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Abstract

Previous online 3D dense reconstruction methods often
cost massive memory storage while achieving unsatisfac-
tory surface quality mainly due to the usage of stagnant
underlying geometry representation, such as TSDF (trun-
cated signed distance functions) or surfels, without any
knowledge of the scene priors. In this paper, we present
DI-Fusion (Deep Implicit Fusion), based on a novel 3D
representation, called Probabilistic Local Implicit Voxels
(PLIVoxs), for online 3D reconstruction using a commod-
ity RGB-D camera. Our PLIVox encodes scene priors con-
sidering both the local geometry and uncertainty param-
eterized by a deep neural network. With such deep pri-
ors, we demonstrate by extensive experiments that we are
able to perform online implicit 3D reconstruction achieving
state-of-the-art mapping quality and camera trajectory esti-
mation accuracy, while taking much less storage compared
with previous online 3D reconstruction approaches.

1. Introduction
Online 3D dense reconstruction has achieved great

progress in the past ten years [3, 6, 11, 20, 31, 32, 42] along
with the popularity of commercial depth sensors such as
Kinect, Xtion Pro, Intel RealSense, etc. Most of the pre-
vious depth fusion approaches focus on the globally con-
sistent 3D reconstruction with bundle adjustment [3, 11]
or loop closure [42] techniques. However, the underlying
representation for 3D scene itself has hardly made much
development since the success of VoxelHashing [32] with
Signed Distance Function (SDF) integration on sparse set
of voxels [9]. This leads to a main drawback of previ-
ous depth fusion systems that often costs huge amount of
memory storage even for moderate size of 3D scenes. Be-
sides, the geometry quality could be unsatisfactory with
non-complete regions or objects [12] due to geometric un-
certainties caused by sensor noise or scan ambiguity such
as view occlusion.

On the other hand, recent efforts in deep geometry
learning community have demonstrated the power of im-

*corresponding author.

T
im

e

Textured 

reconstruction

Estimated

geometry 

uncertainty

Figure 1. DI-Fusion incrementally builds up a continuous 3D
scene from an RGB-D sequence. The tracking and mapping algo-
rithm are fully based on our novel local deep implicit scene repre-
sentation, where both the geometry and its uncertainty scene priors
are estimated.

plicit geometric representation parameterized by neural net-
works [8, 28, 33]. By representing the geometry as a con-
tinuous implicit function, the underlying shape can be ex-
tracted at arbitrary resolution, which effectively enhances
surface reconstruction quality. These methods are also ef-
ficient since the network structure used to regress implicit
function only consists of simple fully connected layers. An-
other important feature of such deep implicit representation
is the capability to encode geometric priors, which bene-
fit many applications such as shape interpolation or recon-
struction [4, 33]. This capability can be generalized to scene
priors by decomposing and encoding the implicit fields in
local voxels, leading to impressive scene completion or re-
construction [4, 19].

The power of such deep implicit representation moti-
vates us to incorporate it into online 3D dense reconstruc-
tion systems. By encoding meaningful scene priors with a
continuous function, we can achieve improved surface re-
construction as well as accurate camera trajectory. How-
ever, several challenges need be overcome before the deep
implicit representation is successfully applied in an on-
line fusion scenario: (1) geometric uncertainty need to be
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explicitly encoded in the deep implicit representation to
against sensor noise or view occlusion; (2) An accurate
camera tracking based on such implicit representation is es-
sential for depth fusion, which remains unknown yet; (3) An
efficient surface mapping which incrementally integrates
new observations directly based on the deep implicit rep-
resentation is also missing.

We hence respond with DI-Fusion, the first online 3D
reconstruction system with tracking and mapping modules
fully supported by deep implicit representations. To address
the above challenges, we first extend the original local im-
plicit grids [4, 19] and adapt it into a novel Probabilistic
Local Implicit Voxel (PLIVox), which encodes not only
scene geometry but also the uncertainty with one deep neu-
ral network. We show that such an additional uncertainty
encode is extremely useful during the online depth fusion.
Based on our PLIVox representation, we devise an approx-
imate gradient for solving the camera tracking problem ef-
ficiently. Besides, by formulating the deep implicit repre-
sentation in a tailored encoder-decoder network, we per-
form geometry integration on the domain of latent vectors
achieving high quality surface mapping than TSDF-based
fusion approaches [9] in an efficient way. We extensively
evaluated our approach on public 3D RGB-D dataset (ICL-
NUIM [18], ScanNet dataset [10]), showing state-of-the-art
or improved tracking and mapping quality compared to pre-
vious representations.

2. Related Works

Online 3D Reconstruction. The success of KinectFu-
sion [31] inspired a lot of works on online 3D recon-
struction. Early efforts mainly focus on efficient data
structures to organize discrete voxels or surfels to enable
large-scale 3D reconstruction, such as OctreeFusion [43],
VoxelHashing [32], Scalable-VoxelHashing [6], ElasticFu-
sion [21, 42]. Subsequent efforts turn to bundle adjust-
ment [11, 20, 41] or loop closure [32] techniques for glob-
ally consistent 3D reconstruction. Despite the rapid devel-
opment of this field, only a few works focus on the un-
derlying 3D scenes representations. Compared to previous
works, our PLIVox, a deep implicit representation that ef-
fectively encodes scene priors, can efficiently improve the
surface reconstruction quality.

Deep Visual SLAM. Our work is also relevant to vi-
sual SLAM methods. The early techniques, such as
MonoSLAM [13], LSD-SLAM [15], ORB-SLAM2 [30],
and DSO [14], propose to perform camera tracking using
sparse features or direct intensity RGB data. With the ad-
vantage of deep learning, recent visual SLAM techniques
incorporate deep neural networks for more accurate repre-
sentation of sparse features (DeepTrack [17]), monocular
depth observation (CNN-SLAM [40], CodeSLAM [2]), or
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Figure 2. Overview. We represent the reconstructed 3D scene
with PLIVoxs (Sec. 3.1) encoding the deep implicit representa-
tion. Given input RGB-D frames, we first estimate the camera
pose Tt by finding the best alignment between the current depth
point cloud and the map (Sec. 3.2), then the depth observations
are efficiently integrated (Sec. 3.3) for surface mapping. Scene
mesh can be extracted any time on demand at any resolution. Note
that both the camera tracking and surface mapping are performed
directly on the deep implicit representation.

object instance (Fusion++ [27], NodeSLAM [39]). Differ-
ent from these works, our system integrates deep priors in
the 3D map domain locally and is hence more robust and
generalizable.

Implicit Representation. The use of implicit function for
geometric reconstruction can be dated back to [9], where
SDF values are stored in a set of occupied voxels describ-
ing the surface. However, even though the implicit func-
tion is continuous, the simple discretization [6, 32] intro-
duce drawbacks in surface reconstruction quality and mem-
ory storage. As an effort to overcome such drawbacks,
[23, 26] propose to model the map using Gaussian Process
and perform Bayesian map updates incrementally. In con-
trast, the use of implicit representation has triggered much
interest in deep learning community these years [28, 33].
Typical applications include: part segmentation [7], render-
ing [24, 29], non-linear fitting [38], meta-learning [37], of-
fline reconstruction [4, 19] etc. Nevertheless, to the best of
our knowledge, our DI-Fusion is among the first efforts to
incorporate such an implicit representation with deep priors
into an online 3D fusion framework.
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Figure 3. The structure of our encoder-decoder neural network Φ.
The encoding and decoding process within one PLIVox is shown.
The arrow between encoding and decoding denotes incremental
latent vector update if the latent vector from last frame is available.

3. Method

Overview. Given a sequential RGB-D stream, our DI-
Fusion incrementally builds up a 3D scene based on a novel
Probabilistic Local Implicit Voxels (PLIVox) representa-
tion. Different from previous approaches using discrete
voxels without any scene priors, our PLIVox is implicitly
parameterized by a neural network and encodes useful local
scene priors effectively (Sec. 3.1). Based on this representa-
tion, we introduce how to robustly perform camera tracking
for each frame (Sec. 3.2) and how to perform efficient incre-
mental surface mapping (Sec. 3.3). As a final step mesh can
be extracted at arbitrary resolution thanks to the continuous
representation, compared to previous approaches which can
only reconstruct at a predefined resolution. This overview
of our DI-Fusion is illustrated in Fig. 2.

3.1. PLIVox Representation

The PLIVox set for the reconstructed 3D scene is de-
noted as V = {vm = (cm, lm, wm)}, with cm ∈ R3 being
voxel centroid, lm ∈ RL being the latent vector encoding
the scene priors and wm ∈ N being the observation weight.
For an arbitrary point measurement x ∈ R3, we can effi-
ciently query its corresponding PLIVox index m(x) using
simple division and rounding operationsm(x) : R3 7→ N+.
The local coordinate of x in vm(x) is calculated as y =
1
a (x− cm(x)) ∈ [− 1

2 ,
1
2 ]3, with a being the voxel size.

Probabilistic Signed Distance Function. Different from
the previous approaches representing the underlying 3D
surface with signed distance function, we represent it us-
ing a probabilistic signed distance function, where the out-
put at every position y is not a SDF but a SDF distribution
s ∼ p(·|y). In this way, the probabilistic signed distance
function encodes the surface geometry and geometric un-
certainty at the same time. Here we model the SDF distri-
bution as a canonical Guassian distributionN (µ, σ2) with µ
and σ being the mean and standard deviation respectively.
For a more compact representation, we encode the proba-
bilistic signed distance function with a latent vector lm us-
ing an encoder-decoder deep neural network Φ.

Encoder-Decoder Neural Network. The encoder-decoder
neural network Φ = {φE, φD} consists of encoder sub-
network φE and decoder sub-network φD (Fig. 3) that share
weights with all PLIVoxs.

The target of the encoder φE is to convert the measure-
ments from each depth point observation at frame t to ob-
servation latent vectors ltm. Specifically, for all the RGB-D
point measurements located in a PLIVox, φE takes in the
point measurement’s local coordinate y and normal direc-
tion n, and transforms them to an L-dimensional feature
vector φE(y,n) using only FC (Fully Connected) layers.
Then the feature vectors from multiple points are aggre-
gated to one latent vector ltm using a mean-pooling layer
(Fig. 3). Here the normal direction n is required to elim-
inate the orientation ambiguity within each PLIVox so the
sign of SDF can be inferred by the network.

For the decoder φD, the concatenation of the local coor-
dinate y and the latent vector lm are taken as input and the
output is a 2-tuple {µD, σD}, which represents the Gaus-
sian parameters of the probabilistic signed distance function
distribution p(·|y) ∼ N (µD, σ

2
D) at position y. Note that

the two latent vectors ltm and lm in φE and φD are differ-
ent latent vectors. While the observation latent vector ltm
encodes the RGB-D observations at frame t, the geometry
latent vector lm fuses the previous ltm and is stored in each
PLIVox used for decoding. Both the observation latent vec-
tor and the geometry latent vector have the same dimension,
and the geometry latent vector can be updated by the obser-
vation latent vector as described in Sec. 3.3.

Network Training. We train the φE and φD jointly in an
end-to-end fashion, setting ltm ≡ lm. We adopt the training
strategy similar to Conditional Neural Process (CNP [16])
but extend it to 3D domain. Specifically, we first build up
two training datasets: (1) S = {Sm} for encoder, which
is a set of tuples Sm = {(yi,ni)} for each PLIVox vm
with points yi and ni sampled from the scene surface;
(2) D = {Dm} for the decoder, which consists of tuples
Dm = {(yi, sigt)} where points yi are randomly sampled
within a PLIVox using a strategy similar to [33] with sigt
being the SDF at point yi. We give more details about how
to build up such two training datasets in Sec. 4. During
training, we feed Sm to the encoder for latent vector lm and
concatenate the latent vector with each yi in Dm to obtain
predicted SDF mean and standard deviation. The goal of
training is to maximize the likelihood of the dataset D for
all training PLIVoxs. Specifically, the loss function Lm for
each PLIVox vm is written as:

Lm = −
∑

(yi,sigt)∈Dm

logN
(
sigt;µD(yi, lm), σ2

D(yi, lm)
)
,

(1)

lm =
1

|Sm|
∑

(yi,ni)∈Sm

φE(yi,ni). (2)
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Figure 4. Comparison of converge between different optimization
strategies for camera tracking. ‘GD’ is short for gradient descent
on Eq (1), with α being the different learning rate. ’Ours’ repre-
sents the approximate gradient we used in our camera tracking.

Additionally we regularize the norm of the latent vector
with a l2-loss which reflects the prior distributions of lm.
The final loss function L we used for training is:

L =
∑
vm∈V

Lm + δ‖lm‖2. (3)

3.2. Camera Tracking

With our PLIVox encoding of the scene priors includ-
ing both the scene geometry and uncertainty, we propose
a frame-to-model [31] camera tracking method. We claim
that the learnt deep priors have enough information of the
3D scene for an accurate camera pose estimation, without
need of extra sparse features as in [3, 11]. We propose
to formulate the probabilistic signed distance function as
objective function for camera pose estimation, with an ap-
proximate gradient for the objective function over camera
pose, which makes it converge fast enough during the opti-
mization. What’s more, our network is efficient in decoding
the probabilistic signed distance function, leading to an ef-
ficient online tracking performance.

Tracking. We denote the RGB-D observation at frame t
as Ot = {It,Dt} with It and Dt being the intensity and
depth data. Given camera intrinsic parameters, the depth
measurement Dt can be re-projected to 3D as point mea-
surements Pt = π′(Dt), where π is the projection func-
tion and π′ is its inverse. Our goal is to estimate Ot’s
camera pose Tt ∈ SE(3) by optimizing the relative pose
T (ξt) = exp ((ξt)∧) (ξt ∈ se(3) [1]) between Ot and
Ot−1, i.e. Tt = Tt−1T (ξt). The following objective func-
tion is minimized in our system:

E(ξt) = Esdf(ξ
t) + wEint(ξ

t), (4)

where Esdf(ξ
t) and Eint(ξ

t) are the SDF term and inten-
sity term respectively, and w is a weight parameter. The
objective function E(ξt) can be efficiently optimized using
Gauss-Newton solver.

SDF Term Esdf(ξ
t). The goal of our SDF term is to

perform frame-to-model alignment of the point measure-
ments Pt of Ot to the on-surface geometry decoded by V .
Different from traditional point-to-plane Iterative Closest
Point (ICP) methods with projective association, as our map
representation is fully backboned by implicit functions, we
choose to minimize the signed distance value of each point
in Pt when transformed by the optimized camera pose.
Thus we design the objective function as:

Esdf(ξ
t) =

∑
pt∈Pt

ρ
(
r
(
G(ξt,pt)

))
,

G(ξt,pt) = Tt−1T (ξt)pt, r(x) =
µD(x, lm(x))

σD(x, lm(x))
,

(5)

where ρ(·) is the Huber robust function, {µD, σD} repre-
sents the probabilistic signed distance function decoded by
the latent vector lm from the point measurements.

One important step to optimize the SDF term is the com-
putation of r(·)’s gradient with respect to ξt, i.e. ∂r

∂ξt . Note
that σD and µD are the output for decoder φD, so r(·) is an
highly non-linear composite function of decoder φD, which
will lead to poor local approximation. We instead propose
to treat σD to be constant during the local linearization,
which will efficiently improve convergence during the op-
timization. Another benefit is that we can control the in-
fluence of σD up to the zeroth order approximation, achiev-
ing robust tracking performance even when σD prediction is
wrong. Specifically, the approximate gradient is computed
by:

∂r

∂ξt
=

1

σD

∂µD(·, lm(x))

∂x
(Rt−1)>(T (ξt)pt)�, (6)

where Rt−1 is the rotation part of Tt−1 and ∂µD

∂x can be ef-
ficiently computed using back-propagation through the de-
coder network. Also note thatm(x) is an indicator function
which keeps fixed during the optimization, we doesn’t need
to compute its gradient. As an empirical proof of the effec-
tiveness of the approximation, we show in Fig. 4 the com-
parison of convergence property between our method and
a first-order gradient decent (GD) method which performs
the update step as ξt ← ξt − α∂

∑
Lm

∂ξt . The Y-axis rep-
resents the relative translation error of ξt between ground-
truth and estimated pose. Our approximate gradient enables
convergence within a few iterations, while other gradients
need a few hundred iterations to achieve comparable error,
demonstrating the efficiency and effectiveness of such an
approximation scheme.

Intensity Term Eint(ξ
t). We also add a photometric er-

ror term between the corresponding intensity data (called
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Figure 5. A tiny example demonstrating the effect of incremental
integration. The top row shows ground-truth underlying geometry
and at each time step, we sample point from the region with lighter
color and fuse it into our PLIVox using Eq (8). The bottom row
shows corresponding geometry after each frame is integrated. The
color of the mesh is coded by σD, reflecting the uncertainty on the
surface.

intensity term) defined as:

Eint(ξ
t) =

∑
u∈Ω

(
It[u]− It−1[π(T (ξt)π′(u,Dt[u]))]

)2
,

(7)
where Ω is the image domain. This intensity term takes ef-
fect when the SDF term fails in areas with fewer geometric
details such as wall or floor.

3.3. Surface Mapping

After the camera pose of RGB-D observation Ot is esti-
mated, we need to update the mapping from observationOt
based on the deep implicit representation, by fusing new
scene geometry from new observations with noise, which
is also referred to as geometry integration. Besides, we also
describe an optional mesh extraction step which extracts the
on-surface watertight mesh with textures for visualization.

Geometry Integration. Instead of updating SDF as previ-
ous works [9], we propose to update our deep implicit rep-
resentation in the domain of latent vectors. We perform the
geometry integration by updating the geometry latent vec-
tor lm with the observation latent vector ltm encoded by the
point measurements Pt. More specifically, we first trans-
form Pt according to Tt and then estimate the normal of
each point measurement, thus obtaining X t = {(xi,ni)}.
In each PLIVox vm, we calculate the point measurements
Ytm ⊂ X t located in such PLIVox and compute the obser-
vation latent vector using ltm = 1

wt
m

∑
(y,n)∈Yt

m
φE(y,n).

The geometry latent vector lm within such PLIVox vm is
then updated as:

lm ←
lmwm + ltmw

t
m

wm + wtm
, wm ← wm + wtm, (8)

where the weight wtm is set to the number of points within
the PLIVox as |Ytm|. In this way, our geometry integration

is much more efficient than the previous approaches, since
we only need to update the latent vectors within a PLIVox
but not the SDFs of massive individual voxels as in Voxel-
Hashing [32]. The observation latent vector from forward
pass of φE is also very efficient to compute, which make our
geometry integration fast enough during the online surface
mapping without latent vector initialization and optimiza-
tion used in previous auto-decoder methods [4, 33]. Fig. 5
shows a tiny example demonstrating the effect of incremen-
tal geometry integration using our method.

In the meantime, benefit from the learnt deep priors, we
do not need to perform integration for every frame. Instead,
we choose to integrate sparse frames sampled from everyN
incoming frames, which improve system efficiency largely
while still maintaining tracking accuracy.

Mesh Extraction. Since we keep the continuous signed
distance function encoded as latent vectors within each
PLIVox, we can extract the geometry surface at arbitrary
resolution if necessary, which is different from previous
mesh extraction methods which are only at predefined reso-
lutions. Given a desired resolution during the extraction, we
divide each PLIVox into equally-spaced volumetric grids
and query the SDFs for each grid with the decoder φD us-
ing the PLIVox’s latent vector. Then the final on-surface
mesh can be extracted with Marching Cubes [25]. Here, to
maintain the continuity across PLIVox boundaries, we dou-
ble each PLIVox’s domain such that the volumetric grids
between neighboring PLIVoxs overlap with each other. The
final SDF of each volumetric grid is trilinearly interpolated
with SDFs decoded from the overlapping PLIVoxs [19].
For textures, we simply assign the vertices on the extracted
mesh with texture colors averaged from the nearest point
measurements projected from multiple observations.

4. Experiments
4.1. System Implementation

To train an effective encoder-decoder neural network for
descriptive deep priors, we build up two training datasets (S
and D for encoder and decoder, respectively, c.f . Sec. 3.1),
on ShapeNet dataset [5] which contains a large variety of
3D shapes with rich local geometry details. We employ the
6 categories of the 3D shapes from the ShapeNet dataset,
i.e. bookshelf, display, sofa, chair, lamp and table, and for
each category we sample 100 3D shapes. Each shape is
then divided into PLIVoxs with voxel size a = 0.1m. For
each PLIVox vm, we randomly sample nd = 4096 (yi, s

i
gt)

tuples for Dm, and the count of (yi,ni) tuple ns for each
Sm is randomly chosen from 16 to 128. We further aug-
ment Dm and Sm by adding random jitter for positions
yi and perturbation for normal direction ni so as to train
the encoder-decoder neural network with enough robustness
against depth observation noise.
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Table 1. Comparison of ATE on ICL-NUIM [18] benchmark (mea-
sured in centimeters).

lr kt0 lr kt1 lr kt2 lr kt3
DVO-SLAM [22] 10.4 2.9 19.1 15.2
Surfel Tracking [21] 1.7 1.0 2.2 43.2
TSDF Tracking [35] 4.5 2.1 1.3 12.5
Ours (w/o Prob) 1.3 1.8 2.6 15.2
Ours (max) 1.4 2.0 2.4 7.1
Ours 1.1 1.4 2.6 6.2

Table 2. Comparison of surface error on ICL-NUIM [18] bench-
mark (measured in centimeters).

lr kt0 lr kt1 lr kt2 lr kt3
DVO-SLAM [22] 3.2 6.1 11.9 5.3
Surfel Tracking [21] 1.1 0.7 1.0 22.5
TSDF Tracking [35] 0.6 1.0 0.8 11.7
Ours (w/o Prob) 0.7 2.0 1.2 4.8
Ours (max) 0.8 1.8 1.2 4.8
Ours 0.6 1.5 1.1 4.5

We set the length of the latent vector as L = 29 in both
encoder φE and decoder φD sub-networks. The encoder
φE contains 5 fully connected (FC) layers, with layer size
set as 6-32-64-256-29 respectively. The decoder contains 6
FC layers with layer size set as 32-128-128-128-128-2. We
choose to use the Adam optimizer for training the encoder-
decoder network with an initial learning rate set as 10−3.
For the regularization on the loss function L, we set δ =
10−2.

We manage the PLIVoxs using a similar mechanism as
[32] and allocate PLIVoxs only when there are enough
point measurements gathered (16 in our experiments). Our
DI-Fusion system is implemented using PyTorch frame-
work [34]. With its highly-optimized auto-differentiation,
the jacobian matrix of our tracking term (c.f. Eq (6)) can be
efficiently computed.

4.2. Quantitative Evaluations

In this subsection we demonstrate the effectiveness of
DI-Fusion and its core component, i.e. the PLIVox repre-
sentation, on ICL-NUIM dataset [18], which contains both
ground-truth camera trajectory and 3D scene reconstruction
to evaluate the accuracy of the camera pose estimation for
depth fusion approaches. We adopt the Absolute Trajectory
Error (ATE) as metric to evaluate the accuracy of camera
pose estimation and the surface error [42] to evaluate the
reconstructed 3D surface quality.

Since our DI-Fusion does not contain loop closure com-
ponent, for a fair comparison we choose to compare with
previous depth fusion approaches using TSDF or Surfel rep-
resentation which do not contain loop closure either. For
TSDF-based camera tracking, we adopt the frame-to-model
ICP tracking method as implemented in [35], denoted as

’TSDF tracking’. For surfel-based camera tracking, we
adopt the method in [21, 42], denoted as ‘surfel track-
ing’. Additionally, we also compare to another baseline
approach, i.e. DVO-SLAM [22], which performs frame-
to-frame camera tracking directly without the aid of any 3D
scene representations.

As shown in Tab. 1, our approach achieves the lowest
ATE in sequence lr kt0 and lr kt3. This is mainly due
to two reasons: (1) The deep priors learnt in our PLIVox
provide more continuous underlying surface prediction than
TSDF or surfel, which provides smoother gradient estima-
tion for camera tracking (Sec. 3.2). (2) The uncertainty
estimated by our network also effectively filter out noisy
RGB-D observations, thus leading to more accurate camera
tracking than TSDF or surfel-based approaches. Though
there are not too many scene priors (such as detailed ge-
ometry and objects priors) in the 3D scenes of sequence
lr kt1 and lr kt2, our approach can still achieve com-
parable ATE for the camera pose estimation accuracy. Note
that, although TSDF tracking achieves better ATE than our
approach in sequence lr kt2, to support such tracking it
consumes nearly an order of magnitude more memory stor-
age than ours (c.f . Fig. 6 bottom-left).

The surface error comparison shown in Tab. 2 also veri-
fies the conclusion above. Benefit from the learnt deep pri-
ors provided by our PLIVox representation, our approach
can perform better (at least comparable) surface error than
TSDF or surfel based camera tracking, with much less
memory storage usage.

4.3. Qualitative Results

We compare the visual quality of the reconstructed 3D
surfaces between our approach and the other two camera
tracking approaches (TSDF tracking and surfel tracking).
For a fair comparison we implement TSDF tracking with
two versions: (1) A low resolution version: ‘TSDF Low-
res’ which allocates larger voxels, such that the the param-
eters uesd to represent the geometry cost the same amount
of memory storage as our approach; (2) A high resolution
version: ‘TSDF High-res’ with much smaller voxel size
(5mm in our experiments) for a higher quality 3D surface
reconstruction. Fig. 6 shows the visual effect comparison in
ICL-NUIM dataset using lr kt0 sequence among differ-
ent tracking approaches. Our approach can achieve more
complete 3D surface reconstruction results than both the
’TSDF High-res’ and surfel tracking but only uses about
10× less memory storage (Fig. 6 bottom left). If the same
amount of memory is used as ours, both the camera tracking
and the reconstruction quality would be severely hampered
for TSDF approaches as shown in ‘TSDF Low-res’ results.

To make a comprehensive comparison, we evaluate the
qualitative results between different approaches on ScanNet
dataset [10]. The ScanNet dataset contains large scale real-
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(a)

(b)

Figure 6. Qualitative comparisons and memory analysis on the lr kt0 sequence of ICL-NUIM [18] dataset. On the top row we show a
global view of the reconstructed 3D scene, where the colors represent the normal directions. Close-up looks at the details are visualized at
the bottom (right), along with the number of parameters curves used in each approach in respect with the frames.

Ours (Textured) Ours TSDF High-res Surfel Ours (Textured) Ours TSDF High-res Surfel

Figure 7. Qualitative comparisons on ScanNet [10] dataset. The 1st column of every scene shows a global view of our reconstruction
with textures applied while detailed close-up comparisons with other baselines are shown in other columns. The close-up views’ camera
positions are plotted on the textured reconstruction.

world 3D indoor scenes captured with a commodity RGB-D
camera. As shown in Fig. 7, our approach can also achieve
more complete 3D reconstruction results than the other two
approaches. Note that we only use the pre-trained weight
trained on ShapeNet dataset for the encoder-decoder net-
work without any fine tunning on ScanNet dataset, which
shows that our approach has good generalization perfor-
mance across different scene categories.

The reason that our approach can produce more com-
plete 3D surface reconstruction is mainly due to benefits
from the learnt deep priors. Different from the other two
representations (TSDF or surfel) without any knowledge
about 3D scenes, our PLIVox encodes scene priors effec-
tively such that the 3D surface can be recovered at the

position even without enough observations. Fig. 8 shows
more visual results of our approach on ScanNet dataset.
For video demonstrations, please visit https://youtu.
be/yxkIQFXQ6rw.

4.4. System Ablations and Analysis

Probabilistic Modeling. To evaluate the effect of us-
ing probabilistic SDF for tracking, we ignore the decoder
branch outputting σD and perform camera tracking by as-
suming the standard deviation as a constant 1.0 and evalu-
ate the system on the ICL-NUIM dataset (denoted as ‘Ours
w/o Prob’). As demonstrated by the consistent worse results
than Ours for both camera trajectory estimation (Tab. 1) and
surface error (Tab. 2), the way we encode the scene pri-
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Figure 8. Other qualitative textured results on ScanNet [10] recon-
structed online with our method.
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Figure 9. Influence of different parameters on ATE benchmark of
ICL-NUIM [18].

ors with a probabilistic signed distance function takes effect
compared to the previous representations [28, 33].

Intensity Term. The intensity term used in our camera
tracking (Sec. 3.2) also influences the camera pose estima-
tion accuracy. Here we modify our camera tracking with
different weights of the intensity term in the objective func-
tion (Eq. 4), and evaluate it on the ICL-NUIM dataset. The
ATE curve with respect to different intensity weights is
demonstrated in Fig. 9 (left), showing the complementary
effect between the two terms we used. Pure SDF tracking
(e.g. w = 0) tends to fail in places with few geometric de-
tails and too large intensity weights (e.g. w > 4000) will
ignore the reconstructed scene representation, causing in-
creased drift. In practice, we set the weight of the intensity
term as w = 500 in our experiments, which roughly bal-
ances the absolute scale of the SDF term Esdf and intensity
term Eint for accurate camera pose estimation.

Latent Vector Update. One alternative way for the geom-
etry integration is to update the latent vector using the max
operator as in [36] instead of what we propose in Eq (8), i.e.
lm ← max(lm, l

t
m) and we call this baseline ‘Ours (max)’.

Tab. 1 and Tab. 2 shows the average ATE and surface er-
ror of this approach, which are consistently worse than our
proposed approach of taking the mean operator. One pos-
sible reason would be that the max operator is sensitive to
sensor noise, thus leading to spurious reconstructions, while

Frame 0 Frame 20 Frame 40 Frame 60

M
ax

M
ea

n

Figure 10. Comparison with alternative integration method using
the max operator. Each column shows the actual frames we per-
form the integration.

Table 3. Timing of our system.
Pre-processing Tracking Integration† Meshing†

Time 20.3ms 62.8ms 34.4ms 30.0ms
†: Asynchronous.

our averaging update could provide more consistent recon-
structions against sensor noise. Fig. 10 shows more visual
results comparing the two integration methods.

Geometry Integration. The way we perform the geometry
integration at sparse frame sampled from every N frames
would also influence the surface mapping quality. Fig. 9
(right) shows the average ATE curve for the camera pose
estimation along with different frame integration intervals.
The average ATE becomes larger along with the increasing
of integration interval.

Timing. Our system can run online at ∼12Hz on a plat-
form with a GeForce GTX 1080 GPU and 32GB memory.
The timing of each individual component of our system is
reported in Tab. 3.

5. Conclusions

Limitations. Our approach has two main limitations: (1)
we assume that each PLIVox is independent and do not
consider the relationships between neighboring PLIVoxs.
Therefore the learnt deep priors would not be spatially con-
sistent, which would influence the accuracy of camera pose
estimation. (2) No loop closure component has been incor-
porated to enforce global consistency. We hope to investi-
gate deeply into both the limitations in the future.

In this paper we present DI-Fusion, which performs the
online implicit 3D reconstruction with deep priors. With a
novel PLIVox representation, our approach effectively in-
corporates scene priors (geometry and uncertainty priors)
into both the camera tracking and surface mapping com-
ponent, achieving more accurate camera pose estimation
and higher quality 3D reconstruction. We hope that our
approach can inspire more effective understanding of 3D
scenes for advanced online 3D reconstruction.
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