Three Dimensional Strain Field Morphing

Han-Bing Yan, Shi-Min Hu, Ralph R. Martin

Tsinghua University, China
Morphing

- What is Morphing?
- Why some morphing results are natural while others not?
 - The key is the deformation process should be smooth and uniform.
- Problem: What is Deformation? How to define it in mathematics?
Deformation Definition?

- Other morphing methods
 - Have not given deformation definition before.

- In mechanics, a concept for describing shape deformation has been used for hundreds of years.

- That is:
 - Strain
Strain

- **What is Strain?**
 - Strain is a tensor quantity that describes shape deformation extent at each point.
 - Strain is a microscopic quantity.
 - In 3D, strain has 6 independent components.
\[\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z \\
\gamma_{yz} \\
\gamma_{zx} \\
\gamma_{xy}
\end{bmatrix} = \frac{1}{2} \begin{bmatrix}
\left(\frac{\partial x'}{\partial x}\right)^2 + \left(\frac{\partial y'}{\partial x}\right)^2 + \left(\frac{\partial z'}{\partial x}\right)^2 - 1 \\
\left(\frac{\partial x'}{\partial y}\right)^2 + \left(\frac{\partial y'}{\partial y}\right)^2 + \left(\frac{\partial z'}{\partial y}\right)^2 - 1 \\
\left(\frac{\partial x'}{\partial z}\right)^2 + \left(\frac{\partial y'}{\partial z}\right)^2 + \left(\frac{\partial z'}{\partial z}\right)^2 - 1 \\
\frac{\partial x'}{\partial y} \frac{\partial y'}{\partial y} + \frac{\partial y'}{\partial z} \frac{\partial z'}{\partial z} + \frac{\partial z'}{\partial y} \frac{\partial y'}{\partial z} \\
\frac{\partial x'}{\partial z} \frac{\partial z'}{\partial z} + \frac{\partial z'}{\partial y} \frac{\partial y'}{\partial y} + \frac{\partial y'}{\partial x} \frac{\partial x'}{\partial z} \\
\frac{\partial x'}{\partial x} \frac{\partial x'}{\partial y} + \frac{\partial x'}{\partial y} \frac{\partial y'}{\partial y} + \frac{\partial y'}{\partial x} \frac{\partial x'}{\partial y}
\end{bmatrix}\]
Strain

$$\varepsilon_i \text{ gives the local infinitesimal scaling along the } i \text{ axis direction at point } p.$$
Strain

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z \\
\gamma_{yz} \\
\gamma_{zx} \\
\gamma_{xy}
\end{bmatrix} = \frac{1}{2}\begin{bmatrix}
\left(\frac{\partial x'}{\partial x}\right)^2 + \left(\frac{\partial y'}{\partial x}\right)^2 + \left(\frac{\partial z'}{\partial x}\right)^2 - 1 \\
\left(\frac{\partial x'}{\partial y}\right)^2 + \left(\frac{\partial y'}{\partial y}\right)^2 + \left(\frac{\partial z'}{\partial y}\right)^2 - 1 \\
\left(\frac{\partial x'}{\partial z}\right)^2 + \left(\frac{\partial y'}{\partial z}\right)^2 + \left(\frac{\partial z'}{\partial z}\right)^2 - 1 \\
\frac{\partial x'\partial x'}{\partial y\partial z} + \frac{\partial y'\partial y'}{\partial y\partial z} + \frac{\partial z'\partial z'}{\partial y\partial z} \\
\frac{\partial x'\partial x'}{\partial z\partial x} + \frac{\partial y'\partial y'}{\partial z\partial x} + \frac{\partial z'\partial z'}{\partial z\partial x} \\
\frac{\partial x'\partial x'}{\partial y\partial y} + \frac{\partial y'\partial y'}{\partial y\partial y} + \frac{\partial z'\partial z'}{\partial y\partial y}
\end{bmatrix}
\]

\(\gamma_{ij}\) represents the relative change in angle between lines initially in the \(i\) and \(j\) directions at point \(p\).
Deformation Analysis with Strain

Figure 1. Linear Interpolation

Tsinghua University
China
Strain is a quantitative tool in analyzing shape deformation. If we want the morphing process is deformation uniform, the strain change should be monotone.
3D Strain Field Morphing

- **Input:**
 - Source and target meshes
 - Consistent 3D tetrahedron meshes.

- **Continuous**
 - Assume all shapes all continuous model; they are only be approximately represented by discrete tetrahedron meshes.
Two fields

- Position field
 - All points position in the continuous model construct a position field.

- Strain field
 - Field to describe shape deformation between two shapes, which can be calculated from two position field.
3D Strain Field Morphing

- Steps
 - Strain field calculation
 - Strain field interpolation
 - Calculate position field from strain field
3D Strain Field Morphing

- Steps
 - Strain field calculation
 - Strain field interpolation
 - Calculate position field from strain field
Strain field calculation

- Finite element theory is used in strain field calculation.
- Linear tetrahedron element is used.

\[\sum x = \sum N_i x_i \]
\[\sum y = \sum N_i y_i \]
\[\sum z = \sum N_i z_i \]
3D Strain Field Morphing

- Steps
 - Strain field calculation
 - Strain field interpolation
 - Calculate position field from strain field
Strain field interpolation

- For small deformation, linear strain field interpolation can be used.

\[\varepsilon^t = (1 - t)\varepsilon^n \]

- For large deformation, modified strain field interpolation is used.
Strain field interpolation

- Modified strain field interpolation

\[
\begin{align*}
\varepsilon'_{x} &= \frac{1}{2} \left[t \sqrt{1 + 2\varepsilon_{x}^{n}} + (1 - t) \right]^2 - 1 \\
\varepsilon'_{y} &= \frac{1}{2} \left[t \sqrt{1 + 2\varepsilon_{y}^{n}} + (1 - t) \right]^2 - 1 \\
\varepsilon'_{z} &= \frac{1}{2} \left[t \sqrt{1 + 2\varepsilon_{z}^{n}} + (1 - t) \right]^2 - 1 \\
\gamma'_{yz} &= (1 - t)\gamma_{yz}^{n} \\
\gamma'_{zx} &= (1 - t)\gamma_{zx}^{n} \\
\gamma'_{xy} &= (1 - t)\gamma_{xy}^{n}
\end{align*}
\]
3D Strain Field Morphing

- **Steps**
 - Strain field calculation
 - Strain field interpolation
 - Calculate position field from strain field
Calculation Position field

- Find the position field which has nearest strain field to the interpolated strain field.

\[W = \sum_{i=0}^{n-1} \int (\varepsilon^n_i - \varepsilon^t)^T (\varepsilon^n_i - \varepsilon^t) d\Omega \]

- **Solver**
 - Gradient optimization method.
 - Nonlinear equation solver (Newton-Raphson method).
Results
Elephant
Figure 1. Linear Interpolation

2006-6-11
Tsinghua University
China
Twist
Demo

Helix

2006-6-11

Tsinghua University

China
Demo

Animal Morphing
Question?
Thanks!