism design [Joskowicz and
Sacks 1994].

2.3 Folding & combination of objects
Folding, and combination by attachment, are two ways to
generate new objects from old. In our problem, the union
of several paper patches forms the input in its laid-flat form
(i.e. on the surface of the book). A compound mechanism is
formed by combining several basic mechanisms. Folding is
inherently suitable for paper, as it is a thin sheet material;
folding has also been used in e.g. furniture design [Li et al.
2015], the design of working mechanical objects [Koo et al.
2014], as well as the design of iris folding patterns [Igarashi
et al. 2016].
To generate 3D models composed of interlocking planar

pieces [McCrae et al. 2011; Schwartzburg and Pauly 2013],
rules were devised for combining planar pieces under geometric
constraints imposed by fabrication and assembly. Since cubes
and boxes can be stacked readily for transportation and
storage, Zhou et al. [2014] considered how to transform a 3D
object into a cube, by defining several types of joints between
voxels and searching a voxel-tree to find a folding sequence.
Inspired by their work, we define our own types of joints as
well as a tree structure of joints. We obtain our final result by
searching a tree to optimize the mechanism. Another popular
method is to define a connection graph [Xin et al. 2011], but
this approach is unsuited to our problem: it focuses on 3D
models.

3 TRANSFORMING POP-UPS
The problem to be solved is as follows. A pattern is a 2D
shape with a texture (i.e. coloring). Given two patterns as
input, we wish to compute a mechanism that can smoothly
transform in 3D between one pattern and the other (see the
top row of Figure 1). We also wish to automatically generate
a blueprint, allowing a user to fabricate the transforming
pop-up by gluing and assembling printed pieces of paper. The
pipeline of our approach is provided in Figure 10, but before
explaining it, we first consider some theoretical background
ideas.

The key components of a transforming pop-up are patches,
hinges, and slits:

(a) (b)

Fig. 3. Parallel mechanism: (a) four intermediate states of a parallel mech-
anism during transformation, (b) patches, hinges and their relationships.

A patch is a planar polygon, embodied physically as a
piece of paper, whose two sides can be differently textured
(i.e. coloured with a drawing). A number of patches are used
in combination to depict a pattern.

A hinge is a shared axis along which two patches are joined,
and about which they can rotate relative to one another.
A slit is a straight line cut in the interior of a patch, of

infinitesimal width. Another patch can pass through such a
slit.

A linkage is the coupling between two elements of a mech-
anism that transfers the movement between them.

Following [Li et al. 2011], we regard paper as a rigid material
that can rotate around hinges, and assume for simplicity that
it has zero thickness and weight.

From a mechanical view, a transforming pop-up is composed
of several basic mechanisms and other functional elements,
which together we call basic elements. These basic elements
are linked together using a few predefined types of linkage.
When users pull (or push) a tab, the pop-up turns from
an initial flat 2D pattern to the new 2D pattern via a 3D
transformation. The transformation is driven by the tab, and
is transferred to the whole pop-up through the linkages. We
refer to the initial state and the final state of the pop-up as the
untransformed state and the transformed state, respectively.

We next consider the basic mechanisms used in Section 3.1,
and functional elements in Section 3.2, as well as the linkages
in Section 3.3. We then introduce geometric parameters, and
the parameter space of the transforming pop-up, used for
reasoning about the mechanisms, in Section 3.4. We discuss
their use in the design optimization algorithm in Section 4.

3.1 Basic Mechanisms
We use three basic mechanisms based on the 4𝑅 linkage, a
fundamental closed loop mechanism [Norton 2011] with 4
hinges and one degree of freedom. We now describe each in
turn.

Parallel mechanism. A parallel mechanism (PM for short)
is composed of four quadrilateral patches 𝑇𝑖 (1 ≤ 𝑖 ≤ 4)
connected cyclically by four hinges as shown in Figure 3. In
a PM, all four hinges are parallel, while patches 𝑇1 and 𝑇3,
and 𝑇2 and 𝑇4, are parallel in pairs.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 • Xiao, N. et al, Nan Xiao, Zhe Zhu, Ralph R. Martin, Kun Xu, Jia-Ming Lu, and Shi-Min Hu

(a) (b)

(c) (d)

Fig. 4. 𝑉 -fold mechanism: (a) four intermediate states of a typical 𝑉 -fold
mechanism during transformation, (b) patches, hinges and their relation-
ships, (c), (d) another 𝑉 -fold mechanism in which the patches do not
include the pyramidal vertex.

𝑉 -fold mechanism. As shown in Figures 4(a) and 4(b),
a 𝑉 -fold mechanism (VM for short) is also composed of four
patches 𝑇𝑖 (1 ≤ 𝑖 ≤ 4) with four hinges ℎ𝑖 (1 ≤ 𝑖 ≤ 4).
In this case, the (extended) lines containing the four hinges
intersect at a single point, the pyramidal vertex of the VM.
Denoting the angle between hinges ℎ𝑖 and ℎ𝑗 by 𝛼𝑖𝑗 , it is
necessary that 𝛼14 = 𝛼23 and 𝛼12 = 𝛼34. Note that the
pyramidal vertex need not actually belong to any of the
patches—see Figures 4(c) and 4(d). In the latter case, the
patches are quadrilaterals rather than triangles.
Slide mechanism. See Figure 5. A slide mechanism (SM

for short) is composed of one rectangular patch, the slide
patch, a hinge, and a slit; it is associated with a PM or a
VM. The slit is placed in one of the patches of the associated
mechanism, and the hinge is placed on another patch of the
same associated mechanism. The slide patch passes through
the slit. An SM must satisfy several constraints. Firstly, the
width of the slit should exceed the maximum width of that
part of the slide patch that passes through the slit during
transformation. Secondly, the length of the slide patch should
be longer than the maximum distance between the slit and
the hinge during transformation. Thirdly, when associated
with a PM, both the slit and the hinge of the SM must be
parallel to the hinge of the PM; when associated with a VM,
both the line of the slit and the line of the hinge must intersect
the pyramidal vertex of the VM. The first constraint ensures
that the slide mechanism will not jam, the second ensures

(a) (b)

(c) (d)

Fig. 5. Slide mechanism

that the slide patch cannot fall out of the slit, and the final
constraint ensures that the hinge and slit are coplanar. As
the linked mechanism moves, the degree to which the slide
patch protrudes through the slit changes. Slide mechanisms
allow the slide patch to change from exposed to hidden, or
vice versa.

3.2 Functional Elements
In addition to the above basic mechanisms, we also make use
of other functional elements, which we now describe.

Extended patch. As defined, patches of a PM or a VM
are restricted to quadrilaterals or triangles, which would
limit the range of shapes the pop-up could represent. To
allow more flexibility, we allow further polygons lying in
the same plane to be attached to the patches of a PM or
VM. An augmented patch of this kind is referred to as an
extended patch (EP for short). In our implementation, we
restrict extended patches to having six or fewer vertices, to
constrain the number of parameters during pop-up meachnism
optimization. An example is illustrated in Figure 6.

Ground patch and Pull-tab. The transforming pop-up
needs to have one ground patch and one pull-tab to function
properly. The ground patch remains static during transfor-
mation; it also serves as the reference frame. We select a root
mechanism from amongst the PMs and VMs, then the ground
patch is selected as one of the patches belonging to the root
mechanism. The ground patch can be extended for better
aesthetics, and generally forms a large part of the page of
the book. The pull-tab is a rectangular patch that the user
pulls (or pushes) to actuate transformation of the pop-up. It

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Computational Design of Transforming Pop-up Books • 1:5

(a) (b)

Fig. 6. Three extended patches attached to a parallel mechanism.

(a) (b)

Fig. 7. (a) A pull-tab. (b) Side view of this pull-tab.

is associated with a small parallel mechanism which is linked
to the root mechanism through an opposite hinge linkage:
see Figure 7. In any mechanism, pulling the tab makes the
transformation go in one direction, and pushing the tab makes
it go in the opposite direction. The designer decides for any
given mechanism whether the initial tab direction is pull or
push, when manually adding the tab.

3.3 Linkage Tree
The overall transforming pop-up is constructed by linking ba-
sic elements (i.e. basic mechanisms and functional elements).
Transformation is actuated by the pull-tab, whose movement
is transferred from one element to another by linkages which
make the whole pop-up move. Note that linkages are direc-
tional, as one element is active and drives the other which is
passive. We now consider the allowed types of linkage.
Slide linkage. Linkages may go from a PM or a VM to

an SM. The movement is transmitted via the shared hinge
and slit.
Extended patch linkage. Linkages may also go from a

PM or a VM to an EP. The movement is transmitted through
the shared plane.
Hinge linkage. A hinge linkage transmits movement from

one PM or VM to another PM or VM. Two such linked basic
mechanisms share a hinge line, and a pair of neighboring
patches is restricted to be coplanar. Note that the two basic
mechanisms do not necessarily have common end points on
the hinge. According to the relative positions of the two basic
mechanisms, hinge linkages can be subdivided into three kinds

(a) (b)

(c) (d)

Fig. 8. Hinge linkages. (a): Opposite hinge linkage. (b): Inner hinge linkage.
(c), (d): Supplementary hinge linkages.

as shown in Figure 8. When one basic mechanism is placed
opposite the other (see Figure 8(a)), the result is an opposite
hinge linkage. If one basic mechanism is placed inside the
other (see Figure 8(b)), an inner hinge linkage results. Finally,
if one basic mechanism is placed adjacent to the other (see
Figures 8(c) and 8(d)), a supplementary hinge linkage results.

Linkage Tree. The compound mechanism of a transform-
ing pop-up forms a linkage tree, in which each node represents
a basic mechanism or a functional element, and each edge
represents a linkage. The basic mechanism connected to the
pull-tab is the root node. EPs and SMs can only serve as
leaf nodes, while PMs and VMs can be leaf or internal nodes.
The pull-tab and the ground patch are not represented in the
linkage tree. An example linkage tree is illustrated in Figure 9.

3.4 Parameter Space
The above ideas describe the possible components and their
connectivity which go to make a pop-up. However, to fully
determine a transforming pop-up, we also need to find val-
ues for various geometric parameters, which determine the
positions of patch vertices, hinges and slits, etc. Although
these positions change when transforming, it suffices to de-
scribe them in the untransformed state to fully determine the
pop-up. The parameters are adjusted to achieve a working
mechanism meeting the designer’s goals as closely as possible
by means of the optimization algorithm given in Section 4.
However, we first consider how these parameters are defined
in the ground plane.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 • Xiao, N. et al, Nan Xiao, Zhe Zhu, Ralph R. Martin, Kun Xu, Jia-Ming Lu, and Shi-Min Hu

(a) (b)

Fig. 9. Linkage tree. (a) A simple compound mechanism containing one 𝑉 -
fold mechanism and two parallel mechanisms (purple), several extended
patches (blue) and a slide patch (yellow). (b) Corresponding linkage tree.
At the root is a 𝑉 -fold mechanism linked to two parallel mechanisms and
two extended patches. One of the parallel mechanisms is linked to two
extended patches; the other is linked to an extended patch and a slide
patch.

A PM, as shown in Figure 3, has 4 hinges and 8 vertices.
To define the 4 parallel hinge lines in the 2D ground plane, we
need 2 parameters to define the first line, and 2 more param-
eters to define the second and the third lines (i.e. distance to
the first line); the fourth line is determined by the three other
lines. Since the 8 vertices are located on the 4 hinge lines, 8
additional parameters are needed to define the 8 vertices (i.e.
one for each vertex). In total, the parameter space of a PM
is thus 12D (i.e. 12-dimensional).
Similarly, a VM, as shown in Figure 4, has one pyramidal

vertex, 4 hinges and 8 vertices. Two parameters suffice to
define the pyramidal vertex. Since the 4 hinge lines intersect
at the pyramidal vertex, 3 parameters are needed for the
first, second, and third lines (i.e. an angle with respect to the
pyramidal vertex for each); the 4 fourth line is determined
by the 3 other lines. Since the 8 vertices are located on the 4
hinge lines, 8 further parameters are needed to define the 8
vertices. In total, the parameter space of a VM is thus 13D.

An SM, as shown in Figure 5, has a hinge, a slit and a
slide patch. An SM is associated with a PM or a VM, and
is constrained so that the hinge line and slit line are parallel
to the hinge of the associated PM, or the hinge line and slit
line intersect at the pyramidal vertex of the associated VM.
These constraints mean 2 parameters are needed to define the
hinge line and the slit line (for a PM, we store the distance to
one hinge of the PM, while for a VM, we store the angle with
respect to the pyramidal vertex of the VM). We also need 2
parameters to define the 2 end vertices of the hinge. Since the
slide patch is a rectangle, 1 parameter is needed to define its
length. Note that we do not need any parameters to define the
two end vertices of the slit since they are implicitly determined
by the movement of the slide patch during transformation.
Thus, in total, the parameter space of an SM is 5D.

Finally, the parameter space for an extended patch is up
to 12D, since it has at most 6 vertices and each vertex lies in
2D.

The overall set of geometric parameters of the whole pop-
up is obtained by concatenating the geometric parameters of
each of its basic mechanisms and extended patches. However,
care must be taken with hinge linkages. Since two linked
mechanisms share a hinge line, we do not need to store the
hinge line in both mechanisms. For all 3 types of hinge linkage,
adding a linkage between two basic mechanisms reduces the
dimension of the parameter space by two. As an example,
consider the pop-up in Figure 9. It contains 2 PMs, 1 VM, 1
SM, 5 EPs, and two hinge linkages. Hence, the dimension of
its parameter space is 12× 2 + 13 + 5 + 12× 5− 2× 2 = 98.

In summary: a transforming pop-up is fully determined by
its linkage tree, its components and their connectivity, and
the geometric parameters described above.
We next consider, given two 2D patterns, how to deter-

mine such a transforming pop-up, by optimization of both its
linkage tree and geometric parameters.

4 ALGORITHM

4.1 Overview
A transforming pop-up moves from the untransformed state
to the transformed state; each is a 2D pattern. Our goal is
to generate a pop-up, that appears similar to the user given
source pattern in its untransformed state, and to the user given
target pattern in its transformed state. During transformation,
we must ensure, as a hard constraint, that the mechanisms
remain collision-free. The generated transforming pop-up
should also satisfy two soft constraints: a shape constraint
and a flip constraint. The first is that the shapes of the pop-up
in its untransformed and transformed states should match
the source and target patterns as closely as possible (we
consider the appearances of these shapes later). Secondly, any
patches, or parts thereof, which are visible (i.e. not occluded
by other patches) in both untransformed and transformed
states, should flip over during transformation. If their front
appears in the untransformed state, their back should appear
in the transformed state. This allows the visible parts of
the patches in untransformed and transformed states to be
painted differently with the textures of source and target
patterns, respectively.

Our overall algorithm has four steps: an optimization step, a
patch refinement step, a texture painting step, and a blueprint
generation step.
The optimization step produces an initial pop-up. An en-

ergy function models both the shape constraint and the flip
constraint, as well as ensuring freedom from collisions as a
hard constraint. To limit the number of linkage tree config-
urations considered to reasonable bounds, we restrict the
maximal number of basic mechanisms and extended patches
that can be used. We obtain the pop-up with minimal ener-
gy by considering all possible configurations of the linkage

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Computational Design of Transforming Pop-up Books • 1:7

Fig. 10. Pipeline of our approach.

tree, and for each configuration, optimizing over the geomet-
ric parameters. Since the energy function is non-linear and
the parameter space is high-dimensional, we use a genetic
algorithm.
As the patches in the transforming pop-up are polygon-

s with only a few vertices, this optimization step restricts
the pop-up to representing simple, approximate shapes. To
determine a more elaborate shape for the pattern, we use a
refinement step. In this step, some patches are cropped to
better match the shapes of the user given patterns. Since
we only crop patches and do not add any new material to
the pop-up, the mechanism structures are preserved, as are
the constraints—as long as we do not crop too much: see
Section 4.3.
After cropping, we paint textures onto the patches of the

pop-up in both untransformed and transformed states, as
needed by the source and target patterns.
Finally, we output a blueprint for users to construct the

transforming pop-up. We print all parts of the pop-up onto
paper with suitable attachment tabs for assembly. Users are
able to fabricate the pop-up by cutting the parts out, and
gluing them together.
We now consider these steps in further detail.

4.2 Optimization
4.2.1 Energy function. We define the optimization problem

in terms of minimising an energy function 𝐸(𝑥), where 𝑥
represents the linkage configuration and geometric parameters
of the transforming pop-up. For simplicity of presentation,
we leave the dependence on 𝑥 implicit in the following.

Ensuring freedom from collisions is enforced as a hard con-
straint. Given a configuration 𝑥, we first check for collision
during transformation, and if detected, we give the energy
function 𝐸 a value certain to be greater than the energy
for any non-colliding configuration. Our implementation uses
the OBB-tree algorithm [Gottschalk et al. 1996] for collision
detection, like other recent mechanical modeling works such

as [Zhu et al. 2012]. To avoid collision with the ground, the
designer may optionally include a dummy ground patch of
large enough area to enclose the design during collision check-
ing. If the goal is to place the pop-up inside a book, this
option should be enabled, but for a free-standing pop-up, it
is unnecessary.

If there is no collision, the energy function 𝐸 is defined as
the sum of a shape term and a flip term:

𝐸 = 𝜆𝑠𝐸𝑠 + (1− 𝜆𝑠)𝐸𝑓 . (1)

The shape term 𝐸𝑠 represents the shape constraint, i.e. it
favors shapes of pop-up for which the untransformed and
transformed states are good matches to the user given pat-
terns. The flip term 𝐸𝑓 represents the flip constraint, penal-
izing any patch areas which do not flip and are visible in
both untransformed and transformed states. 𝜆𝑠 controls the
relative contributions of the two terms, and is set to 0.4.

Shape term. The shape term accounts for how well the
pop-up in the untransformed and transformed states 𝑆1 and
𝑆2 match the shapes of the user given source and target
patterns 𝑈1 and 𝑈2. The shape matching cost includes both
a contour matching cost and an area matching cost:

𝐸𝑠 = 𝐸𝑐 + 𝐸𝑎. (2)

The former is computed using the shape context method [Be-
longie et al. 2002], and is defined as:

𝐸𝑐 = 𝐷(𝑆1, 𝑈1) +𝐷(𝑆2, 𝑈2), (3)

where 𝐷(·) denotes the shape context matching cost. In our
implementation, we sample 100 points on each contour to
perform this computation.
The area matching cost measures the difference of region

coverage between the pop-up and user given patterns. It is
defined to be:

𝐸𝑎 =
∑︁
𝑖=1,2

𝜆𝑎‖𝑆𝑖 ∖ 𝑈𝑖‖+ (1− 𝜆𝑎)‖𝑈𝑖 ∖ 𝑆𝑖‖, (4)

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 • Xiao, N. et al, Nan Xiao, Zhe Zhu, Ralph R. Martin, Kun Xu, Jia-Ming Lu, and Shi-Min Hu

where ∖ is the set difference operator, ‖ · ‖ denotes the frac-
tional area of a region, i.e. its area divided by the total area of
all patches, and 𝜆𝑎 is a weight. 𝑆𝑖 ∖ 𝑈𝑖 are redundant regions,
i.e. regions covered by the pop-up but not covered by the user
given pattern. 𝑈𝑖 ∖ 𝑆𝑖 are unrepresented regions, i.e. regions
covered by the user given pattern but not covered by the
pop-up. Redundant regions are relatively unimportant, since
the patch refinement step performed later can crop them.
However, unrepresented regions will show the ground patch
as they will not be part of the transforming pop-up. Thus, we
set 𝜆𝑎 = 0.1 to more strongly penalize unrepresented regions.
We will evaluate the effect of these two terms in Section 5.2.

Flip term. Since visible regions in untransformed and
transformed states are painted with source and target pattern
textures respectively, to avoid conflicts in texture painting, we
should avoid regions which show the same side of the paper in
both untransformed and transformed states. The flip term is
simply defined as the sum of the fractional areas of all regions
which violate this constraint:

𝐸𝑓 =
∑︁
𝑖

‖𝑅𝑖‖, (5)

where 𝑅𝑖 is any region of a patch which is visible from the
same side in both states.

4.2.2 Energy minimization. We first describe our basic ap-
proach to solving the minimization problem, then discuss how
to improve its performance.
Basic approach. To minimize the energy function in Equa-

tion 1 we iterate over all possible linkage tree configurations,
up to a certain maximum size. To limit the number of con-
figurations to reasonable bounds, we restrict the number of
basic mechanisms and extended patches that can be used.
We observe that transforming pop-ups made by artists [Rein-
hart 2013] generally contain 3 or 4 basic mechanisms, so we
restrict the number of basic mechanisms to 5 or fewer. The
number of extended patches is restricted to 12 or fewer—more
would lead to pop-ups with smaller pieces, which are harder
to construct and more fragile, as well as leading to a more
time-consuming optimization problem.

Simulation of the mechanism during optimization is driven
by the pull-tab. The patch of the mechanism connected to the
pull-tab makes an angle with the pull-tab which is varied in
small steps from 0∘ to 180∘ to operate the mechanism. We can
compute the angles at other hinges using simple geometric
considerations. Since the energy function is highly non-linear,
we use a genetic algorithm (GA) to optimize the geometric
parameters. In order to constrain the search space, all the
geometric parameters, including positions of vertices and
hinges, are encoded using integer based discrete pixel locations,
with a resolution of 1024× 1024 pixels. In initialization, all
parameters are randomly generated. The fitness function for a
configuration 𝑥 is given by −𝐸(𝑥). Mutation is performed by
adding a normally distributed value to each parameter in the
individual. Single point crossover and tournament selection
are used. In our implementation, we run the GA 10 times,
each time for 50 generations, using a population of 1000

individuals, with a crossover probability of 0.4 and mutation
probability of 0.3.

Acceleration. Due to the high dimensionality of the pa-
rameter space, directly using a GA as described above is
time consuming, taking tens of hours to generate reasonable
output. Our initial experiments showed that after a few gen-
erations, the GA obtains an adequate global structure for
the whole mechanism, but it takes much longer to optimize
precise vertex positions of each patch. Using this observation,
we use a greedy strategy [Won and Lee 2016] to accelerate
the search. Specifically, during optimization we detect good
patch vertices as the GA iterates, and fix them to reduce the
dimensionality of the solution space. Patch refinement (as
explained in the next section) is done before detection, to
increase the potential number of good patch vertices. Good
patch vertices are ones satisfying any of the criteria below:

∙ Vertices belonging to any patch which flips, and which
lie on the boundaries of the two input patterns.

∙ Vertices belonging to any patch which flips, and which
lie on the boundary of the input pattern in one state,
and inside the target shape in the other state.

∙ Vertices belonging to any patch which does not flip, and
which lie on the boundary of the input pattern in one
state, and are occluded by other patches in the other
state.

We illustrate greedy acceleration and good patch vertices in
Figure 11. Further speed up is achieved by implementing
the above algorithm using CUDA on a GPU. As it is highly
parallel, the GPU implementation runs much faster. Typically,
the greedy strategy provides a 5–10× speed up, while GPU
implementation provides another 10× speed up compared to a
CPU-based implementation. Overall, this acceleration reduces
the processing time from tens of hours to a few minutes.

4.3 Patch refinement
The initial transforming pop-up obtained by the basic op-
timization approach has patches which are polygons with
only a few vertices, so the pop-up can only represent coarse,
simple shapes. Hence, it is inevitable that there are still some
redundant regions (covered by the pop-up but not by the
user given patterns) and unrepresented regions (covered by
the user given patterns but not by the pop-up). The purpose
of this step is to reduce the size of the redundant regions
by refining some of the patches. Since we use a high weight
to penalize unrepresented regions, they rarely appear in our
initial result.
We deal with redundant regions for the untransformed

state and for the transformed state in turn. In principle,
for the untransformed state, we crop all redundant regions,
except for those parts which belong to visible regions in
the transformed state, since cropping those regions would
affect the appearance of the transformed state. Redundant
regions in the transformed state are cropped in an analogous
way. In theory, the above described cropping scheme might
potentially break the structure of the mechanism: a hinge

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Computational Design of Transforming Pop-up Books • 1:9

(a) (b) (c)

Fig. 11. Greedy acceleration. (a) is an intermediate result from the brute force GA. Patch refinement gives the result in (b). Afterwards, some boundary
vertices are fixed(marked in red). Using our greedy acceleration strategy gives the final result in (c).

might be completed cropped, one patch might be cropped
into two disconnected parts, or the slider in a slide mechanism
might be cropped so as to be too short. However, we have
not observed the above issues arising in practice, so we do
not incorporate additional schemes to avoid them; manual
adjustment could potentially be needed if those issues happen
in unforeseen examples.

4.4 Texture painting
After determining the mechanism and set of patches, we must
paint the user provided textures onto the patches. As well as
those patches visible in the untransformed and transformed
states, all other patches should also be painted, in order to
make the intermediate appearance look more natural during
the transformation process. Both faces of each patch must
be painted. The texture mapping process is simple, as we
only need to directly map the textures of source and target
patterns onto the patches without any deformation. For each
patch, we must decide which texture to use, i.e. the source
pattern or the target pattern.
This is done for each face in turn. We sequentially decide:

∙ If the face is visible (or partially visible) in both states:
the parts only visible in the untransformed or trans-
formed state are painted using source or target pattern
respectively. Any conflicting parts (i.e. visible in both
states) and parts invisible in both states are painted
using the source pattern.

∙ If the face is only visible (or partially visible) in one
state (untransformed or transformed): the whole face is
painted using a single texture (source or target pattern
respectively).

∙ Otherwise, the face is invisible in both states: the whole
face is painted using the source pattern.

Care must be taken for redundant regions and unrepresent-
ed regions. We fill any redundant regions with the average
color of source and target patterns, to ensure consistency
with the texture inside the pattern. Unrepresented regions
become a part of the ground patch and are not included in

(a) (b)

Fig. 12. Simple glued hinge, and opposite hinge.

Fig. 13. A blueprint.

the transformation of the pop-up, but are still painted using
mapped textures from source or target patterns.

4.5 Blueprint generation
We finally generate a blueprint to help the user fabricate
the transforming pop-up. Remember that a patch and any
further polygons attached to it form an extended patch. See

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 • Xiao, N. et al, Nan Xiao, Zhe Zhu, Ralph R. Martin, Kun Xu, Jia-Ming Lu, and Shi-Min Hu

Table 1. Numbers and types of mechanisms, and extended patches, used
in each case in Fig. 15. PM: parallel mechanisms, VM: V-fold mechanisms,
SM: slide mechanisms, EP: extended patches.

Fig. Num. of Mech. PM VM SM EP

15 (a) 1 0 1 0 3

15 (b) 2 1 1 0 5

15 (c) 3 1 2 0 6

15 (d) 4 1 3 0 7

15 (e) 5 2 3 0 9

Figure 8(a): the two blue patches, and the two yellow patches,
each form an extended patch. Both front and reverse of a
given extended patch are printed on the same side of paper,
touching each other. The user folds the cut-out shape along
the line where front and reverse meet, and glues it to itself
to give the two sided appearance. (We do not use duplex
printing since registration is typically imperfect).

When printing the patches, we also print tabs to allow the
patches to be joined. Inner and supplementary hinges can
be made simply by gluing a tab on one patch to an adjacent
patch. Opposite hinges (where planes cross) require a slit for
manufacturing; they are made as shown in Figure 12. The
pull-tab is manually designed and is also printed as part of
the blueprint. A typical blueprint is illustrated in Figure 13.

5 EVALUATION AND RESULTS
Our approach has been implemented in C++ on a PC with
an Intel Xeon E5-2620 2.0GHz CPU with 32GB memory, and
in CUDA on an NVIDIA Titan X GPU with 16GB memory.
We have validated our approach on a variety of real-world
cases.

5.1 Evaluation: number of basic mechanisms
Our choice of using up to 5 basic mechanisms provides a good
balance between quality and speed, as well as suitability of
design for manufacture and robustness in use. In Figure 15, we
give results when using different numbers of basic mechanisms,
for a fixed pair of input patterns, while Table 1 gives the
numbers and kinds of basic mechanisms used in each case.

The result in Figure 15(a) uses only one mechanism result-
ing in obvious and obtrusive redundant regions. The results in
Figures 15(b) and 15(c) are much better, but still suffer from
inaccurate boundaries. The results in Figure 15(d) and Fig-
ure 15(e) are both visually pleasing, but Figure 15(e) is more
accurate than Figure 15(d). Using more than 5 mechanisms,
the computation time increases dramatically, and fabrication
also becomes harder.

5.2 Evaluation: energy terms
The shape context matching cost 𝐸𝑐 and area matching cost
𝐸𝑎 both play important roles in energy minimization, as we
now demonstrate by considering some intermediate states
during optimization of the caterpillar-to-butterfly example.

(a) (b) (c)

Fig. 14. Intermediate results with different context matching and area
matching costs (see Table 2).(photo © PixelSquid)

Table 2. Shape context matching cost and area matching cost for several
examples.

Fig. Shape context cost Area cost

14 (a) 0.1069 0.3424

14 (b) 0.1273 0.1507

14 (c) 0.0992 0.1575

Table 3. For each example, we give: the example name, the corresponding
figure number in the paper, and the sizes of the redundant regions (relative
to the size of the original shape) in untransformed and transformed states,
respectively.

Example Name Fig. redundant region size

Car–robot 19 0.027/0.022

Egg–chick 19 0.005/0.07

Sphinx–mask 1 21 0.008/0.012

Heart–rose 16 0.016/0.822

Figure 14 shows various intermediate states, while the cor-
responding energies are given in Table 2. Comparing Fig-
ures 14(a) and 14(b), in the latter, the area cost is much
lower, so much of the redundant region disappears, but on
the other hand, the overall shape is not much like the target
shape. On the other hand, in Figure 14(c), the shape cost is
lower, resulting in a shape which more closely follows that
of the desired result. Using both terms helps to ensure that
the final design has only small redundant regions, but when
they are unavoidable, the resulting shapes look similar to
those intended by the designer, making the redundancy less
noticeable.
In detail, we give the sizes of redundant regions for some

examples in Table 3. For the extreme example transforming
a heart into a rose (Figure 16), the relative size of redundant
regions is much larger than in other successful examples. Size
of redundant regions provides a good indication of the quality
of the output transforming pop-up.

5.3 Results
Figure 17 shows three simple pop-ups generated by our system,
transforming a disk into a triangle, a rectangle into a disk,

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Computational Design of Transforming Pop-up Books • 1:11

(a) (b) (c)

(d) (e)

Fig. 15. Results using varying numbers of mechanisms: from (a) to (e), 1 to 5 mechanisms.(photos © PixelSquid)

Fig. 16. Extreme example, with a very thin target pattern. Above: input
patterns. Below: computed pop-up. Photos © PixelSquid.

and a rectangle into a triangle, respectively. The in-between
shapes change in a reasonable way in these cases.
Figure 18 shows two additional pop-ups generated by our

system, transforming between randomly chosen shapes from
the MPEG-7 shape matching dataset. The top one transforms
frog-19 into bell-3, and the bottom one transforms tree-14
into flatfish-1. Our system demonstrate well on such randomly
chosen shapes.
Figure 19 shows a further complex example, transforming

an egg into a chick. The redundant regions in the egg to chick
case are mainly by the chick’s feet, which are thin and highly
concave.
Figure 20 shows two examples with and without ground

collision checking, transforming a caterpillar into a butterfly.
Both results give interesting transformations.

Figure 21 shows two more examples, transforming a hot air
balloon into a space shuttle, and the Great Sphinx of Giza
into King Tutankhamun’s Burial Mask. For each example,
we show two different transforming pop-ups. Since a GA is a
random algorithm, different runs typically provide different
solutions, allowing the user to generate alternative possibilities
if the first attempt is not considered sufficiently aesthetically
pleasing.

Finally, we also show an extreme case in Figure 16, which
transforms a heart into a (very thin) rose. Since the two
shapes differ greatly, our approach inevitably produces large
redundant regions.

We give statistics for each example in Table 4, including the
number of basic mechanisms used, and the computation times
required by the original GA algorithm and the GPU based
greedy GA algorithm. An animation of the transformation
for each example can be found in the supplementary video.

6 CONCLUSION AND DISCUSSION
This paper has presented an approach to automatically gener-
ate transforming pop-ups. Using three basic mechanisms with
simple structure, and modifying and combining them in dif-
ferent ways, allows us to use optimization to devise structures
which smoothly transform between two 2D patterns. The final
output is a blueprint for constructing the mechanism, so that
the user can easily make a physical working pop-up. We have
demonstrated the effectiveness of our approach with many
shape pairs. Results show that our approach can generate
visually pleasing transforming pop-ups.

Limitations and future work. Since we use polygonal
patches in our approach, we cannot readily work with shapes
with curved boundaries. From the fabrication point of view,
we have not considered how to efficiently use the area of the
paper—we do not guarantee our generated blueprint to be
the most economic solution, nor do we optimize the tabs for
strength. Another limitation is that we assume paper thickness

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 • Xiao, N. et al, Nan Xiao, Zhe Zhu, Ralph R. Martin, Kun Xu, Jia-Ming Lu, and Shi-Min Hu

Fig. 17. Three simple examples. Top to bottom: transforming a disk into a triangle, a rectangle into a disk and a rectangle into a triangle. Top: the
appearance seen by the user. Below: individual patches colored to allow visualization of the mechanism.

to be zero, which might cause the fabricated mechanism to
fold improperly if there are too many layers near hinges. A
possible way to address this could be to add a thickness
term to the energy function. Finally, our current algorithm
does not consider pattern semantics. To do so, a possible
approach might be to ask the designer to provide a meaningful
segmentation of each shape, indicating correspondences, and
then to optimize matching of segments instead of matching
of shapes.
In future, we also plan to investigate transformations be-

tween 2D patterns and 3D shapes, as well as between 3D
shapes.

ACKNOWLEDGMENTS
We thank Haozhi Huang and Bin Liu for their help in pro-
ducing the supplementary video. This work was supported by
the National Key Technology R&D Program (Project Num-
ber 2017YFB1002604), the Natural Science Foundation of

China(Project Number 61521002), Research Grant of Beijing
Higher Institution Engineering Research Center, Tsinghua-
Tencent Joint Laboratory for Internet Innovation Technology,
and an EPSRC Travel Grant.

REFERENCES
S. Belongie, J. Malik, and J. Puzicha. 2002. Shape Matching and

Object Recognition Using Shape Contexts. IEEE Trans. Pattern
Anal. Mach. Intell. 24, 4 (April 2002), 509–522.

Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro
Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and
Bernd Bickel. 2013. Computational Design of Mechanical Characters.
ACM Trans. Graph. 32, 4, Article 83 (July 2013), 12 pages.

Andrew Glassner. 2002a. Interactive pop-up card design, part 1. IEEE
Comput. Graph. Appl 20, 1 (2002), 79–86.

Andrew Glassner. 2002b. Interactive pop-up card design, part 2. IEEE
Comput. Graph. Appl 20, 2 (2002), 74–85.

S. Gottschalk, M. C. Lin, and D. Manocha. 1996. OBBTree: A
Hierarchical Structure for Rapid Interference Detection. In Pro-
ceedings of SIGGRAPH 96 (Annual Conference Series). 171–180.
https://doi.org/10.1145/237170.237244

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/237170.237244

Computational Design of Transforming Pop-up Books • 1:13

Fig. 18. Two examples transforming between randomly chosen shapes from the MPEG-7 dataset. Top to bottom: transforming frog-19 into bell-3, and
tree-14 into flatfish-1.

Fig. 19. A further example, which transforms an egg into a chick (photos © PixelSquid).

Yuki Igarashi, Takeo Igarashi, and Jun Mitani. 2016. Computational
design of iris folding patterns. Computational Visual Media 2, 4
(01 Dec 2016), 321–327. https://doi.org/10.1007/s41095-016-0062-4

L. Joskowicz and E. Sacks. 1994. Configuration space computation
for mechanism design. In In Proceedings of IEEE International
Conference on Robotics and Automation. 1080–1087. https://doi.
org/10.1109/ROBOT.1994.351215

Bongjin Koo, Wilmot Li, JiaXian Yao, Maneesh Agrawala, and Niloy J.
Mitra. 2014. Creating Works-like Prototypes of Mechanical Objects.
ACM Trans. Graph. 33, 6, Article 217 (Nov. 2014), 9 pages.

Sang N. Le, Su-Jun Leow, Tuong-Vu Le-Nguyen, Conrado Ruiz, and
Kok-Lim Low. 2014. Surface and Contour-Preserving Origamic

Architecture Paper Pop-Ups. IEEE Trans. Vis. Comput. Graph.
20, 2 (Feb. 2014), 276–288.

Tuong-Vu Le-Nguyen, Kok-Lim Low, Conrado R. Ruiz Jr., and Sang N.
Le. 2013. Automatic Paper Sliceform Design from 3D Solid Models.
IEEE Trans. Vis. Comput. Graph. 19, 11 (2013), 1795–1807.

Y.T. Lee, S.B. Tor, and E.L. Soo. 1996. Mathematical modelling and
simulation of pop-up books. Computers & Graphics 20, 1 (1996),
21 – 31.

Honghua Li, Ruizhen Hu, Ibraheem Alhashim, and Hao Zhang. 2015.
Foldabilizing Furniture. ACM Trans. Graph. 34, 4, Article 90 (July
2015), 12 pages.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1007/s41095-016-0062-4
https://doi.org/10.1109/ROBOT.1994.351215
https://doi.org/10.1109/ROBOT.1994.351215

1:14 • Xiao, N. et al, Nan Xiao, Zhe Zhu, Ralph R. Martin, Kun Xu, Jia-Ming Lu, and Shi-Min Hu

Fig. 20. Examples with (above) and without (below) ground collision checking, showing transformation of a caterpillar into a butterfly (photos © PixelSquid).

Table 4. Each example lists: its name, the corresponding figure number in
the paper, the numbers of each kind of basic mechanism, and extended
patches, used—PM: parallel mechanism, VM: V-fold mechanism, SM:
slide mechanism, EP: extended patch, whether the basic algorithm (N) or
the accelerated algorithm (Y) is used, and computation time.

Example Fig. PM VM SM EP Ac. Tm.

Fighter–robot 1 1 2 0 12 N 16h

Disk–triangle 17 1 3 0 8 Y 9min

Square–disk 17 1 2 0 5 Y 9min

Square–triangle 17 1 2 1 5 Y 5min

frog–bell 18 1 4 0 8 Y 18min

tree–flatfish 18 0 4 0 5 Y 6min

Egg–chick 19 0 2 0 5 Y 8min

Cater.–butterf. 1 20 3 2 0 7 Y 17min

Cater.–butterf. 2 20 0 2 1 5 N 14h

Ball.–shuttle 1 21 1 3 0 9 N 14h

Ball.–shuttle 2 21 1 3 0 8 Y 10min

Sphinx–mask 1 21 1 3 0 7 N 16h

Sphinx–mask 2 21 1 2 0 6 Y 10min

Xian-Ying Li, Tao Ju, Yan Gu, and Shi-Min Hu. 2011. A Geometric
Study of V-style Pop-ups: Theories and Algorithms. ACM Trans.
Graph. 30, 4 (2011), 98:1–10.

Xian-Ying Li, Chao-Hui Shen, Shi-Sheng Huang, Tao Ju, and Shi-Min
Hu. 2010. Popup: automatic paper architectures from 3D models.
ACM Trans. Graph. 29, 4 (2010), 111:1–9.

James McCrae, Karan Singh, and Niloy J. Mitra. 2011. Slices: A Shape-
proxy Based on Planar Sections. ACM Trans. Graph. 30, 6, Article
168 (Dec. 2011), 12 pages. https://doi.org/10.1145/2070781.2024202

Jun Mitani and Hiromasa Suzuki. 2003. Computer Aided Design for
180-degree Flat Fold Origamic Architecture with Lattice-type Cross
Sections. Journal of Graphic Science of Japan 37, 3 (2003), 3–8.
https://doi.org/10.5989/jsgs.37.3 3

J. Mitani and H. Suzuki. 2004. Computer aided design for Origamic
Architecture models with polygonal representation. In Proceedings

of the Computer Graphics International. 93–99.
J. Mitani, H. Suzuki, and H. Uno. 2003. Computer aided design for

origamic architecture models with voxel data structure. Transactions
of Information Processing Society of Japan 44, 5 (2003), 1372–
1379.

Robert L. Norton. 2011. Design of Machinery. McGraw-Hill Education;
5 edition (March 30, 2011).

Sosuke Okamura and Takeo Igarashi. 2009. An Interface for Assisting
the Design and Production of Pop-Up Card. Lecture Notes in
Computer Science 5531, 2 (2009), 68–78.

Matthew Reinhart. 2013. Transformers: The Ultimate Pop-up Uni-
verse. LB Kids; Pop edition.

Conrado R. Ruiz, Sang N. Le, Jinze Yu, and Kok-Lim Low. 2014. Multi-
style paper pop-up designs from 3D models. Computer Graphics
Forum 33, 2 (2014), 487–496. https://doi.org/10.1111/cgf.12320

Yuliy Schwartzburg and Mark Pauly. 2013. Fabrication-aware Design
with Intersecting Planar Pieces. Comput. Graph. Forum 32, 2
(2013), 317–326.

Brian G Winder, Spencer P Magleby, and Larry L Howell. 2009. Kine-
matic representations of pop-up paper mechanisms. Journal of
Mechanisms and Robotics 1, 2 (2009).

Jungdam Won and Jehee Lee. 2016. Shadow Theatre: Discovering
Human Motion from a Sequence of Silhouettes. ACM Trans. Graph.
35, 4, Article 147 (July 2016), 12 pages. https://doi.org/10.1145/
2897824.2925869

Shiqing Xin, Chi-Fu Lai, Chi-Wing Fu, Tien-Tsin Wong, Ying He,
and Daniel Cohen-Or. 2011. Making Burr Puzzles from 3D Models.
ACM Trans. Graph. 30, 4, Article 97 (July 2011), 8 pages. https:
//doi.org/10.1145/2010324.1964992

Yahan Zhou, Shinjiro Sueda, Wojciech Matusik, and Ariel Shamir. 2014.
Boxelization: Folding 3D Objects into Boxes. ACM Trans. Graph.
33, 4, Article 71 (July 2014), 8 pages. https://doi.org/10.1145/
2601097.2601173

Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and
Baining Guo. 2012. Motion-guided Mechanical Toy Modeling. ACM
Trans. Graph. 31, 6, Article 127 (Nov. 2012), 10 pages.

Received December 2016; revised July 2017; final version October

2017; accepted October 2017

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/2070781.2024202
https://doi.org/10.5989/jsgs.37.3_3
https://doi.org/10.1111/cgf.12320
https://doi.org/10.1145/2897824.2925869
https://doi.org/10.1145/2897824.2925869
https://doi.org/10.1145/2010324.1964992
https://doi.org/10.1145/2010324.1964992
https://doi.org/10.1145/2601097.2601173
https://doi.org/10.1145/2601097.2601173

Computational Design of Transforming Pop-up Books • 1:15

Fig. 21. Alternative solutions, showing two different transformations from a balloon into a space shuttle, and from the Great Sphinx of Giza into King
Tutankhamun’s Burial Mask. Photos © PixelSquid.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

	Abstract
	1 Introduction
	2 Related work
	2.1 Computational pop-ups
	2.2 Mechanical design & analysis
	2.3 Folding & combination of objects

	3 Transforming Pop-Ups
	3.1 Basic Mechanisms
	3.2 Functional Elements
	3.3 Linkage Tree
	3.4 Parameter Space

	4 Algorithm
	4.1 Overview
	4.2 Optimization
	4.3 Patch refinement
	4.4 Texture painting
	4.5 Blueprint generation

	5 Evaluation and Results
	5.1 Evaluation: number of basic mechanisms
	5.2 Evaluation: energy terms
	5.3 Results

	6 Conclusion and discussion
	Acknowledgments
	References

