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Abstract We present a method for learning a meta-
filter from an example pair comprising an original im-

age A and its filtered version A′ using an unknown im-
age filter. A meta-filter is a parametric model, consist-
ing of a spatially varying linear combination of simple

basis filters. We introduce a technique for learning the
parameters of the meta-filter f such that it approxi-
mates the effects of the unknown filter, i.e., f(A) ap-
proximates A′. The meta-filter can be transferred to

novel input images, and its parametric representation
enables intuitive tuning of its parameters to achieve
controlled variations. We show that our technique suc-

cessfully learns and models meta-filters that approxi-
mate a large variety of common image filters with high
accuracy both visually and quantitatively.

Keywords image filters, filter space, sparsity, learn-
ing, transfer

1 Introduction

Image filtering is one of the most fundamental opera-
tions in computer graphics. It is the key building block
in many graphics algorithms as well as an important
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tool in many image editing and image enhancement
applications. In this paper we examine the problem of

learning an image filter from a pair of example images,
transferring it to new inputs, and intuitively tuning its
parameters. Learning filters from examples is an im-

portant task, because the exact functioning principles
behind many image filters in commercial software are
undisclosed. Even if the algorithmic details are known,

source code is often not available and the filter might be
difficult to re-implement from scratch. Moreover, apply-
ing image filters often involves manual tuning of (spa-
tially varying) parameters, which might require expert

knowledge and can be time consuming.

The task of learning an image filter from an exam-
ple pair can be challenging since in its widest sense

image filtering is a very general concept. Filters are
implemented using a variety of techniques, including
iterative, recursive, and data-driven approaches. Often
several filters are applied in sequence to achieve a de-
sired compound effect. Even some manual operations,
such as retouching skin blemishes in portraits can be
considered as a kind of image filter.

To alleviate this task we introduce the parametric
meta-filter. The meta-filter is a linear combination of
elementary basis filters from small filter bank. Given

an example pair comprising an original image A and its
filtered version A′ (Figure 1a), our method learns the
spatially varying combination weights of the meta-filter
f , so that f(A) ≈ A′ (Figure 1b). The learnt meta-filter
can then be applied to novel input images, B → f(B)
(Figure 1c). Since our basis filters are parametric we can
intuitively tune their parameters to achieve controlled
variations (Figure 1d).

The Image Analogies algorithm [1] attempts a sim-

ilar problem using a non-parametric texture synthesis
algorithm. As such, it works well for “texture-like” ef-
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Fig. 1 Given an example pair comprising an input image and a filtered version (a), our method learns the parameters of a
meta-filter that approximates the latent filter (b). The meta-filter can be transferred to novel input images (c). Its parametric
representation enables intuitive parameter tuning to achieve controlled filtering variations (d).

fects (e.g., painterly filters), however, we show that it

does not perform as successfully on many other typical
image filter categories. In addition, the non-parametric
nature of the algorithm makes it difficult to tune fil-

ter parameters to achieve variations. Our parametric
method, in contrast, is applicable to a wider range of
image filters, including artistic filters (e.g., from the
Photoshop Filter Gallery), tone adjustment, color trans-

fer, curves, and some manual image enhancement tasks
such as skin smoothing.

We tested our method on more than 50 examples
from before mentioned categories. We show that our
learnt meta-filters approximate the latent filter on the
given exemplar pairs near perfectly, and also transfer
well to novel input images. We evaluate our results nu-
merically using common image similarity metrics, as

well as perceptually through a user study. In addition
to the results shown in the paper, we include further re-
sults and more extensive comparisons and evaluations
in the supplementary material.

2 Related Work

Filter Estimation. An ongoing area of research in the
field of image restoration is filter estimation, where an
original image is sought to be recovered from a given
“filtered” image. The most important instance of this
problem is removing blur from images. Here, the filters
are typically modelled as convolutions with blur kernels,

and their inversion is referred to as deconvolution [11].
When the filter is unknown, the result is a blind decon-

volution problem. These techniques use some priors and

regularization to constrain the solution and restrict the
search space [5,9,10,15–19,30]. Most filter estimation
methods assume that a homogenous filter is applied to
the whole image (or a sufficiently large region). The re-

cent work of Joshi et al. [17] estimates the point-spread
functions in local windows and, thus, allows recover-
ing spatially varying blur kernels. Li et al [14] apply a

nonlinear filter bank to the neighborhood of each pixel.
Outputs of these spatially-varying filters are merged us-
ing global optimization, which benefit a set of applica-

tions. The problem we address in this paper is different
from image restoration in two important ways: First,
we have no knowledge of the nature of the unknown
filter; we are dealing with general and spatially varying

filters. Second, we do have the original image available
as part of the input.

Learning from Pairs. Our work is strongly related to
various transfer techniques. These techniques often work
by taking one or more example pairs, where each con-
sists of an image A and a modified version A′. Then
for a given input image B, the aim is to produce B′

that somehow mimics the transform from A to A′. Im-
age analogies [1,26] is a well-known technique that uses
non-parametric texture synthesis. By using appropriate
example pairs, a large variety of effects can be achieved,
from simple smoothing to sophisticated artistic effect-
s. Our approach explicitly learns and models the filter
from example pairs, and avoids various artifacts associ-

ated with a direct patch work in image space. As men-



Parametric Meta-filter Modeling from a Single Example Pair 3

tioned earlier, having a parametric model offers control
and efficiency.

There are more techniques that learn from pairs or
examples. For example, the work by Kang et al. [20]
and Bychkovsky et al. [23] consider learning global tone
mapping from a training set using machine learning
techniques, the work of Wang et al. [2] considers example-
based learning of color and tone mapping, Ling et al. [27]
introduce an adaptive tone-preserved method for image
detail enhancement, and Huang et al. [8,28] consider
example-based contrast enhancement by gradient map-
ping. By analyzing the relation between the color theme
and affective word, Wang et al. [24,25] introduce an ex-
ample based affective adjustment method with a single
word. Unlike these techniques, our method is generic
and learns a more general filter structure.

Our work is also related to the work of Berthouzoz
et al. [7], who introduce a framework for transferring
photo manipulation macros to new images. Multiple

training demonstrations are used to learn the relation-
ship between the image features, and macro parame-
ters of selections, brush strokes and image processing
operations, using image labeling and machine learning.

While having similar goals to our work, their method
requires Photoshop macros to be recorded. Our method
fully automatically learns the filter from a single pair

of input images.

Linear Combination of Filters. In this work we model a

compound filter by a linear combination of basis filters.
Sahba and Tizhoosh [6] also use a linear combination of
four filters to produce an improved denoising filter for a

given input image using a reinforced learning algorith-
m. Their algorithm is only suitable for a specific type of
filter, which cannot be spatially varying. Given an addi-
tional guide image, which can be identical to the input
image, He et al. [12] construct a linear combination of
local mappings within windows of the guided image.
Simple linear mappings are derived within each over-
lapping window such that when applied to the guided
image, the results approximate the input image. In our
work, we consider locally linear combinations of gen-
eral filters that approximate a large variety of many
different composite filters.

3 Overview

We define the parametric meta-filter as a linear combi-
nation of elementary basis filters fk:

f(p) =
∑
k

wk(p) fk(p), (1)

where p is a pixel coordinate. To facilitate the opera-
tion we precompute the basis filters, i.e., fk is an image
that contains the result of applying the basis filter to
the input image A. The spatially varying weights wk(p)
comprise the parameters of the meta-filter. Note that
we do not restrict the weights at a pixel to be a partition
of unity, i.e.,

∑
wk is not required to be 1. This flexi-

bility is essential since the original and filtered images
may differ in contrast, brightness, or tone.

Our basis filter bank contains instances from a few
families of filters, in particular, Gaussian, Box, Motion
Blur (i.e., directional Gaussians), Sobel edge, Color Off-
set, and Identity filters. The Motion Blur and Sobel
edge filters include horizontal and vertical variants. S-
ince most basis filters are parameterized we include for
each family a number of variations in our filter bank:

Filter Para. Count Instances
Gaussian Stdev. σ 20 σ = {0.5, 1, ..., 10}
Box Size s 10 s = {5, 10, ..., 50}

Motion Blur
Size s,

Angle α
20

s = {5, 10, ..., 50}
α = {00, 900}

Sobel n/a 2 horizontal, vertical
Color Offset n/a 3 red, green, blue
Identity n/a 1∑

56

A linear combination of these basis filters enables
approximating more complex filters; for example, a Lapla-

cian filter can be approximated using a difference of
Gaussians. Even many non-linear filters can be well ap-
proximated by the meta-filter due to its spatially vary-
ing nature. Figures 1a–b show a visualization of the

optimized meta-filter weights for a highly non-linear ex-
ample filter pair.

In Section 4 we describe how we learn meta-filters
from example pairs using constrained optimization in
the filter space. Optimizing the meta-filter over all ba-
sis filters, however, is prohibitively expensive. There-
fore, we first select a smaller subset that is able to rep-
resent the latent filter A → A′ well (Section 4.1), and
carry out the optimization over this smaller set using
an energy minimization formulation (Section 4.2) that
can be efficiently optimized (Section 4.3). In Section 5

we discuss transferring the learnt filters to novel input
images as well as editing the meta-filter parameters. In
Section 6 we present our results, discuss optimization
objective alternatives, and present extensive numerical
and perceptual evaluations of our method.
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Fig. 2 Our learnt meta-filters approximate a wide variety of non-linear filters with high accuracy. The top left of the split
figures shows the ground truth result A′, while the bottom right shows our meta-filter approximation f(A).

4 Learning Meta-filter Parameters

Given an image A and its filtered version A′ produced
by some latent filter or potentially a sequence of filter-
s, our goal is to compute the parameters (i.e., weight
maps) for the meta-filter f such that f(A) ≈ A′.

4.1 Filter Selection

Our first task is to select a subset S = {fi} from the
full filter bank that is still sufficient to represent the
example A→ A′ well. This selection process makes the

following optimization computationally tractable while
still achieving high accuracy.

The following filters are always included in the sub-

set, as our experiments showed they are almost always
needed:

1. The identity filter, fID(p) = A(p), which passes
through the input color unchanged. It is useful when

certain parts of the image are either unchanged or
only changed by a linear mapping (e.g., contrast ad-
justments).

2. Three color offset filters, which provide a constant
color offset for a specific channel:

fR(p)=(c, 0, 0)>, fG(p)=(0, c, 0)>, fB(p)=(0, 0, c)>,

where c = 0.01 is a small empirically determined
constant. The amount of actual offset is controlled
by the weight map. The offset filters are particu-
larly useful when the intensity or color of a region
is shifted by a certain amount (e.g., brightness or
tonal adjustments).

The initial filter subset S(0) = {fID, fR, fG, fB} is
now augmented by additional candidate filters fc /∈ S(0)

that are found to be effective.
Each candidate filter is evaluated independently by

finding the optimal weight map for the reduced meta-
filter f̂c that contains only the initial filter subset and
the candidate itself,

f̂c = wcfc +
∑
i∈S(0)

wifi. (2)

such that f̂c(A) ≈ A′. The details of this optimization
are provided in the next subsections. The contribution
of fc is measured as the approximation error when it
is used in isolation, i.e.,

∑
p (wcfc(p)−A′(p))2. We in-

clude the two filters from each family that exhibit the
lowest approximation errors into S.

Overall, S contains 12 filters: two from each of fam-
ily of Gaussian, Box, Motion Blur, and Sobel, as well as
the three color offset filters, and the identity filter. Our

results demonstrate that this empirically determined fil-
ter selection heuristic works well in practice.

4.2 Energy Formulation

We formulate the task of determining the optimal weight
maps for a given meta filter and filter example pair as

an energy minimization problem. Our objective func-
tion comprises three terms.

The data fitting term, Edata, aims at approximating
the filtering effect:

Edata =
∑
p

((∑
i∈S

wi(p)fi(p)
)
−A′(p)

)2
. (3)

The smoothing term, Esmooth, aims at reducing s-
patial variation in the weight maps:

Esmooth =
∑
p

∑
i∈S

∥∥∇wi(p)∥∥11. (4)

The term forces spatially close pixels to have similar
weights and concentrates necessary changes into few
pixels, yielding less fragmented and more homogeneous
weight maps. Note, that we minimize the term in the
L1 norm,∥∥∇wi(x, y)

∥∥1
1

=
∣∣wi(x+1, y)− wi(x, y)

∣∣+∣∣wi(x, y+1)− wi(x, y)
∣∣. (5)

In Section 6.4 we compare our L1 minimization against
L2 minimization and show that ours leads to signifi-
cantly improved results. Our formulation is related to
total variation [13], however, here we seek sparsity of
filter weights rather than of pixel intensities.
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The third term, Esparse, is essential to ensure the
uniqueness of the solution:

Esparse =
∑
p

∑
i∈S

∣∣wi(p)∣∣. (6)

Without this term the system would become singular
and numerically unstable. It also improves the concen-
tration of weights at each pixel to fewer basis filters.

The overall energy is given as

E = λEdata + Esmooth + αEsparse. (7)

The balancing coefficients are empirically determined:
λ = 50 prefers accuracy over smoothness, and α = 10−4

takes a small value just to ensure the stability of the
solution.

Figure 2 demonstrates the ability of our meta-filters
to approximate several non-linear filters from the Pho-
toshop Filter Gallery. We measure the approximation
quality using the Structure Similarity Image Metric (S-
SIM) [29], which is widely used and known to be more
consistent with perception than root mean square (RM-
S) errors. In the supplementary material we provide

extensive results to show that we can successfully ap-
proximate a wide range of filters.

4.3 Implementation

Let n denote the number of basis filters and m the
number of pixels in A/A′. In matrix notation, we can

rewrite Equation 7 as

E = λ ‖FW −V‖22︸ ︷︷ ︸
Edata

+ ‖GW‖11︸ ︷︷ ︸
Esmooth

+α ‖W‖11︸ ︷︷ ︸
Esparse

= λ‖FW −V‖22 + ‖ (G αI)
>

W‖11.
(8)

where Fm×mn is the matrix of precomputed basis filter
results fi(p), Wmn×1 is the vector of unknown basis
weights wi(p), Vmn×1 is the vector of pixel values from
A′, G is the matrix of the gradient operator in Equa-
tion 6, and Imn×mn is the identity matrix.

This is an L1 regularized convex problem. The glob-
al minimum can be efficiently obtained using the Split
Bregman method [21]. Let Φ = (G αI)>. Using two
additional vectors b and d and the unknown vector W
(all initialized as zero vectors of length mn), we apply
the following three steps iteratively until convergence:

S1: Wk+1= min
W

λ
2 ‖FW −V‖22 + γ

2 ‖d
k − ΦW − bk‖22

S2: dk+1 = min
d
‖d‖11 + γ

2 ‖d− ΦWk+1 − bk‖22.
S3: bk+1 = bk + ΦWk+1 − dk+1.

Here, k is the iteration number, and γ = 10 is a relax-
ation constant which affects the convergence rate but

not the final result. Step 1 involves a quadratic func-
tion of W. Denote N(W) = λ

2 ‖FW −V′‖22 + γ
2 ‖d

k −
ΦW−bk‖22. The minimizer is computed using ∂N(W)

∂W =
λF>(FW−V′)+γΦ>(ΦW+bk−dk) = 0. This is equiv-
alent to solving the linear system (λF>F +γΦ>Φ)W =
λF>V′ − γΦ>(bk − dk). The matrix (λF>F + γΦ>Φ)
is symmetric positive definite and does not change over
the course of the optimization. We use sparse Cholesky
factorization [22] to efficiently decompose this matrix
into LDL> where L is a lower triangular matrix and D
is a diagonal matrix. This only needs to be factorized
once; during iteration the linear systems have triangu-
lar matrices and can be solved efficiently using substi-
tution. Step 2 can be solved in linear time using the
shrink operator (see [21]), and Step 3 is direct.

5 Applications

5.1 Filter Transfer

Once a meta-filter is learnt from an example pair A→
A′, it can be applied to novel input images B to obtain

a filtered result f(B) that approximates the (unknown)
ground truth B′. To transfer the filter we establish pixel
correspondence between A and B, and copy the weights
of the elementary filters using the correspondence warp

map.

Computing reliable correspondence between gener-
al images is a challenging problem. However, since we
are only transferring basis filter weights between the

images, obtaining exact correspondence is less critical.
We use the state-of-the-art SIFT flow algorithm [4] to
find an initial correspondence map that globally aligns
the two images while well preserving spatial coherence.
We found that SIFT flow sometimes does not work reli-
ably around strong image edges. For that reason we re-
fine (replace) the initial correspondence around strong
edges with one that is computed using the PatchMatch
algorithm [3] on Canny edge images extracted from A
and B.

Figure 3 shows examples from before mentioned cat-
egories. The first row shows curve adjustment (see the
inset figure in the filtered image). The second row shows
an example of tone transfer. A similar result could be
achieved by Wang et al.’s method [2]. However, while
their method learns the tone adjustment filter from a
dataset containing several examples, our method re-
quires only a single example pair, as shown here. Rows
three to six show various artistic stylization filters. These
kinds of filter are more challenging to transfer. Final-
ly, in the last row we learn and transfer a manual face

polishing job (includes removing blemishes and wrin-
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kles, and improving skin tone). Many more results are
provided in the supplementary material.

The correspondence for all of our results is comput-
ed fully automatically, with the only exception being
the face polishing results (last row in Figure 3). Here,
we found it necessary to interactively select the skin re-
gions. These are set as hard constraints and the remain-
ing correspondence is computed as described above.

5.2 Filter Editing

The parameters of the meta-filter comprise the per-
pixel weights of the basis filters wi(p), and their global
parameters (i.e., the size of the Box, Gaussian, Mo-
tion Blur filters, as well as the Motion Blur angle). By
manipulating these parameters, we can edit the learnt
meta-filter in a semantic manner and obtain interesting
controlled variations. For instance, we can increase or
reduce all or some of the weights to yield a strengthened
or weakened filter.

In Figure 4 we show some filter variations that were
obtained through simple manipulations of the meta-
filter parameters. The first row shows a manipulation of

the Motion Blur basis filters: the blur size s is reduced
to 0.5s to obtain a reduced “Motion Blur” effect (third
column) and enlarged to 4.5s to obtain a strength-

ened motion blur (the forth column), while keeping the
per-pixel weights unchanged. The second row shows a
manipulation of the Sobel basis filters: the filter per-
pixel weights wi(p) are uniformly reduced to 0.5× and

increased by 8× to obtain reduced and strengthened
“Poster Edge” effects. The third row shows results of
a manipulation for the Box basis filters: the blur size

s is reduced/increased to 0.5s/4s to obtain a reduced/
strengthened “Color Cut” effect. Many other filter edit-
ing results are provided in the supplementary material.

In Figure 1d we compare a simple meta-filter manip-
ulation of the Box blur size against the result achieved
by näıve filter strengthening.

6 Results and Evaluation

We tested our algorithm with a wide range of common
image filters, including artistic filters, tone adjustmen-
t, color transfer, curves, and manual image edits. For
effects generated by automatic algorithms (such as Pho-
toshop filters), the same algorithms are used to obtain
the ground truth images. More complicated effects in-
volve manually applying various filters to selected re-
gions. For example, the “Gouache” effect in Figure 3
was created by an artist using a combination of smart
blur, overlay, paint daubs, hue/saturation adjustment,

curve adjustment etc. to selected regions using manual
layering. The ground truth results of such effects were
also created by artists. It typically takes 15-20 minutes
for an artist to create such effects for a given image. A-
part from face polishing, which required minimal user
interaction, all results were achieved fully automatical-
ly using the same algorithm settings (as described in
the paper).

6.1 Comparison to Image Analogies

In Figure 5 we compare our method against Image
Analogies [1]. In contrast to their method, ours does
not synthesize a new image by stitching small patch-
es, but rather transfers a set of basis filters. For this
reason our method is less sensitive to exact correspon-
dence and avoids several artifacts present in the Image
Analogies results.

In the supplementary material we include a more
extensive ground truth comparison with their method
on a larger number of image filters and target images.

Our numerical analysis shows that our method increas-
es the average SSIM score from 0.34 (Image Analogies)
to 0.61 (Our results).

6.2 User Study

We validated our algorithm further by conducting a for-
mal user study with 20 participants (25% female, ages
ranging from 18 to 29). For this study we generated

72 filter transfer examples with our method and Im-
age Analogies [1] using the software provided on their
project page. The images we used for our study are

included in the supplementary material.

In each test we showed the participant the input im-
ages A,A′, B and two choices for B′, one produced by
our algorithm, and the other either produced by Image
Analogies, or the actual ground truth result. Partici-
pants were asked which result was closer to the trans-
fer result they would imagine (Two-Alternative Forced
Choices, or 2AFC).

The results of our study are summarized in Figure 6.
When comparing against Image Analogies participants
chose our method in 73.7% of all cases. When com-
paring against ground truth participants still chose our
method in 45.8% of all cases.

6.3 Filter Bank

We validate that our filter bank contains enough vari-
ation in filter families and instances to support our
target applications, and is minimal in a sense that it
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Fig. 3 Transferring learnt meta-filters to novel input images. A more extensive set of results can be found in the supplementary
material.
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Input Image Filtered Input Filter Reduced Filter Strengthened

Fig. 4 Filter editing results. Given the original (first column) and filtered (second column) input images, the effect can be
easily manipulated to obtain reduced (third column) and strengthened (fourth column) results.
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SSIM

SSIM
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SSIM = 0.59

SSIM = 0.56
Image Analogies

SSIM = 0.79

SSIM = 0.85

SSIM = 0.78
Our Result

Fig. 5 Comparing our results with Image Analogies [1].

does not contain more filters than necessary. Our re-
sults throughout the paper and supplementary material
demonstrate that the filter bank is able to represent a
wide range of common image filters well. To show that it
is minimal we perform a series of “leave-one-out” tests,
in which we show that each subset of the filter bank
where one whole family is removed yields poor results
at least for some input pairs.

We evaluate the approximative power of the meta-
filter as well as its ability to transfer filters to novel in-

put images. For this task we prepared imagesA,A′, B,B′

using filters from the Photoshop Filter Gallery, and
then compare the approximation results ffull(A)/fsubset(A)
and transfer results ffull(B)/fsubset(B) against their re-
spective ground truths A′ and B′. Here, ffull is the
meta-filter learnt using the full filter bank, and fsubset
is a meta-filter learnt using a filter bank in which one of
the filter families is removed. We compare the images
both numerically using SSIM score, as well as through

visual inspection.
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Our experiments showed that the approximation qual-
ity does not suffer much from removing single filter
families. However, we found that it can have signifi-
cant impact on the ability to transfer filters to nov-
el input images, which is our main application. In the
supplementary material we show results from our ex-
periments that demonstrate how leaving each of the
basic filter families out significantly affects the quali-
ty of transferred meta-filters on at least one important
class of image filters. These experiments support our
claim that all families in our filter bank are necessary
for our target application.

6.4 L1 minimization

Our meta-filter learning algorithm uses L1 minimiza-
tion objectives. In order to validate this design choice
we tested two alternatives: (1) leaving out the sparsi-

ty term Esparse, and (2) replacing the smoothness term
Esmooth with an L2 objective.

Removed Sparsity Term Esparse: As mentioned in Sec-
tion 4.2, the sparsity term Esparse is necessary to ensure

the numerical stability of the solution. When removing
this term from the optimization objective, the S1 term
of the Split-Bregman method reduces to

Wk+1 = min
W

λ

2
‖FW −V′‖22 +

γ

2
‖dk −GW − bk‖22,

which amounts to solving the least square problem

Wk+1 = min
W
‖(λ

2
F G)TW − (V′ dk − bk)>‖22.

The problem lies with the least square matrix A =
(λ2F G)>, which is highly singular. Solving for it is
numerically unstable and very time consuming. Adding
the sparsity term yields A = (λ2F G αI)T , which is

non-singular and can be robustly solved.

The Smoothness Term Esmooth: An interesting design
alternative is to replace the smoothness term with a L2
version:

EL2smooth =
∑
p

∑
q∈N(p)

∑
i∈S

(
wi(p)− wi(q)

)2
(9)

This leads to a simpler optimization that can be solved
much more quickly than solving the L1 energy (about
3× faster in our experiments). However, the approxima-
tion and transfer quality suffers dramatically for some
filters, especially around edges in the images. We show
some exemplary comparisons between results achieved
with L1 and L2 optimization in the supplementary ma-
terial.

6.5 Performance

We tested our MATLAB implementation on a dual In-
tel Core2Quad CPU at 2.4GHz. Our implementation
is not optimized. Given an image of size 500× 375 our
filter learning algorithm implemented requires 1–3 min-
utes for filter selection and 1–2 minutes for meta-filter
learning. Once the filter is learned, transferring it to
novel images takes only about 2 seconds.

6.6 Limitations

Our current filter transfer algorithm performs less suc-
cessfully for filters that create texture-like structures, as
shown in Figure 7. This is partially due to our method
for establishing correspondence which does not transfer
structures in the filtering effect well. Alternative meth-
ods may be adopted to alleviate this.

Filters that depend not on image content, but only
on the spatial position within the image (e.g., tilt-shift
effect) can be well approximated by our meta-filter, but
they do not transfer well to novel image, because the

correspondence algorithm takes only the image content
into account but not the position within the image.

Our current algorithm assumes that the example
image pairs are well aligned. Effects that involve warp-

ing, projective transform, or any transform that in-
volves moving pixels around cannot be approximated
by the meta-filter. We are considering extending our

method and integrating image registration methods to
establish correspondences between pairs of images. How-
ever, these are not simple problems and are left for fu-
ture research.

7 Conclusions

We have introduced a meta-filter that linearly combines
spatially varying filters. We have presented a minimiza-
tion technique with an L1 regularization term that op-
timizes the weights of the meta-filter to approximate
a general filter whose operation is determined from a
before and after pair of examples.

Our meta-filter is a simplified model that, neverthe-
less, spans a surprisingly large space of filters that can
well approximate various effects that were generated by
applying a sequence of a number of unknown filters. We
speculate that part of the power of our meta-filter stems
from the fact that it is spatially varying, enriching the
possible effects considerably.

In the future we want to explore the possibility of

learning the generation of intermediate level filters. Such
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Fig. 6 Results of the user study. Top: the percentage in
which participants chose our result (OUR) over Image Analo-
gies (IA), broken down per participant. Bottom: results for
our method compared against ground truth (GT).
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Fig. 7 Limitation of our method: our method performs
sometimes less successfully for transferring texture effects.

filters can be learnt from a large set of common and use-
ful filters, and encapsulate the functionality of a series
of low level filtering operations. We believe that such in-
termediate level filters can further strengthen the qual-
ity of the meta-filter, as well as improving its speed and
expanding its capabilities.
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