
Popup: Automatic Paper Architectures from 3D Models

Xian-Ying Li1 Chao-Hui Shen1 Shi-Sheng Huang1 Tao Ju2 Shi-Min Hu1
1Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing

2Department of Computer Science and Engineering, Washington University in St. Louis

Figure 1: Given a 3D architectural model with user-specified backdrop and ground (left), our algorithm automatically creates a paper
architecture approximating the model (mid-right, with the planar layout in mid-left), which can be physically engineered and popped-up
(right).

Abstract

Paper architectures are 3D paper buildings created by folding and
cutting. The creation process of paper architecture is often labor-
intensive and highly skill-demanding, even with the aid of existing
computer-aided design tools. We propose an automatic algorithm
for generating paper architectures given a user-specified 3D model.
The algorithm is grounded on geometric formulation of planar lay-
out for paper architectures that can be popped-up in a rigid and sta-
ble manner, and sufficient conditions for a 3D surface to be popped-
up from such a planar layout. Based on these conditions, our algo-
rithm computes a class of paper architectures containing two sets
of parallel patches that approximate the input geometry while guar-
anteed to be physically realizable. The method is demonstrated on
a number of architectural examples, and physically engineered re-
sults are presented.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems;
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1 Introduction

Paper architectures, also called origamic architectures, are paper
buildings created by folding combined with paper cutting. Origi-
nated in Japan by Masahiro Chatani [1987] in the 1980’s, the craft
has been popularized by artists around the world, in particular Bian-
chini, Siliakus and Aysta [2009]. Paper architecture appears in
many forms, such as greeting cards and desktop decorations, and

can be “startling realistic” [Chatani et al. 1987]. Some examples
created by artists are shown in Figure 2. Further exhibits could
be found from the online galleries of Ingrid Siliakus and Gerry
Stormer.

A paper architecture is made from cutting and folding from a sin-
gle piece of paper, and is stored by folding the two halves of the
paper close. As the paper is opened, the 3D building “stands-up” or
“pops-up”. While similar to pop-up books, a paper architecture is
made with no gluing or splicing, which puts additional constraints
to the design of cut and fold patterns on the paper (called a planar
layout). What is even more challenging is to create layouts that
would pop-up into a desired 3D look. Numerous books exist on the
mechanism of designing pop-up crafts [Birmingham 1997; Carter
1999; Cheong et al. 2009], and a number of computer-aided tools
have been developed to provide virtual design environments [Lee
et al. 1996; Glassner 2002; Hendrix and Eisenberg 2006; Mitani
and Suzuki 2004a]. However, the user is ultimately responsible
for deciding where and how the cuts and folds should be placed
on the 2D paper, and it remains a labor-intensive and highly skill-
demanding task to generate 2D layouts that pop-up into realistically
looking 3D buildings.

In this paper, we develop a completely automatic algorithm that
produces paper architectures approximating user-given 3D models,
which enables novice users to create realistic and complex crafts in
an effortless way (see the example on Figure 1 right). Our algo-
rithm is grounded on novel geometric formulations of planar lay-
outs that can physically pop-up to paper architectures. In particu-
lar, regions in the layout should maintain rigid and non-intersecting
when popping-up, and the architecture should be able to stably erect
with no additional help from the user other than holding the two
halves of the paper. Based on the formulation, we present suf-
ficient conditions for a class of 3D surfaces, consisting of planar
patches oriented in two directions, to be physically realizable by
popping-up a planar layout. Guided by the conditions, we design
a grid-based algorithm that produces 3D realizable paper architec-
tures automatically from any input model given by the user, while
requiring only the users to specify the paper location with respect
to the model. An example is shown in figure 1.

Contributions To the best of our knowledge, our algorithm is one
of the first automated methods for creating paper architecture that
mimics a given 3D input. To achieve this goal, we make the follow-
ing contributions:
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Figure 2: Paper architectures by Masahiro Chatani, Marivi Victoria Garrido Bianchini & Ingrid Siliakus.

• We present a formal, geometric formulation of planar layouts
that can rigidly and stably pops-up to a paper architecture
(Section 3).

• We present sufficient conditions for a class of 3D surfaces,
consisting of patches oriented in either one of two directions,
to be realizable by popping-up a planar layout in a rigid and
stable way (Section 4).

• We present an automatic algorithm that generates paper archi-
tectures and their planar layouts that approximate any given
3D models with guaranteed realizability. (Section 5).

2 Related work

Paper crafting Different types of paper crafting has been studied
in the mathematical and computational setting. Here we will briefly
review some major forms.

Origami is the traditional Japanese art of paper folding. Typically,
origami is folded-flat (meaning the model can be flattened with-
out being damaged) [Hull 1994] using a single piece of paper, and
no cutting or gluing is used. Folding algorithms and foldability for
origami has been extensively studied in the computational geometry
community, and we point readers to a recent book by Demaine and
O’Rourke [2007]. More recently, Tachi [2009] proposed an algo-
rithm to automatically generate origami design for arbitrary poly-
hedral surfaces. Curved folding has also been considered [Kilian
et al. 2008] based on analysis of developable surfaces. By allowing
cutting, paper architecture presents a different set of folding and
foldability problems than traditional origami, some of which we
hope to address in this work.

Strip modeling is concerned with representing 3D models as pa-
per strips, or piece-wise developable surfaces. Mitani and Suzuki
[2004b] proposed a method for approximately making general sur-
faces by paper-strips. Their algorithm is powered by mesh simpli-
fication, which is a well-studied but still active topic [Garland and
Heckbert 1997; Cohen et al. 1998; Wei and Lou 2010]. Alterna-
tive methods also have been proposed in [Shatz et al. 2006] and
[Massarwi et al. 2007]. With the use of cutting and splicing, strip
modeling can achieve complex and even knotted geometry that is
otherwise infeasible in other paper art forms.

Paper-cutting is a Chinese folk art that cuts out stylistic patterns and
figures from a piece of paper. A simple and efficient algorithm for
automatic paper-cutting given input images was proposed in [Xu
et al. 2007]. Extensions to 3D paper-cuts and interactive design
of animations with paper-cuts have also been considered [Li et al.
2007].

Computational paper architecture Unlike other paper art forms,
algorithmic solutions for paper architecture have been scarce. Most
computational work revolves around creating computer-aided envi-
ronment for designing pop-up crafts. Glassner introduced a system
in [Glassner 2002] where users can interactively design single-slit
and V-fold, two basic skills of pop-up card. A similar system is
the Popup Workshop for children [Hendrix and Eisenberg 2006].
However, self-intersections may happen in these systems and they
have to be resolved by users. Mitani and Suzuki [2004a] proposed a
CAD system for paper architecture design, which ensures the geo-
metric validity of the output and the foldability of the planar layout
by their construction mechanism. In addition, a pop-up condition
is proposed that checks whether a layout can be erected when the
paper opens. However, this condition is not automatically guaran-
teed by their system, and hence needs to be resolved by the user in
a trial-and-failure manner. Note that, in general, deciding whether
a given pop-up craft can be opened or closed is a NP-hard problem
[Uehara and Teramoto 2006]. In our work, we proposed a sufficient
condition that the layout can erect in a stable manner as the paper
opens, and further provides an automatic algorithm that guarantees
the satisfaction of the condition in the output.

There are few automated methods for creating pop-up crafts or pa-
per architectures. Hara and Sugihara [2009] considered a 2D ver-
sion of the pop-up problem (given a polygon as the desired pop-
upped shape) and proposed an automated solution involving polyg-
onal subdivision. However, the method requires gluing multiple
paper pieces, which is not allowed in paper architectures. The
only previous work we know of that produces paper architecture
from 3D models is by Mitani et al. [2003] (in Japanese). Like our
method, their work considers voxel grid to construct the pop-up sur-
faces. However, their algorithm creates 3D buildings with simple,
stair-stepping appearances and lacking guarantees of pop-up or sta-
bility. In contrast, we propose a robust algorithm, grounded on geo-
metric formulations of foldability and stability, that produces results
closely resembling the input models. Note that stability of architec-
tural models has also been considered by Whiting et al. [2009] in
procedural modeling, although the modeling primitives there and
hence the stability conditions are very different from ours.

Shape abstraction Approximating a 3D model by a paper archi-
tecture is a stylistic way of abstracting the shape. Previous work
on shape abstraction is mostly based on segmentation of surface
patches [Lai et al. 2006; Shamir 2008; Lai et al. 2009] and approx-
imating them with simpler primitives such as quasi-developable or
nearly-flat patches [Julius et al. 2005; Yamauchi et al. 2005; Wang
2008; Mehra et al. 2009]. The result of our method can be consid-
ered as a special type of abstraction using planar patches in two di-
rections, parallel to either one half of the paper, that have additional
physical properties (e.g., being able to pop-up from the plane).
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Figure 3: A foldable PLPA (a) with cut lines (black) and fold lines
(red and blue respectively for mountain and valley folds), and a
folded PLS at 90◦ fold angle (b).

3 Formulations

A paper architecture is created from a single piece of paper by cut-
ting and folding. The planar layout of such a paper architecture
consists of a set of cut lines and fold lines that divide the paper into
various regions. Typically, there are two outer regions, called back-
drop and ground, that meet at a central fold. When the user folds
the central fold by moving the backdrop and ground, the rest of the
regions “pop-up” as a result of folding along the fold lines.

Our ultimate goal is to device computational algorithms to con-
struct planar layouts that can be physically popped-up. To guide
the algorithm design and show its correctness, we first present geo-
metric formulations of planar layouts, particularly those that can be
popped-up in a physically realistic manner.

3.1 Layouts

Planar layouts for paper architecture, as well as their folded results,
can be generally considered as a kind of 3D surface with linear
components. Specifically, we define:

Definition 1 A piece-wise linear surface (PLS) is a collection of
planar, non-intersecting and non-overlapping patches where neigh-
boring patches share common straight edges.

Definition 2 A planar layout for paper architecture (PLPA) T is a
PLS where

1. All patches in T are co-planar,

2. T forms a rectangular domain with possible holes, and

3. There exist two patches, called backdrop and ground, that
touch the outer rectangular boundary and share edges along
the mid-line of the rectangle.

An example of a PLPA is shown in Figure 3 (a). In a PLPA, we call
common boundaries between neighboring patches fold lines (red
and blue lines in the picture), and the rest of the patch boundaries
as cut lines (black lines in the picture). In particular, we call the
fold lines between the backdrop and ground as the central fold.

3.2 Foldable layouts

Obviously, not all PLPA can be folded up. To define foldability, we
make the key assumption that the paper is made up of rigid mate-
rials (e.g., metal) except at the boundary of patches (e.g., hinges).
Furthermore, we assume the paper has zero thickness. These two
assumptions help us to formulate foldability, as well as realizability,
as simple geometric properties. Note that the same assumptions are
made in rigid origami [Belcastro and Hull 2002]. With the rigidity
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Figure 4: A parallel PLS stable with respect to the backdrop and
ground (a), and one that is not stable (b) and can be folded to (c)
while maintaining the rigidity of the patches.

assumption, we define foldability generally as a relation between
two PLS:

Definition 3 Given two PLS S, T , S is said to be foldable from T
if there exists a continuous mapping f : T → S such that:

1. f(0) = T , f(1) = S

2. For any t ∈ [0, 1], f(t) is a PLS that maintains the rigidity
and continuity of patches in T .

The mapping f is called the fold transform from T to S.

We are interested in PLPAs that can open and close “all the way”.
Let fold angle be the outer angle of the central fold in a PLPA or any
PLS folded from a PLPA (e.g., the fold angle of a PLPA is zero).
Note that, strictly speaking, a PLPA cannot close completely (e.g.,
at fold angle 180◦) by our definition of foldability, as the backdrop
and ground are not allowed to overlap. We therefore formulate a
foldable layout as:

Definition 4 A PLPA T is said to be foldable if there is a fold trans-
form f from T during which the fold angle increases monotonically
from 0 to 180◦ − ε with arbitrarily small ε. This transform f is
called the pop-up transform of T , and any f(t) for t ∈ [0, 1] is
called popup-foldable.

For example, the PLPA shown in Figure 3 (a) is foldable, and a
popup-foldable surface at 90◦ fold angle is shown in (b).

3.3 Realizable layouts

A foldable PLPA as defined above may not be able to “pop-up”
as the user opens or closes the ground and backdrop. For exam-
ple, the PLPA may contain pieces disconnected from the ground or
backdrop that needs extra support to hold them in place. Also, the
pop-up transform may require external forces along the fold lines
in order to crease them in practice. Ideally, we would to create sta-
ble paper architecture where the pop-up transform does not require
additional forces other than opening and closing the backdrop and
ground by the user, and the paper at each stage during the transform
is able to hold steady when the backdrop and ground are fixed.

We can define realizability based on the same rigidity assumption
we made above. Intuitively, a PLS that can hold steady when some
patches are fixed is one that cannot be folded to another state while
keeping the fixed patches unchanged. Also, if the PLPA at each
time point of a continuous folding process is stable with respect to
the backdrop and ground, then no external forces would be required
to get to the next time from a previous time other than moving the
backdrop and ground. More formally, we define:

Definition 5 Given a PLS S and a subset of patches P ⊂ S, S is
said to be stable with respect to P if there is no other PLS S′ 6=
S that is foldable from S via a fold transform f , where P keeps
stationary during f .



For example, the staircase example in Figure 4 (b) is not a stable
PLS, as it can be collapsed to the shape in (c) continuously without
affecting the rigidity of the patches. In contrast, the examples in
Figure 3 (b) and Figure 4 (a) are. Finally, we define a realizable
layout as:

Definition 6 A PLPA T is said to be realizable if it is foldable,
and there is a pop-up transform f of T such that any f(t) for t ∈
[0, 1] is a PLS stable with respect to its backdrop and ground. This
transform f is called a realizable pop-up transform, and any f(t)
for t ∈ [0, 1] is called popup-realizable.

4 Sufficient conditions

The goal of our algorithm is to create realizable planar layouts that
approximate a given 3D model when folded. We therefore need to
answer the inverse question: given a 3D surface (e.g., a PLS), is it
pop-up realizable?

In this paper, we consider a special type of PLS for which we
are able to derive sufficient, computable conditions of realizabil-
ity. These conditions will guide our algorithm design and ensure
the correctness of the results.

Definition 7 A parallel PLS Sv,w is a PLS where the normal direc-
tion of each patch is either v or w, which are unequal unit vectors.

For example, the examples in Figure 3 (b) and Figure 4 (a,b) are
all parallel PLSs where v, w are orthogonal. Note that most paper
architecture falls into this class, such as the ones shown in Figure
2. We first show conditions for popup-foldable parallel PLSs:

Proposition 1 Consider a parallel PLS Sv,w, and let U = v × w,
V = w × U , and W = U × v (as shown in Fig 3 (b)). If parallel
projection of Sv,w in the direction of V + W onto a plane with
normal v results in a PLPA, then Sv,w is popup-foldable.

Proof: Consider the parallel projection T on the plane containing
the origin. We will show that T is a foldable PLPA by constructing
a pop-up transform from T via Sv,w.

We can express any point x on Sv,w as:

x = (xU , xV , xW ) · (U, V,W ) (1)

Note that U, V,W are linearly independent, hence the decomposi-
tion is unique. Consider the following continuous mapping f where
f(t) for t ∈ [0, 1] consists of points:

x(t) = (xU , xV , xW ) · (U, V (tπ),W ) (2)

for all points x ∈ Sv,w. Here, V (α) = w(α) × U where w(α) is
a vector rotated from v around U by α degrees. We show several
properties of f :

• f(0) = T . In fact, for any point x ∈ Sv,w, x(0) lies on the
plane with normal v containing the origin, and x − x(0) =
xV (V +W ).

• f(t) = Sv,w for t = θ/π where θ is the angle between v, w.

• f(t) is intersection-free for any t ∈ [0, 1), due to the unique-
ness of the decomposition (when t > 0) and the non-
intersection property of a PLPA.

• The transform f maintains the rigidity of the patches in S. In
fact, for any two points x, y on a same patch in Sv,w with
normal v (or w), x(t), y(t) will lie on a common plane or-
thogonal to v (or w(tπ)), and ‖x − y‖ = ‖x(t) − y(t)‖ for
any t ∈ [0, 1].

As a result, f is a valid pop-up transform from T via Sv,w, and
Sv,w is popup-foldable. �

Note that the conditions in Proposition 1 can be checked computa-
tionally given a parallel PLS. In our algorithm, we will construct a
specific class of parallel PLS that satisfies these conditions naturally
by the construction process.

Making one step further, we have the following sufficient condition
for a parallel PLS that can be rigidly and stably popped-up:

Proposition 2 A parallel PLS Sv,w satisfying Proposition 1 is
popup-realizable if it further satisfies the following condition: there
exists an ordering of patches in Sv,w = {p1, . . . , pn} such that
p1, p2 are the backdrop and ground respectively, and for any k ∈
[3, n], either:

1. pk is connected to two parallel, non-coplanar patches pi, pj
where i, j < k, or

2. pk is connected to pk+1, and pk, pk+1 are respectively con-
nected to some pi, pj where i, j < k and pi, pk+1 are non-
coplanar.

Proof: We will first show that a parallel PLS S meeting the two
conditions above is stable with respect to p1, p2. We start with
two observations. First, a rigid planar patch will be fixed if two
non-colinear boundary edges are fixed. Second, consider two rigid
planar patches pa, pb sharing a common edge e. Then pa is fixed
if there is an edge ea of pa and an edge eb of pb such that e, ea
are non-colinear, and ea, eb are fixed. With these observations, it is
easy to show that the patches of Sv,w are stable by induction.

By Proposition 1, Sv,w can be folded from a PLPA T by the popup-
transform f defined as in Equation 2. Note that the two conditions
here still hold during the transform, which preserves the connectiv-
ity and parallel relations among patches. Therefore, T is a realiz-
able PLPA and Sv,w is popup-realizable. �

For example, the parallel PLS in Figure 4 (a) is popup-realizable
according to the above conditions, using the ordering of patches
marked in the figure. In contrast, no such ordering can be found on
the PLS in Figure 4 (b).

5 The algorithm

The input of our method is a 3D model with user assigned backdrop
and ground plane locations. The output of the algorithm is a paper
architecture represented as a popup-realizable, parallel PLS that ap-
proximates the input model. In this paper, we focus on parallel PLS
with 90◦ fold angles, as such PLS encompasses a large range of
models including urban architectures, though the algorithm can be
easily adapted to other fold angles. To best capture the model ge-
ometry while fulfilling the conditions stated in the previous section,
we proceed in three steps (illustrated in Figure 5):

1. Popup-foldable surface: First, we compute an initial, paral-
lel PLS approximating the input model and consisting of or-
thogonal faces on a Cartesian grid. This initial PLS is referred
to as the visible PLS. The construction process ensures the
popup-foldability according to Proposition 1 (Figure 5 (b)).

2. Popup-realizable surface: Next, we modify the visible sur-
face to further meet the realizability condition in Proposition 2
while maintaining foldability. This is achieved using a greedy,
region-growing algorithm (Figure 5 (c)).

3. Geometric refinement: Finally, the zig-zag boundaries of the
patches in the Cartesian surface computed above is improved
while maintaining realizability (Figure 5 (d)).



(a) (b) (c) (d)

Figure 5: Algorithm flow: input 3D model with user-specified backdrop and ground planes (a), the visible PLS consisting of Cartesian grid
faces (b), a modified, popup-realizable PLS and its layout (c), and the final PLS and its layout after geometric refinement (d).

5.1 Computing the visible surface

The input of the algorithm is a 3D model represented as a trian-
gular mesh (could be either open or closed), and the user-specified
backdrop and ground planes. As we focus on 90◦ fold angle, we
ask these two planes to be orthogonal to each other. Without loss
of generality, we assume that the two planes are squares that lie re-
spectively on the XZ and XY planes with the central fold lying on
the positive X axes, as shown in Figure 5 (a).

To construct a parallel PLS at 90◦ fold angle, we utilize the axes-
aligned faces of a Cartesian grid. We construct a N × N × N
uniform grid with the backdrop and ground planes as its two sides,
and identify all cubes in the grid that are intersected by the input
mesh. We call model faces as the set of all grid faces orthogonal to
the Y or Z axes that are contained in the identified cubes or lying
on the backdrop and ground planes. We will select a subset of these
faces to form a popup-foldable PLS.

To fulfill the conditions in Proposition 1, the key requirement is
that the projection of the parallel PLS Sv,w along a particular di-
rection forms a non-intersecting set. In our case, v = (0, 0, 1)
and w = (0, 1, 0), and that projection direction is (0, 1, 1). Since
the pop-up is typically viewed from the outside, we simply take all
model faces that are “visible” in the (0,−1,−1) direction when
viewed from outside the grid. These faces are called visible faces,
as shown in Figure 5 (b). Note that this view direction, combined
with the uniform arrangement of the grid, ensures that the projec-
tion of visible faces are disjoint. As the outer parts of backdrop
and ground planes are also visible faces, their projection will form
a rectangular domain. Hence the set of visible faces is a popup-
foldable PLS, which we refer to as the visible PLS.

5.2 Computing a popup-realizable surface

The visible PLS is a popup-foldable PLS that “wraps” around the
outside of the model. To further ensure realizability, we will con-
struct a PLS that maintains the shape and foldability of the visible
PLS while meeting the additional conditions in Proposition 2.

To do so, we first present means to generate a family of popup-
foldable PLS and to measure their error with respect to the visible
PLS. Let us call each grid face b on the ground and backdrop plane
a base face, and all grid faces that project onto b along (0,−1,−1)
as its candidate faces, denoted as H(b). Visually, H(b) form a
“staircase” with alternating normals in Y or Z direction, as shown
in Figure 6. By the same argument above, any PLS consisting of
exactly one candidate face per base face is a popup-foldable PLS.
We can measure the discrepancy between any such popup-foldable

Figure 6: A lateral sketch illustrating the notations used in Section
5.2: S0 (blue) is the visible PLS, S (red) is our desired popup-
realizable PLS, b is a base face, andH(b) (stairs between the dotted
lines) are the candidate faces of b, which include S0(b) and S(b)
lying respectively on S0 and S.

PLS S and the visible PLS S0 along the view direction as:

E(S, S0) =
∑
b∈B

‖S(b), S0(b)‖ (3)

whereB is the set of all base faces, S(b), S0(b) ∈ H(b) are respec-
tively the face on S and S0 that projects onto b (see Figure 6), and
‖·, ·‖ is the Euclidean distance between the centers of two faces.

We adopt a greedy, region-growing approach to construct a popup-
foldable PLS S that minimizes the above error term while satisfying
the patch-ordering condition in Proposition 2. We first include in S
the ground and backdrop patches, which consist of visible faces
respectively on the ground and backdrop plane that are connected
to the outmost ring of faces on each respective plane (see Figure
7 (b)). We then work ourselves inwards, each time either adding
faces to existing patches (as in Figure 7 (e)) or adding new patches
of faces that are connected to existing patches (as in Figure 7 (c,d))
in one of the ways allowed by the conditions in Proposition 2.

Specifically, we maintain a priority queue that contains two types
of elements associated with costs. Let us call a base face b visited
if b has a candidate face in S, and unvisited otherwise. A queue
element can be an unvisited base face adjacent to a visited base
face, or a path of unvisited base faces with the same X coordinate
that connect between two visited base faces. For the first type, the
cost of the base face is the lowest error of any of its candidate face,
that is parallel and adjacent to an existing face in S (e.g., the two
violet faces in Figure 7 (e) are parallel and adjacent to existing faces
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Figure 7: Computing a popup-realizable PLS by region growing:
the visible PLS (a), initial ground and backdrop patches (b), three
steps in the growing process (c,d,e) where either new patches are
added (c,d) or new faces are added to existing patches (e), and the
final popup-realizable PLS (f).

already on S). For the second type, let the path of base faces be
{b1, . . . , bm} where only b1, bm are visited. We consider all paths,
each consisting of one candidate face S(bi) per base face bi for
i ∈ [2,m − 1], that connect to end faces S(b1), S(bm) following
one of the patterns in Figure 8 top (e.g., the violet paths in Figure
7(c,d)). The cost of the base faces path is the lowest error among all
candidate paths, if it exists, or infinity otherwise. At each iteration,
the element(s) with lowest cost is(are) removed from the queue,
the candidate face(s) realizing that cost is(are) added to S, and the
queue is updated accordingly. The algorithm terminates when the
queue is empty.

Note that termination of this algorithm is guaranteed, since the first
type of element (that is, adding a new face to an existing patch) will
always be associated with a finite cost. Also, the path patterns in
Figure 8 top guarantee that any new patch added to S (consisting of
new faces that are not co-planar with neighboring faces already in
S) satisfies the conditions in Proposition 2, and hence S is popup-
realizable after termination. An example result of the algorithm is
shown in Figure 5 (c).

5.3 Geometric refinement

The result of the first two steps is a surface that can be popped-up
from a planar layout in a rigid and stable manner. However, the use
of grid faces result in jagged patch boundaries that is both unpleas-
ing for viewing and difficult for cutting. In the last step, we perform
a simple smoothing procedure that alleviates such jaggedness while
maintaining the realizability of the surface.

Consider the planar layout of our realizable PLS S as its projection
in the direction (0, 1, 1) onto the XY plane. The cut and fold lines
on this layout lie on grid lines of an extended Cartesian grid (an ex-
ample is shown in Figure 9 left). In particular, the cut lines (drawn
black in the picture) consist of those grid edges (cut edges) on the
XY plane shared by two grid faces that are projected from two non-
adjacent faces in S. A vertex p on the cut line is projected from
boundary points of two or more patches. We call these boundary
points the images of p.

To achieve smoother patch boundaries, we will smooth out the cut
lines on the planar layout while adjusting the patch boundaries to

(a) (b)

(c) (d)

Figure 8: Possible paths connecting two orthogonal (a) or parallel
(b) end faces that are considered by our algorithm when finding the
lowest error of a path-type queue element (see Figure 7 (c,d) for
example paths of these two types). No path is allowed if the top
end face (one with higher center Z coordinate) is to the front (with
higher center Y coordinate) of the bottom end face, as in (c,d).

make sure they project onto the modified cut lines. Specifically, for
every vertex p on the cut line, we will give it a new location p′ on the
XY plane, while moving the images of p along the planes of their
respective patches so as to project onto p′. This is easily done as
follows: let (∆x,∆y, 0) = p′ − p, we will move a boundary point
q projected to p either by the same vector (∆x,∆y, 0), if q is on a
patch parallel to the XY plane, or by (∆x, 0,∆y) otherwise. Note
that if q is contained in both vertical and horizontal patches (e.g.,
projecting to a point on the fold line in the planar layout), q may
only move in the X direction. To ensure feasible movement, and
furthermore avoid self-intersections during the process, we restrict
the movement of each vertex p on the cut line within a “safe zone”.
As shown in Figure 9 right, the shape of a safe zone is a square if the
vertex is not contained in a fold line, and a line segment otherwise.
Note that any location of the vertex in the safe zone would yield
new patch boundary locations that maintain the realizability of the
surface.

Figure 9: A portion of the planar layout of a popup-realizable PLS
(left), and the safe zones around vertices on the cut lines for cut line
smoothing (right).

To smooth the cut lines on the planar layout, we adopt the standard
iterative Laplacian-based scheme that moves each vertex towards
the center of its neighbors while restricting the movement to its safe
zone. To avoid fluctuation, we move vertices one at a time instead
of simultaneously at each iteration. Figure 5 (d) shows an example
of result after smoothing.



(a) Cerrito Church, Uruguay (b) Alte Oper Frankfurt

(c) Jade Belt Bridge, China (d) Lincoln Memorial

Figure 10: Paper architectures and their planar layouts computed from 3D models (in thumbnails) obtained from Google 3D Warehouse.

6 Results

We showcase a gallery of our results in Figure 10, and some other
results in Figure 1,5,12,13. All models are obtained from Google
3D Warehouse, and a grid resolution N = 128 is used during vox-
elization. Observe that the resulting paper architectures mimic well
the input geometry. Many detailed structures are captured, such as
the pillars of the Hanging Garden (see Figure 1) and the spire on
New York Life Building (see Figure 13). Since our algorithm is
restricted to paper architectures containing parallel patches in two
orientations, the vertical and horizontal faces of the model are best
preserved while sloped and curved surfaces are approximated by
staircase-looking folds (such as the Eiffel Tower in Figure 5, the
Jade Belt Bridge and the Cerrito Church in Figure 10). Note that
such folds also appear in manual works of paper architecture (such
as the curved dome in Himeji Castle in Figure 2).

Figure 11: Actual paper architectures made according to the planar
layouts computed by our algorithm.

Our algorithm guarantees the realizability of the results, that is,
each paper architecture can be rigidly and stably popped-up from

their planar layouts. To demonstrate realizability, we show in Fig-
ure 11 two actual paper craft made according to the planar layouts
shown in Figure 1 and Figure 5. Their popping-up process is cap-
tured in the accompanying video.

Figure 12: Paper architectures of Mayan Pyramid with two differ-
ent backdrop and ground settings.

Figure 13: Paper architectures of NewYork Life Building before
(left) and after (right) editing and hollowing. Note that the two
sides are edited to be oblique while windows and peace doves are
hollowed out.

Our method is also very efficient. All examples shown in the paper
are computed within one second of time on an Intel Core 2 Duo
3GHz computer with 4GB RAM. As the method offers immediate



feedback to the users, it makes it possible to perform interactive
editing on the results. Although making a fully-featured interactive
design tool is beyond the scope of this paper, a number of editing
operations can be easily performed within our current framework.
First, the user can modify the location of the backdrop and ground
planes. Example results with different choices of the planes are
shown in Figure 12. Second, the user may adjust the shape of the
cut lines on the planar layout, much in the same way as our smooth-
ing step, to achieve more stylistic patch boundaries. Third, the user
can select regions on the planar layout to “cut out”, achieving hol-
low effects. These two edits are demonstrated in Figure 13, where
stylistic windows and birds are created by cutting out and slopes are
created on the building sides by adjusting the cut lines.

7 Conclusion and discussion

In this paper, we presented geometric formulations of paper archi-
tecture, particular focusing on the rigidity and stability of the pop-
up process which is critical for creating such crafts in reality. Based
on the formulations, we are able to give sufficient conditions for a
class of 3D surfaces to realizable via pop-up, and further develop
a novel algorithm that automatically converts a 3D model to a pa-
per architecture with little user input. The algorithm is robust in
producing realizable paper architecture and is computationally effi-
cient. A gallery of examples are presented using architectural mod-
els, and physical crafts are made according to the algorithm results.

Limitations While the current algorithm design focuses on realiz-
ability, it may not achieve a completely satisfactory “appearance”,
especially when compared with crafts manually designed by skilled
artists (see Figure 2). Note that extreme abstraction is often used in
these crafts, such as the Statue of Liberty in Figure 2, which is visu-
ally appealing. Achieving results that appeal to human perception
is a fundamentally challenging task, which has been continuously
addressed in other areas in graphics such as shape segmentation and
non-photorealistic rendering.

(a) A floating cube (b) A half-torus

Figure 14: Results of our algorithm (bottom) for two extreme
cases.

Our algorithm performs best when the input model contains mostly
horizontal and vertical planes, and is well-supported by the ground
and backdrop pieces (which is true for typical architectural mod-
els). When these conditions are not met, the algorithm may signif-
icantly alter the input shape to achieve realizability. In Figure 14,
we demonstrate two extreme cases, a floating cube and a half-torus.

(a) The bunny (b) The teapot

Figure 15: Results of our algorithm for non-architectural models.

In the first case, the algorithm “pushes” the cube towards the cor-
ner to make it connected to the backdrop and ground pieces. In the
second case, the caved-in space in the middle of the torus is ”filled”
so that it can be stably popped-up. Figure 15 further shows two
organic models, and note that the results, although resembling the
inputs, contain large distortions and miss some important features
(e.g., the head of the bunny). A more faithful reproduction of these
general shapes would possibly require more than a single piece of
paper (as in pop-up books).

Future work Our work opens up a number of interesting venues
of future research that would extend the current work in both the-
oretical and algorithmic directions. On the theoretical end, there
is ample room to improve and generalize the stability and foldabil-
ity criteria. For example, the current stability conditions (Proposi-
tion 2) are only sufficient, hence possibly precluding some stable
configurations. A condition that is both sufficient and necessary
would be ideal, which can be also used to check if a given PLS
(e.g., constructed by other computer-aided tools) is stable. Further-
more, generalizing the foldability and stability conditions to non-
parallel PLS could allow us to better represent tilted planes in the
input model. Taking one step further, one could consider a more
physically realistic problem where physical properties of the paper,
such as its thickness, mass, and flexibility, are taken into account.
To this end, it would be interesting to investigate how our definition
of planar PLS can be relaxed to allow slit spaces between patches,
and how foldability and stability should be re-formulated for non-
rigid patches with weights.

On the algorithmic end, we would like to first explore more opti-
mal ways for finding realizable PLS than the current greedy patch-
growing strategy (Section 5.2). Secondly, the geometry refine-
ment step (Section 5.3) can be improved by considering the orig-
inal shape of the model for better preservation of model features.
Furthermore, as mentioned above, it would be interesting to explore
how to incorporate abstraction rules used by artists in our algorithm
to produce more artistic results. Last but not least, while the current
work considers little user input, our next step is to design an in-
tegrated interactive system with more flexible user controls while
maintaining the guarantees of realizability. Such controls could
take the form of adjusting level-of-detail in different parts of the
model, editing patches on the paper architecture, and interactive
creation of new folds (e.g., single-slits and v-folds).
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