
ACCEPTED TO IEEE TMM 1

Online Video Stream Abstraction and Stylization
Song-Hai Zhang, Xian-Ying Li, Shi-Min Hu, Member, IEEE , and Ralph R. Martin, Member, IEEE

Abstract—This paper gives an automatic method for online video stream abstraction, producing a temporally coherent output video
stream, in the style with large regions of constant color and highlighted bold edges. Our system includes two novel components. Firstly,
to provide coherent and simplified output, we segment frames, and use optical flow to propagate segmentation information from frame
to frame; an error control strategy is used to help ensure that the propagated information is reliable. Secondly, to achieve coherent
and attractive coloring of the output, we use a color scheme replacement algorithm specifically designed for an online video stream.
We demonstrate real-time performance for CIF videos, allowing our approach to be used for live communication and other related
applications.

Index Terms—abstraction, video stream, segmentation, temporal coherence, optical flow, color scheme replacement.
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1 INTRODUCTION

THE abstraction of images and videos becomes popu-
lar in non-photorealistic rendering, which simplifies

scene information while retaining meaningful features in
a stylistic fashion, so that the output is nice-looking, and
can serve the purpose of communicating the messages
and reducing the perceptual effort to understand the
contents.

Segmentation is a natural choice of tool for abstraction.
DeCarlo et al. [1], [2] propose an image abstraction and
stylization approach that transforms images into cartoon
style using large regions of constant color, by a hierarchi-
cal segmentation. We also pursue this artistic style, and
also use explicit image structure, but produce temporally
coherent cartoon-like animations. The particular goal of
our video stream abstraction approach is to produce an
output style which is cartoon-like, having simplified re-
gions with user-guided colors, and high contrast, which
has many applications to areas such as live broadcast
and communications, video games, entertainment and
virtual reality[3].

However, temporally coherent video stream abstrac-
tion is a challenging task. Firstly, existing segmentation-
based methods require intensive user interaction to
produce high-quality artistic results, and have a high
computational cost. Although there are some methods
[4], [5], [6], [7] using feature-preserving smoothing filters
to produce stylized videos automatically, their results
are smooth shaded, and more like the painterly effects
rather than cartoon-like effects. Secondly, processing
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video streams requires efficient algorithms in order to
cope with real-time data. Offline algorithms can make
use of future as well as past information, but this is not
available in video streams. Furthermore, video streams
have to be processed frame by frame, or at most make
use of just a few past frames or an averaged history.

In this work, we present an online, automatic method
to generate cartoon-like abstract animation from an in-
put video stream. (See Fig.1.) Little user interaction is
required, other than selection of a reference video which
determines preferred output colors (or alternatively a
hue histogram), and setting of preferences which control
the amount of detail retained in colored regions and line
drawing before processing. Our approach benefits from
two novel aspects:
• A segmentation strategy which uses optical flow to

propagate segmentation information from frame to
frame, with an error control strategy to help ensure
that the propagated information is reliable. The
segmentation constructs an explicit structure, which
provides correspondences of matched regions, and
achieves the temporally coherent abstraction results
of videos.

• A video stream color scheme replacement method
that does not require complete knowledge of the
source color distribution (i.e., does not need to
know future frames), and which applies the color
scheme from a reference video (or image, or a user
designed histogram of hue) to the input video, while
keeping color consistency between frames thanks to
the explicit structure of the video.

2 RELATED WORK

A number of significant papers have addressed styliza-
tion, but most of them concentrate on images rather
than videos [1], [8], [9], [10], [11]. Much research has
also considered the generation of cartoon-like video from
real-world captured video with the aim of reducing the
amount of work required for cartoon production, and
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Fig. 1. An abstraction example. 1: original video frame, and 2 - 4: three frames of the stylized video with color scheme
replacement.

the need for skilled artists. Examples include papers
on ‘SnakeToonz’ [12], keyframe based rotoscoping [13],
and ‘VideoTooning’ [14]. Such methods produce high
quality results, but still require intensive user interaction,
and generally restart video processing every few tens of
frames to avoiding error accumulation. Such methods
typically require considerable artistic skill for good re-
sults.

DeCarlo and Santella [1], [2] propose an image abstrac-
tion and stylization approach relying on eye-tracking
data to guide image simplification or stylization, us-
ing hierarchical segmentation, which well preserves the
image structure. We pursue an artistic style similar to
[1], and also use explicit image structure, but produce
temporally coherent cartoon-like animations.

As a natural scheme to extend DeCarlo et al.’s work,
several video abstraction approaches have been pro-
posed based on the coherent video segmentation. We
should notice that video segmentation is a fundamental
and challenging problem as surveyed in [15], which has
classified video segmentation techniques into three cat-
egories: the 3D stack scheme, the 2D+t scheme, and the
trajectory clustering scheme. For online video streams,
which ask the algorithm to be fully automatic and do not
need to know future frames, the 3D stack scheme [14],
motion layer segmentation scheme[16] and trajectory
clustering scheme methods are not preferred because
they all need costly whole-video analysis. For 2D+t
scheme, Paris [17] uses isotropic diffusion and Gaussian
convolution for real-time video stream segmentation;
Collomosse et al. [18] preform a key-frame based ap-
proach. However, these methods adopt a simple frame
alignment, which limits the coherence for fast-moving
scenes and objects. Actually, as Paris mentioned in the
paper, using optical flow may provide better results on
moving boundaries.

Other than segmentation-based approaches, various
filtering techniques have been applied for both image
and video abstraction [4], [5], [6], [7]. Those works use
image filters instead of segmentation, which are fast in
practice and naturally fit to videos and video streams.
Their coherence are guaranteed by the implicit image
structure itself, and the stability of the filters. But dif-
ferent from the cartoon-like effects that we pursue, they
tend to produce painterly effects.

In this paper, we use optical flow to guide coherent
video segmentation for cartoon-like effects. Our results
achieve comparable coherence as those filtering-based
methods and, what is more, as we have constructed an
explicit representation with region correspondences, per-
forming coherent and stable color replacement becomes
possible.

There are several papers [19], [20], [21], [22], [23], [24]
using optical flow to direct brush stroke movement or
point placement during frames, but they do not take
into account errors in optical flow, so limited coherence
is achieved in image sequences. Bousseau et al. [25] also
uses optical flow in a watercolor generation pipeline, but
relies on temporally bi-directional optical flow interpola-
tion to reduce optical flow errors, an option which is not
available in a live video system as future information is
unavailable.

Several works consider the problem of color scheme
extraction [26] and color transfer [27], [28], [29], [30].
These mainly focus on image processing, and analyze
source and reference features to determine the color
transformation. However, we cannot extend such a
method directly to live video stream color transfer, again
because of the lack of future information. On the other
hand, performing image color transfer for each frame
independently cannot guarantee color consistency in the
output as source colors vary in each frame. Wang et al.
[31] give a color transfer method for still images forming
a sequence; parameters are adjusted to present gradually
changing effects. Image analogies have also been used
for color transfer [28]. These take into account local
similarities in the image, and process it pixel by pixel.
The latter is most suited to producing complex textures,
but our output style uses large regions of slowly varying
color. Thus, we have instead devised a new efficient color
replacement method which captures the color style from
a given reference video, and applies it with temporal
coherence to produce a stylized video stream without
the need for source video feature analysis.

3 OVERVIEW

Our goal is to replace incoming live video by abstract
animation, in real time. We must thus avoid time con-
suming non-local analysis of the video (e.g., background
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Fig. 2. Pipeline. Frame segmentation uses optical flow and edges as inputs, tuned by an importance map, to produce
coherent regions. The color scheme replacement step transforms region colors according to a reference video.

reconstruction). During abstraction, our three goals are
to:

• simplify the content, without oversimplifying im-
portant areas,

• modify the coloring in a controllable manner,
• retain temporal coherence.

Taking these into account, our pipeline is as shown in
Fig. 2, and includes six steps.

Of these six steps, importance map computation, opti-
cal flow computation and edge detection provide inputs
for coherent image segmentation. The importance map
is used to ensure greater detail in key areas. As optical
flow information is inherently unreliable, we must be
careful to avoid propagating and accumulating optical
flow errors during segmentation. We use a careful error
control strategy when propagating segmentation labels
from frame to frame, to ensure temporal coherence of
region representations between frames.

For simple output, we could simply replace each
region by its mean color. Better results are obtained by
using a color scheme replacement process based on a
desired ‘color style’ learnt offline from a reference video
(or image, or provided by the user as a histogram). We
use a mean-shift based color transformation to move
input colors closer to a reference color distribution. We
are careful to preserve color consistency between frames,
while still not needing to know the potential colors in
future frames.

Finally, we smooth boundary curves using a low pass
filter to produce more artistic effects, and then use a
Difference-of-Gaussians (DoG) operator on the input
frames to detect and overlay edges, as in [4].

Algorithm 1 gives pseudocode for the whole algo-
rithm, and details of image segmentation are described
in the following section.

Algorithm 1 Pseudocode for online video abstraction
while (! end of video stream) do

//—Perform coherent image segmentation—
Compute importance map;
Compute Canny edges;
if !(first frame) then

//—Update segmentation using optical flow—
Compute optical flow;
Propagate labels from previous frame;
Apply morphological filtering to those propa-
gated labels;
Grow regions;

end if
for (r = initial radius; r ≥ 1; r /= 2) do

Do trapped ball filling with ball radius r;
Grow regions;

end for
//—End of image segmentation—
Apply color scheme replacement;
Smooth regions;
Compute DoG edges and overlay them;

end while

4 COHERENT IMAGE SEGMENTATION

As in [1], we perform segmentation in order to simplify
image content. Several approaches exist for temporally
coherent video segmentation [32], [33], [34]. Most solve
the problem via optimization or a mean-shift approach,
and thus perform a non-local analysis of the video. To
process a live video stream, we perform a 2D+t segmen-
tation by propagating information from one frame to the
next.

Our approach uses optical flow but in a way which
avoids accumulation of errors. Many optical flow com-
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putation methods exist [35]; we use Zach’s [36] as it
provides good results in real time. The first frame is
segmented using the trapped ball algorithm [37]; this
algorithm is explained later. In each successive frame,
optical flow is used to propagate segmentation labels
for each pixel. In the result, some pixels may have no
segmentation label (e.g., because they have been newly
exposed from an occluded area), or may have multiple
labels (e.g., because of optical flow errors). Labeling such
pixels is the key to coherent image segmentation. Those
which are sufficiently close in distance and color to an
existing region are given the label of that region, while
the remainder are segmented into new regions again
using the trapped ball algorithm. Algorithm 1 gives
pseudocode for image segmentation; we now consider
these steps in detail.

4.1 Importance Map and Edge Detection

Edges provide strong hints as to where region bound-
aries should exist. In image and video abstraction,
important areas, such as faces, should be depicted in
more detail than other areas, which requires segmenting
them into more, smaller regions. Eye tracking [4] can
find important areas, but is of limited applicability. We
compute the importance map by faces detection [38].
Alternative strategies could also be used to compute the
importance map, e.g., taking into account saliency and
motion information [39], but at a higher computational
cost. The important map is used to control the number
of edges found during edge detection: the hysteresis
thresholds of a Canny edge detector [40] are set inversely
proportional to importance map values. In areas of
greater importance, more edges are detected.

4.2 Region Label Propagation by Optical Flow

The first frame is segmented by the trapped ball method
based on the detected edges. For subsequent frames, the
previous frame has been segmented, and optical flow
has been computed; these are used to provide an initial
segmentation for the current frame. The segmentation
is represented by labeling pixels with positive integers
corresponding to regions.

We start by labeling all pixels of the current frame
as 0, i.e., unassigned to any region. The optical flow is
rounded to determine a spatial mapping of each source
pixel from the previous frame to a target pixel in the
current frame. This target pixel is given the same label
as the source in the previous frame, except as below,
when it retains its 0 label:
• the optical flow error is larger than a threshold,
• more than one source pixel ends up at this target

pixel, and the labels of these source pixels are dif-
ferent,

• this target pixel has no corresponding source pixel.
To determine if an optical flow error has occurred, we
compute the color difference in CIELAB color space

Fig. 3. Left: input frames 1, 2. Middle: segmentation
results for frames 1, 2. Right-top: residual map before
morphological filter. Right-bottom: region label propaga-
tion result after morphological filter.

between the source and a linear interpolation of the
values of the 4-neighboring pixels of the target position.
If this exceeds a threshold Tf , the target is labeled 0.
Tf is chosen according to the video quality; values in
the range 5–20 are typically appropriate. This prevents
obvious optical flow failures. Fig. 3(top, right) shows the
residual unlabeled pixels (red) after label propagation.
Note that we do not explicitly need to detect scene
changes in the incoming video: in such cases, the optical
flow will have large errors, causing many pixels to be
labeled 0, and will hence be re-segmented.

After pixel label propagation, region boundaries are
typically rather interlaced. These are smoothed, and
other mislabelings due to errors in the optical flow
corrected, using a morphological filter: if 5 or more of the
8-connected neighbors of the target pixel are the same,
but differ from the target pixel, and if its label is 0, then
it is changed to the most frequent label in the neigh-
borhood, otherwise it is changed to 0. Fig. 3(bottom,
right) shows the propagated labels after morphological
filtering, where red pixels are unlabeled.

We must now complete the segmentation by labeling
the unlabeled pixels. This is a problem of minimizing
label errors for those unlabeled pixels which should be
allocated to existing regions, and giving new labels to
those pixels which are insufficiently similar to existing
regions. At the same time, the labels assigned must
respect the edge information, so that the regions are in
agreement with any superimposed edges drawn later.
These requirements, taken together with efficiency con-
siderations, make it difficult to solve the problem by
traditional optimization or graph cut methods. Instead,
we improve the region growing and trapped ball filling
[37] to finish the segmentation.

4.3 Region Growing

For each labeled region, a single, simple, color model is
assumed to be an adequate fit. We use a constant color
model, and assume pixels belonging to a region are near
to its mean color.
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We assign labels while respecting edges taking into
account that (i) edge pixels may not be added to a
region and (ii) pixels added to a region should agree
with its color to within perceptual limits. Let the recon-
struction error of a labeled pixel be the difference between
its actual color and that predicted by the correspond-
ing color model. All unlabeled pixels adjacent to the
boundary of any labeled region are put into a priority
queue, sorted by reconstruction error with respect to the
adjacent region. We then pop the pixel with minimum
reconstruction error from the queue. If the reconstruction
error is sufficiently small (in practice, below 20(1.2−I(p))
units in CIELAB space), the pixel’s label is updated,
and it is removed from the priority queue; at the same
time, its unlabeled 4-connected neighbors are added to
the queue. We repeatedly pop pixels until the queue is
empty, or the least reconstruction error is too large.

4.4 Trapped-Ball Filling

Any pixels still remaining unlabeled belong to some new
region. In general, multiple new regions may exist, so
these unlabeled pixels still need to be segmented.

The basic idea of trapped-ball filling is to move a ball
around, limited by a mask, formed here by the already
labeled pixels and the detected edges. Each separate area
in which the ball may move determines a new region
of the image. The trapped ball has the advantage over
flood-filling that it cannot leak out between short gaps
in the detected edges. Initially, a large ball is used to
find each region’s core, and then balls of successively
smaller radius are used down to a radius of 1 to add
more detailed parts of each region.

The initial ball radius is chosen according to the num-
ber of unlabeled pixels N0. We set it to max(2,

√
N0/30),

which is typically in the range 2–32. In the first frame,
all pixels are unlabeled, and an original segmentation
for the whole frame is obtained using the trapped ball
method with a large initial ball size. In subsequent
frames, unlabeled regions are typically small, and a
smaller initial ball radius is used. If a scene change occurs,
many pixels are now unlabeled, so a larger initial ball
size is again used. The extra processing entailed at a
scene change can cause a slight lag, but as long as frames
are processed faster than in real time, this lag can soon
be overcome.

5 COLOR SCHEME REPLACEMENT

Color selection is an important aspect of stylization,
and different palettes can produce different emotional
responses. Much work has been done on color transfer
for images—applying the color scheme from a refer-
ence image to a source image. Clearly, in this case, the
color distribution for the entire source and reference are
known. However, when processing live video, we do
not have complete information: future video content is
unknown. Thus our recoloring problem has two specific

requirements: the transformation should cover the entire
color space to allow for any possible future colors, and as
we have video rather than images, we must also ensure
inter-frame color stability for each region in the video.

Our color scheme replacement method uses the con-
cept of mean shift [41]. Given a reference image or cartoon
video clip, we count the number of pixels of each color
to determine the color distribution. We must also choose
the desired number of iterations and kernel radius for
the mean shift procedure. Then, to determine the map-
ping of each input color to an output color, we determine
a mean shift vector towards a local maximum in the
color distribution, which shifts each input pixel’s color
towards the nearest peak in the reference distribution.
Overall, given an input color distribution, the mapping
transforms it towards the reference color distribution.

It would be costly to compute the reference distri-
bution and mapping directly in CIELAB color space.
Instead, we simply consider the hue value in HSV space,
and compute the reference distribution and mean shift
vector using H alone. In an analogous manner, [42] and
[43] also use hue as the most important feature of color
when performing color harmonization, i.e., mapping a
source color distribution to a template distribution.

As these authors note, there is discontinuity in new
color when two nearby colors are transformed to dif-
ferent local maxima, which may causing flickering be-
tween frames. Thus, we also use an interframe blending
method which takes into account correspondence be-
tween regions in successive frames; this information is
provided by our segmentation-based explicit structure,
which is never achieved by filtering-based methods.
Thus, after first computing an ideal target color by the
mean shift procedure, we modify it to give the actual
output color by interframe blending.

To find the color mapping, we first compute the color
distribution of the reference video in HSV color space
(which is more useful than RGB from a perceptual point
of view), considering the three channels separately. In
each frame, for the H channel, we compute a color
histogram for all pixels having S > 0.125 and V > 0.125
(Because the H channel is senseless for those colorless
and dark pixels). Also we compute the mean µS and
standard deviation σS for S channel pixels having V >
0.125 (Also, S channel is senseless for dark pixels), and
the mean pixel value µV of the V channel. (Alternatively,
instead of providing a reference video, the user could
provide a reference image, or even manually design a
color histogram represented in this way).

For each frame of the incoming video, all pixels in
each segmented region are given the same target color.
The source color (h, s, v) for a region is computed as the
average color of all pixels in that region. This is mapped
to a target color (h′, s′, v′). First, we compute µs, σs and
µv for this frame in an analogous manner to how they
were computed for the reference video. We then compute
(h′, s′, v′) as follows. h′ is set to the mean shift of h in
the H channel histogram, by iterating the formula below
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Fig. 4. Color scheme replacement. Top-left: a frame of
the reference video. Top-right: histogram of its H chan-
nel. Bottom-left: segmented frame before replacement.
Bottom-right: frame after replacement.

k times; typically k = 3:

hi+1 =

∑
c∈N(hi)

cD(c)∑
c∈N(hi)

D(c)
. (1)

Here h0 is h, and h4 is the desired h′. N(hi) represents a
30◦ neighborhood in the histogram and D(c) represents
the histogram value for c. (This function is pre-computed
for all possible h values and stored in a look-up table for
speed). As for the S and V channels, we simply perform
the following formulas for s′ and v′ with the aim of
adjusting the brightness and contrast to be closer to those
of the reference video:

s′ = µS + (s− µs)σS/σs, (2)
v′ = v(λ+ (1− λ)µV /µv). (3)

Here a linear function is adopted for s′ to achieve target
mean and standard deviation. For v′, a direct propor-
tional function is instead because we should make sure
that the darkness is still darkness, where λ is a constant
to measure ’how much we want the video retains its
original brightness variation’. In this paper we choose
λ = 2/3 for all results.

After obtaining the target color, we now compute the
actual output color. Suppose some region Ri has a target
color ci, and the corresponding region Ri−1 in the pre-
vious frame had actual output color oi−1. We compute
its actual output color oi by color blending to improve
color coherence:

oi = (1− α(Ri, Ri−1))oi−1 + α(Ri, Ri−1)ci (4)

Here α(Ri, Ri−1) measures the correlation of the two
corresponding regions: α(Ri, Ri−1) is the ratio of: the
number of pixels in Ri−1 whose destination lies in Ri

after optical flow, to the geometric average of the areas
of Ri−1 and Ri. If region Ri is a new region in this frame,

Fig. 5. Boundary smoothing and edge overlaying.
Top-left: segmentation result. Top-right: after bound-
ary smoothing. Bottom-left: detected lines. Bottom-right:
smoothed result after edge overlay.

we simply set oi = ci. This blending is executed in the
CIELAB space.

An H channel color histogram extracted from a refer-
ence video and an example of color scheme replacement
are shown in Fig. 4 (final results after boundary smooth-
ing and edge overlaying are shown in Fig. 5).

6 RESULTS AND DISCUSSION

We have implemented our framework using a com-
bination of CPU and GPU, on an Intel Core2 Quad
Q9300 CPU at 2.5GHz, with 4GB memory, and a GeForce
8600GT, using CUDA, OpenCV and Visual C++ 2008’s
parallelizing compiler. Performance depends on image
size and framework parameters. For a CIF (352 × 288)
video stream, commonly used for live communication,
face detection and edge detection is done on one CPU
core, taking 40ms per frame, while simultaneously, op-
tical flow computation takes 20ms on the GPU. Image
segmentation takes from 20–30ms, depending on the
number of residual unlabeled pixels. Color scheme re-
placement and edge overlay take under 10ms. Boundary
smoothing takes 20–50ms, depending on the number of
boundary pixels. Typically we can process a CIF video
stream with default parameter settings at about 9–12
frames per second using the CPU for everything but
optical flow (we directly use Zach’s GPU optical flow
code [36]). We note that edge detection, morphological
operations and the DoG filter could also benefit from
GPU implementation, permitting faster frame rates or
higher video resolution. The current Nvidia GTX295
graphics card offers perhaps 10× the performance of the
older GeForce 8600GT card.

Figs. 1 and 6 show various abstraction results. Our
method achieves cartoon-like effects with simplified con-
tent comprising well-defined regions with bold bound-
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(a)

(b)

(c)

(d)

(e)

Fig. 6. Our results of video abstraction. Columns 1, 3: original video frames. Columns 2, 4: corresponding abstraction
results of columns 1, 3.

Fig. 7. Comparison of abstraction effects. From left to right: source image, result using filtering-based method, color
quantization result using filtering-based method, result using our method.

aries, while using a chosen color style. Fig. 7 shows an
example of the filtering-base method [4], which produces
an painterly effect, and cannot achieve coherent cartoon-
like effects by simple color quantization. In contrast, our
results retain temporal coherence on both shape and
color, benefited from the coherent image segmentation.

Different styles can be produced by the user, but ob-
jective evaluation of the level of success is difficult. Our
results have been independently evaluated by a com-
pany who randomly chose 10 employees to subjectively
evaluate 6 video clips of difference contents according
to the temporal coherence, the cartoon shape style, and
the cartoon color effect. The 10 participants include 5
males and 5 females, 3 professional designers and 7
novices, and their ages are between 20 and 40. Table

1 shows the average score of each video clip on three
aspects. The result of the study shows that our method
produces cartoon effects for streets and natural scenes
better than the figures. The color scheme replacement
greatly improves the stylization. The temporal coherence
of our results is acceptable and comparable with [4].

Optical flow is the sole information used to guide
interframe correspondence, so its accuracy is very im-
portant. Zach’s method works well in most cases, as
demonstrated by the number of residual pixels (Figs.
3 and 8). When the scene changes slowly, few residual
pixels remain (Fig. 8, above), and most are labeled,
according to color, during the region growing step.
When the video content changes rapidly, the number of
residual pixels increases. Indeed, essentially the whole
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Fig. 8. Label propagation by optical flow: 2 examples. From left to right: previous frame, current frame, residual map
before morphological filtering, propagation map after morphological filtering.

TABLE 1
The score of the user study

Fig.1 Fig.6(a) Fig.6(b) Fig.6(c) Fig.6(d) Fig.6(e)
Cartoon shape
style 4.5 3.9 3.7 2.8 4.7 3.5

Result with
mean color 3.0 2.3 2.8 3.0 3.3 2.4

Result with color
replacement 3.7 4.0 3.9 3.2 4.1 3.5

Temporal coher-
ence of our result 4.5 4.2 4.2 3.1 4.3 3.7

Temporal coher-
ence of [4] 4.4 4.1 3.5 3.7 4.3 3.9

image is composed of residual pixels at scene changes
(Fig. 8, below), as useful optical flow information no
longer exists. Thus, we do not need to explicitly detect
scene changes: in cases with large numbers of residual
pixels, trapped-ball filling provides resegmentation of
the scene. While newly generated regions may cause
certain inconsistencies, viewers find lack of coherence
much more noticeable in slowly changing scenes than
in fast moving scenes. Currently we use the rounded
optical flow for label propagation, which may cause
flickering in long and thin regions. And image noise and
motion blur may also decrease the quality of optical flow,
any ultimately decrease the coherence of final results.

Fig. 9 illustrates the results of color scheme replace-
ment using different reference images (these have been
chosen to exaggerate the effects, and are atypical). The
resulting hue distributions have been transformed to-
wards the reference distribution so that peaks of hue
agree with the reference image’s hue peaks: output
pixels exhibit colors which tend to follow the reference
distribution.

Our method has other limitations. Like Winnemöller’s
bilateral filtering method, our method needs to estimate
visual salience. Certain high-contrast features such as
specular highlights that may be emphasized by our
framework are actually deemphasized in human vision,
and repeated texture causes unwanted edge responses.
Another limitation lies in our handling of occluded
regions. When such regions are gradually uncovered by
an overlying object, they typically initially merge with
the overlying object, and then suddenly separate from

it when they have grown to a sufficient size. This may
cause jumps in color, although our approach in Section
4 alleviates such effects to some extent.

7 CONCLUSIONS

Our real-time video stream abstraction method uses a
segmentation strategy guided by optical flow, with care
taken to appropriately allow for optical flow errors,
so that we can consistently segment each frame while
preserving temporal coherence. To achieve attractive
stylization, we use a color scheme replacement method
which applies colors learnt from a video clip or an image.

Various areas exist for future work. Firstly, we intend
to investigate more general ways of computing the
importance map while providing temporal coherence,
yet with sufficient performance for a real-time system.
One obvious consideration is that moving objects are
typically more important than the static background.
Secondly, we also intend to consider vectorization of the
stylized video. Currently our methods directly produce
vectorized output on a per-frame basis in the form of a
boundary representation of each region together with its
color. However, determining inter-frame correspondences
in terms of projection transformation of coherent regions,
and region overlap, would allow more semantically
useful vectorization, as well as enabling greater compres-
sion. Finally, we would like to extend this work to other
styles of rendering, such as oil paintings.
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