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Accurate Dynamic SLAM using CRF-based
Long-term Consistency
Zheng-Jun Du, Shi-Sheng Huang, Tai-Jiang Mu*, Qunhe Zhao, Ralph R. Martin, Kun Xu

Abstract—Accurate camera pose estimation is essential and challenging for real world dynamic 3D reconstruction and augmented
reality applications. In this paper, we present a novel RGB-D SLAM approach for accurate camera pose tracking in dynamic
environments. Previous methods detect dynamic components only across a short time-span of consecutive frames. Instead, we provide
a more accurate dynamic 3D landmark detection method, followed by the use of long-term consistency via conditional random fields,
which leverages long-term observations from multiple frames. Specifically, we first introduce an efficient initial camera pose estimation
method based on distinguishing dynamic from static points using graph-cut RANSAC. These static/dynamic labels are used as priors for
the unary potential in the conditional random fields, which further improves the accuracy of dynamic 3D landmark detection. Evaluation
using the TUM and Bonn RGB-D dynamic datasets shows that our approach significantly outperforms state-of-the-art methods, providing

much more accurate camera trajectory estimation in a variety of highly dynamic environments.

We also show that dynamic 3D

reconstruction can benefit from the camera poses estimated by our RGB-D SLAM approach.

Index Terms—RGB-D SLAM, dynamic SLAM, long-term consistency, conditional random fields,Graph-Cut RANSAC.

1 INTRODUCTION

CCURATE pose tracking in an unknown environment
Ais a fundamental issue in 3D scene perception and
understanding [1]. Visual simultaneous localization and
mapping (SLAM) is a basic technique for pose tracking
and 3D reconstruction; it has received intense research in-
terest from the computer graphics, computer vision and
mixed/augmented/virtual reality communities. Observed
scenes often contain dynamic items such as moving people
and objects, so an accurate visual SLAM method which
is efficient and effective in such dynamic environments
is urgently needed as a basis for various applications in
augmented/virtual reality, robotics efc.

Although visual SLAM technology has made significant
progress in the past few decades [2], [3], most works focus
on static environments, and cannot estimate camera pose
when faced with dynamic situations. The critical challenge
for dynamic visual SLAM is that the presence of dynamic
components violates the data relationships assumed in static
SLAM, leading to poor pose estimation. Previous dynamic
visual SLAM approaches [4], [5] often utilize an RGB-D
depth camera and tackle the dynamic tracking problem
following the DATMO—detection and tracking of moving
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Fig. 1. The reconstructed scene for fr3/walking-halfsphere from the TUM
RBG-D dynamic dataset. As an accurate pose tracking technique for
dynamic environments, our efficient approach utilizing CRF-based long-
term consistency can estimate a camera trajectory (red) close to the
ground truth (green).

objects—scheme [6]. However, these DATMO-based meth-
ods suffer from drawbacks arising from assumptions made
about the moving objects e.g., the number of objects is
predetermined, or the objects move slowly. Dynamic de-
tection methods using foreground/background segmenta-
tion [7], dense scene flow [8] or static/dynamic edge point
weighting [9] estimate the camera pose solely from static
entities by detecting and eliminating the dynamic region.
However, since the determination of points or regions as
static or dynamic is based on only a few consecutive frames,
moving object detection in these methods is not robust, with
a consequent impact on the accuracy of camera pose esti-
mation. Recent online 3D reconstruction methods [10], [11],
[12], [13] aim to reconstruct dynamic 3D scenes. However,
performing static/dynamic determination with ICP-style
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registration [10], [12], [13] or 2D CNNs [11] is expensive
both in computation and memory, so they are unsuitable for
use in a light-weight system to track camera positions for
online applications in mixed and augmented reality, etc.

In this paper, we provide a more accurate and light-
weight dynamic visual SLAM method using an RGB-D sen-
sor, by analyzing frames over long-term timescales rather
than short-term ones. The key component of our RGB-
D SLAM system is a dynamic camera tracking module
based on accurate dynamic 3D landmark detection. Our key
observation is that moving objects can be determined more
reliably using long-term observations rather than short-
term observations. Based on this key observation, we first
estimate the camera pose using an initial static/dynamic
labelling from inlier/outlier determination with graph-cut
(GC) RANSAC [14]. Then we build a long-term consistent
conditional random field (LC-CRF) model to assist in 3D
dynamic landmark detection, by analyzing observations
of static and dynamic landmarks over a long-term series
of consecutive frames. Solving the static-dynamic labeling
problem with the aid of the CRF provides highly accurate
dynamic detection results. Using the results to eliminate the
dynamic 3D landmarks, we can estimate the camera pose
with much higher precision from the remaining static 3D
landmarks.

Our LC-CRF based dynamic 3D landmark detection
method is efficient, leading to a light-weight SLAM system
for accurate 3D position tracking in dynamic environments.
We have evaluated our approach on two public datasets:
(i) the TUM RGB-D dynamic dataset [15] and (ii) the Bonn
RGB-D dynamic dataset [13]; the latter has highly dynamic
sequences. The results show that our approach typically
outperforms state-of-the-art approaches, such as BaMVO [7]
and SPW [9]. We also propose a dynamic 3D scene re-
construction method using our approach, which can pro-
vide good scene reconstruction quality, and more accurate
camera position tracking results than other fusion-based
dynamic reconstruction methods, e.g., MaskFusion [11]. In
summary, this paper makes the following contributions:

1) a reliable dynamic 3D landmark detection method
based on a long-term consistent conditional random
field, which constitutes the main component of our
dynamic camera tracking method, and

2) an efficient method for obtaining an initial estimate
of the camera pose for each frame, based on GC-
RANSALC filtering, which also provides strong static
versus dynamic priors for dynamic 3D landmark
detection.

2 RELATED WORK

Simultaneous localization and mapping has been studied
for more than four decades, with sub-topics of lidar SLAM,
visual SLAM, and sensor fusion SLAM according to the
different sensors used. In this paper, we focus on visual
SLAM, which utilizes cameras (monocular, stereo, or RGB-
D) as the primary sensors for localization. In this section,
we discuss works particularly relevant to ours, and refer
readers to [2] for a more detailed overview of the progress
of the visual SLAM in the past few decades.

http://dx.doi.org/10.1109/TVCG.2020.3028218

2.1 Static Visual SLAM

There has been much progress in visual SLAM techniques
since the pioneering work of MonoSLAM [16] in 2003.
Current visual SLAM approaches can be divided into two
categories: feature-based visual SLAM methods, which use
sparse feature points as landmarks for camera tracking,
e.g.,, PTAM [17] and ORB-SLAM2 [18], and direct visual
SLAM methods, which directly use image intensity for
camera tracking, e.g., DTAM [19], SVO [20], LSD-SLAM [21],
InfiniTAM [22], PSM-SLAM [23] and DSO [24]. Direct visual
SLAM techniques have the advantage of allowing efficient
camera tracking without the time-consuming requirement
for 2D feature detection needed by feature-based visual
SLAM techniques, but they often suffer from lack of robust-
ness in changing light conditions. Besides, there are also
approaches to performing camera pose tracking by fusing
multiple sensors, such as multiple cameras [25], inertial-
cameras [26] and laser-inertial-camera [27], or with the aid
of deep learning [28], [29].

Currently, most visual SLAM techniques assume a static
environment and do not work well in dynamic environ-
ments which include human beings or other moving ob-
jects. Unlike these methods, our approach aims to provide
robust camera tracking in dynamic scenarios. Like ORB-
SLAM2 [18], it contains three components. The novelty of
our SLAM system lies in the camera tracking subsystem,
which in our case handles scenes with dynamic objects. We
integrate our dynamic 3D landmark detection and elimina-
tion method into the camera tracking component, allowing
it to work more accurately in dynamic environments.

2.2 Dynamic Visual SLAM

The detection and tracking of moving objects (DATMO)
proposed by Wang et al. [6] in 2006 inspired many dy-
namic visual SLAM approaches to performing the camera
pose tracking by detecting moving objects with the aid of
dense scene flow [4] or object clustering [30], [31]. Kerl
et al. [32] presented the dense visual odometry (DVO)
algorithm, which uses a robust error function to reduce
the influence of moving objects on camera pose estimation.
However, since the error function is only computed across
two consecutive frames, the DVO algorithm can only work
well for slowly moving environments; rapidly changing
ones cause incorrect data associations. Recently, Kim et
al. [7] introduced a background-model-based dense-visual-
odometry (BaMVO) algorithm to estimate the background
of each frame and to perform camera pose estimation by
eliminating foreground moving objects. Li et al. [9] provided
a dynamic RGB-D SLAM method which uses foreground
edge points to estimate the camera’s ego-motion. In this
method, every edge point is assigned with a static weight
which is used in an intensity-assisted iterative closest point
(IAICP) algorithm for ego-motion estimation; this reduces
the influence of dynamic components. Most of these meth-
ods detect dynamic components by analysis of only a few
consecutive frames, two frames in DVO [32] and just the
current frame in BaMVO [7] and Li et al. [9].

However, short-term analysis is not sufficiently infor-
mative for moving object detection, since many dynamic
components may remain static for short periods, which may
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Fig. 2. Overview of our approach. To achieve accurate pose estimation in dynamic scenes, camera tracking is performed in two stages, from coarse
(initial camera pose estimation) to fine (dynamic 3D landmark detection). We first use GC-RANSAC to detect and remove dynamic feature points
and estimate an initial camera pose using the remaining static feature points. Then, we apply LC-CRF to relabel all landmarks, and refine the

camera pose using landmarks determined to be static.

mislead short-term determination of static/dynamic status.
If not properly detected and eliminated, such dynamic
components may be used as landmarks for later camera
tracking, misleading downstream 3D to 2D data association,
thus lowering the accuracy of camera pose estimation.

In this paper, instead, we provide a dynamic component
detection method that uses long-term analysis. Distinguish-
ing static from dynamic components can be performed more
reliably using long-term observations. Based on this insight,
we build a long-term consistent conditional random field
using feature vectors derived from multiple visual observa-
tion errors over a long period of consecutive frames.

2.3 Dynamic Reconstruction

3D reconstruction with RGB-D cameras has made much
progress in past decades. Here, we only focus on 3D re-
construction methods for dynamic scenes, and refer read-
ers to the survey paper [33] for the state-of-the-art in 3D
reconstruction approaches. Human movement is an im-
portant source of dynamism in indoor scenes, and Dy-
namicFusion [34] proposed the first dense SLAM system
to reconstruct dynamic scenes with humans by accurately
determining a volumetric flow field that transforms the
current scene into a canonical frame. Subsequent works
such as KillingFusion [35], SobolevFusion [36] extended the
flow field with more accurate non-rigid motion estimation
without templates or shape priors. To make the non-rigid
registration robust for fast motion, Fusion4D [37] performs
spatio-temporal coherent non-rigid registration across mul-
tiple views. Guo et al. [38] utilized a shading-based scheme
for more accurate non-rigid registration, allowing the simul-
taneous reconstruction of a casual 3D scene with both a de-
tailed geometric model and surface albedo. However, such
non-rigid registration methods often require huge memory
to store the non-rigid transformation flows, preventing their
use for large indoor 3D scenes. SurfelWarp [39] estimates a

deformation field based on surfels but not truncated signed
distance function (TSDF) voxels, which avoids the high
memory consumption. However, such methods still need
to solve the non-rigid registration problem, with real-time
performance provided by GPU acceleration.

Recently, MaskFusion [11] proposed segmenting moving
objects using a combination of 2D semantic detection and
geometric priors. StaticFusion (SF) [12] presented a method
for background reconstruction in dynamic environments, by
joint estimation of camera motion and scene segmentation.
Refusion [13] introduced direct tracking on the TSDF to
estimate the camera pose in dynamic scenes. Bujanca et
al. [40] presented a framework, FullFusion, for dense se-
mantic reconstruction in dynamic scenes, which enables the
incremental reconstruction of semantically-annotated non-
rigidly deforming objects; the RGB-D data is divided into
static and dynamic frames using a segmentation module,
and only static frames are used for camera pose estimation.

Unlike these works, our approach detects dynamic land-
marks and estimates the camera motion from static parts,
and thus avoids solving the time-consuming non-rigid reg-
istration problem, or detecting/segmenting moving objects
with time-consuming camera pose estimation or the aid
of a 2D CNN. With efficient and accurate static/dynamic
identification, our lightweight SLAM system can accurately
track the camera pose in dynamic scenes.

Other works [41], [42] use deep networks such as Faster-
RCNN [43] to detect moving objects or segment scenes with
semantic parts from multiple camera views [44]. Although
such methods perform well, the problem of misclassification
still exists. Furthermore, the computational cost is much
higher due to the use of deep networks. We believe that
a geometric approach to dynamic component detection is
still not well explored and show that accuracy can be
significantly improved without the need for a deep network.
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Fig. 3. A static landmark has more consistent observations than a
dynamic one. M is a dynamic landmark which moves from M; to My
quickly; just a few frames observe the same location. Static landmark
S stays at the same location and is seen at the same position in
more frames. Re-projected points from static landmarks triangulate to a
consistent landmark, while re-projected points from dynamic landmarks
triangulate to different landmarks.

3 METHOD
3.1 System Overview

An overview of our approach is given in Fig. 2. Our system
has three components: camera tracking with dynamics, local
mapping and loop closing. Local mapping and loop closing
are performed as in ORB-SLAM?2 [18]. Camera tracking
with dynamics aims to efficiently estimate the ego-motion
between frames by accurately detecting and eliminating dy-
namic 3D landmarks. It contains two main subcomponents.

The first subcomponent performs initial camera pose esti-
mation using GC-RANSAC (see Sec. 3.2). In this subcompo-
nent, we make an initial identification of static and dynamic
points using 2D to 2D matching with GC-RANSAC, which is
both efficient and accurate. The points determined as static
are then used for initial camera pose estimation. This initial
static/dynamic identification is also used in the dynamic 3D
landmark detection step later.

The second subcomponent performs dynamic 3D land-
mark detection using a long-term consistent CRF (see Sec. 3.3).
Based on the initial camera pose estimation, we build a
conditional random field with long-term consistency of ob-
servations (Fig. 3) and use it to more accurately identify static
and dynamic feature points. This allows us to eliminate the
dynamic points, and refine the camera pose estimation using
the static points.

3.2

For each incoming frame, we need to determine a reasonable
initial estimation of its camera pose. A general way to do
this is to estimate the ego-motion between two consecutive
frames by solving a perspective-n-point (PnP) problem [45]
with 3D to 2D data association (as ORB-SLAM?2 does).
However, in dynamic scenarios, the 3D to 2D data associ-
ation will contain incorrect matches due to the existence of
moving objects. To overcome this issue, feature points on
moving objects must be detected and eliminated, leaving
static feature points to enable an accurate estimation of ego-
motion.

Initial Camera Pose Estimation

http://dx.doi.org/10.1109/TVCG.2020.3028218
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Fig. 4. Fundamental matrix and epipolar constraint. For a matched pair
(pi,p}), where p; and p) are related to the same 3D point P;, the
epipolar constraint can be expressed as: p'iTFpi =0, i.e. p} liesin the
epipolar line I = Fp; or p; lies in the epipolar line I; = F'Tp/, where F¥
is the fundamental matrix.

In this step, we first roughly label landmarks as static
or dynamic, and then estimate the ego-motion using only
the static landmarks. As shown in Fig. 4, for an image
pair {K;, K/} with fundamental matrix F(K;, K]), a 3D
landmark FP; with its matching pair of 2D observations
(ps, p}) is likely to be static if p’ € K lies on the epipolar line
l; = Fp,;, and otherwise be dynamic. Thus, we can formu-
late the static/dynamic landmark identification problem as
inlier/outlier identification during fundamental matrix esti-
mation using the GC RANSAC algorithm [46]. Specifically,
for a given set M = {(p;,p})|i = 1,...,n} of n 2D to 2D
matching pairs, on each iteration of RANSAC we label each
matching pair as an inlier or an outlier for the estimated
fundamental matrix F'. This is performed by optimizing the
energy function E(L) = >>, B(L;) + A (; jyeq R(Li, Lj)
with L = {L; € {0,1}|i = 1,...,n} being a label assign-
ment for the matching pair set M, and G being a neighbor
graph.

The unary term of the energy function is formulated as:

K(d) (php;ae) 76)
1— K (¢ (pi,p;,0) )

where 0 is the angular parameter for fundamental matrix F',
and K (0,¢) = exp(—0?/(2¢%)). Label L; = 0 indicates an
inlier pair and 1 indicates an outlier pair. ¢ (p;, p}, 0) is the
distance from matching pair (p;, p;) to the fundamental ma-
trix F, and ¢ is a threshold for inlier/outlier determination.
The pairwise energy term is defined as:

if L; =0

1 if L # L,
R(Li, L) = § (B(L;) + B(Ly))/2 ifLi=L;=0
1— (B(L;) + B(L;))/2 ifLi=L;=1
)

We empirically set A = 0.14 and € = 0.1. The total energy
can be efficiently optimized by the graph cut algorithm [47].
Fig. 5 shows an example of selecting static feature points us-
ing this GC-RANSAC-based method, which is summarized
in Algorithm 1.

We later use the estimated fundamental matrix to derive
static/dynamic priors for accurate dynamic point detection
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(a) Feature matching between reference frame and current frame before
GC- RANSAC

(b) Feature point pairs labeled as inliers after GC-RANSAC

Fig. 5. Static feature points selection by the GC-RANSAC. Left: current
frame. Right: reference frame. We choose the 10th frame before the
current frame as the reference frame. After GC-RANSAC filtering, inliers
are almost static feature points, and are used for initial ego-motion
estimation.

(see Sec. 3.3). Specifically, as shown in Fig. 4, for each 2D
matching pair (p;,p),p; € K;,p, € K/, where K; and K|
are the current frame and the previous frame, respectively,
assuming P; is the corresponding 3D landmark, and l €
K,l; € K'are the corresponding epipolar lines [; = F' T p/ =
(A;, B;, Cy), Il = Fp; = (A}, B},C}), we compute the
distances between the 2D feature point and the epipolar line
as d; = |i; - pil/\/A7 T B? and d} = |1} -pl|//AZ + BP.
In general, if landmark F; is a static point, we expect the
symmetric epipolar distance v; = (d; + d})/2 to be small.
We thus define a likelihood of being static for each landmark
P;as P = exp(—(vi — p1y)?/(202)), where 1, is the mean
of ;. We then use P as the statlc/ dynamic identification
prior for each landmark P; for detecting dynamic points.

3.3 Dynamic Landmark Detection by CRF

After estimating the initial camera pose for the current
frame, we now identify the 3D landmarks as static or
dynamic. As shown in Fig. 3, the basis of our approach is
that dynamic points tend to have more inconsistent obser-
vations than static points, especially over an extended time.
Furthermore, dynamic points often have larger photometric
re-projection errors between the re-projected point and the
corresponding 2D feature point. Finally, we also note that
points in the neighborhood of a static or dynamic point also
tend to be static or dynamic, respectively. This key set of
observations motivates us to use a long-term consistent con-
ditional random field (LC-CRF) for dynamic point detection.

Specifically, we build the LC-CRF on the current detected
landmarks, with a fully connected graph [48] linking each
pair of landmarks. Each landmark P; is assigned a label
x; = L; € {0,1} (O for static and 1 for dynamic). Our goal

http://dx.doi.org/10.1109/TVCG.2020.3028218

Algorithm 1 Initial Camera Pose Estimation

Input:
current frame f,, reference frame f,, previous frame f;

Output:

camera pose of current frame 7, static likelihood PZ-'y for

each landmark P;
: Match features between frames f. and f
: Suggest static feature points by GC-RANSAC
: for each static feature point p; in f. do
Find the corresponding 3D landmark F; in f,
: end for
: Estimate ego-motion 7T, on static landmarks by PnP
. Project all landmarks seen by f; to f.
: Estimate fundamental matrix F' by GC-RANSAC
: for each pair of feature points p; and p; do
Compute the epipolar line: [; = F'" p/ and [/
11: Compute distances d; and d,

I I e N B N S

—_
=

= Fp;

12: Compute the static/dynamic identification prior:
13 P =exp(—((d; + d})/2 — p,)?/(202)

14: end for

15: return 7,

is to find the optimal label assignment for all landmarks by
minimizing the Gibbs energy E defined on the LC-CRF:

Z% w) Y (@i a;).

1<J

®)

Unary potential 1), (z;). During SLAM processing, each
landmark can be seen in several key-frames. We record the
corresponding 2D observations 0;‘ € R?,i.e., the 2D position
in key-frame j for each 3D landmark P;. The photometric re-
projection error € between P; and o] is calculated. By aver-
aging the re—pro]echon errors we obtain a; = (}_; e e5)/Bi
where [3; is the total number of observations of P;. As
for the static likelihood prior P; for the landmark P;,
we define a second static likelihood from all observations:
PP = exp(— (i — 115)*/(20%)), and a third one from the
average re-projection error: P = exp(—(a; — pa)?/(202)),
where ;1. and o and represent mean and standard deviation
of respective quantities.

For each landmark, we thus have three different es-
timates of the likelihood that the landmark P; is static:
P, Pf and P]. We compute a weighted average of these
estimates to give an overall likelihood that P; is static:
P5 = M P? + MPP + X3P, where A\; + Ay + A3 = 1. If
P? exceeds a given threshold ¢, then P; is initially labeled as
static, and associated with a static confidence c¢; otherwise, it
is labeled as dynamic, with static confidence 1 —c. In our im-
plementation, we set \; = Ay = A3 = 1/3. Following [49],
the unary potential is then defined as:

N —log(e) (P > 1)

Yulwi) = { “log(1— )I(PF > 1)

where I(-) is the indicator function.
Pairwise potential ¢,(z;, ;). We design the pairwise

potential to encourage consistent labeling between a land-
mark and its neighbors as follows:

wp(xivxj) = :u(wiawj) Zw(m)k(m)(fivfj)a

if 7=1 0 @

)
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(c) Static scene

Fig. 6. Landmark detection in dynamic scenes (a,b) and a static scene
(c). Left: initial static/dynamic labeling. Right: final dynamic 3D landmark
detection results after LC-CRF optimization. Green: static points (p; >
t). Red: dynamic points (p; < t).

where ji(%;, 2j) = 1[3,,,) is a simple Potts model, f; and f;
are feature vectors for nodes i and j, and each k(™)(f;, f;)
is a Gaussian kernel. Here we use two Gaussian kernels, an
observation kernel and a location kernel.

The observation kernel is based on the idea that landmarks
with similar average re-projection errors (o) and the number
of observations () are likely to be in the same class. A
dynamic landmark can be seen in the same position only
for a few key-frames, while a static landmark can be seen
across many more key-frames over a long period. Similarly,
static landmarks have lower average re-projection errors
than dynamic landmarks. Thus, landmarks with different
labels should have apparent differences both in the num-
ber of observations, and average re-projection error, so the
observation kernel is defined as:

i —ay* 18— By

2
206

k(l)(fi, f;) = exp(— ). (6)

The location kernel is based on the idea that nearby 3D
landmarks are likely to belong to the same compact object
which is either static (e.g., a table) or dynamic (e.g., a
person), and hence be in the same class. Thus the location
kernel penalizes pairs of landmarks with different labels but
close to each other. This particularly helps to remove iso-
lated landmarks surrounded by landmarks with the oppo-
site label. As shown in Fig. 6(a,b), some static feature points

http://dx.doi.org/10.1109/TVCG.2020.3028218
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Algorithm 2 Dynamic Landmark Detection and Accurate
Pose Estimation

Input:
landmarks seen by the current frame f.
Output:
accurate camera pose of the current frame T
1: Initialize CRF graph
2: for Each landmark do
3 Compute the likelihood: Pf = (P® + P’ + P7)/3
4:  Compute unary potentials from Eq. (4)
5: end for
6: for Each pair of landmarks do
7. Compute pairwise potentials from Egs. (6, 7)
8: end for
9: Determine the dynamic landmarks by CRF inference
10: Estimate pose T} from static landmarks
11: Return T}

in the person are surrounded by dynamic ones (left image),
and these are re-labeled as dynamic by LC-CRF inference
(right image). The location kernel function is defined as:
P, = PiI*  |pi—p,l
2072

The static/dynamic labeling problem represented by our
LC-CREF can be solved efficiently using a mean field approx-
imation method [48]. We show several examples illustrating
landmark labeling results for sequences from the TUM
RGB-D benchmark in Fig. 6. As can be seen, our method
significantly improves the results for static/dynamic point
labeling. Dynamic landmarks are accurately segmented
even for highly dynamic scenes. We refer the reader to the
supplementary video for more results.

After dynamic landmark detection, we discard dynamic
landmarks and use the remaining static ones to estimate
a more accurate camera pose for the current frame. These
steps are summarized in Algorithm 2.

k(Z)(f“fj) = exp(— ) (7)

2
20p

4 EXPERIMENTS
4.1 Preliminaries

To evaluate the accuracy of the estimated camera pose, we
tested our method on the TUM [50] and Bonn [13] RGB-D
dynamic datasets. For the former, we selected 6 different
indoor dynamic sequences with moving people and violent
camera shaking; for the latter, we selected 20 sequences
of more complex dynamic motion in indoor scenes. The
evaluation uses two metrics to measure the accuracy be-
tween the estimated camera poses and the ground truth: the
absolute trajectory error (ATE, measured in meters) and the
relative pose error (RPE, measured in meters per second),
as defined in [50]. All experiments were performed on a
desktop computer with a 3.6 GHz Intel Core i9-9900K CPU
and 16 GB RAM, without GPU acceleration.

4.2 Parameter Choice

The main parameters in our LC-CRF SLAM are those in the
unary and pairwise potentials in dynamic landmark detec-
tion. We performed an extensive study of these parameters
to determine appropriate settings.
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4.2.1 Parameter Ranges

We first grouped these parameters into 6 pairs of pa-
rameters, and set the range for these parameter pairs as:
{lta; 00} € [1.1,2.0] x [0.2,2.0], {us, 08} € [3.8,5.6] x
[1.3,2.2] and {p,0,} € [0.1,1.0] x [0.1,1.0], {op,0p} €
[0.1,1.0] x [10,28], {w!,w?} € [2,20] x [10,55], threshold
and confidence {¢,c¢} € [0.1,1.0] x [0.55,1.00]. Since the
first four parameter pairs come from observations, e.g., «
concerns re-projection errors, we computed statistics for
these observations on the test sequences beforehand and
empirically set the ranges for the first four parameter pairs
based on these statistics. The static likelihood threshold ¢
was set to be less than 1, ie. in [0.1,1], and the static
confidence ¢ for static landmarks was set to be over 0.5,
i.e in [0.55,1.0]. The ranges for the weight parameter pair
{w!,w?} were set to penalize pairs of neighboring land-
marks with different labels.

4.2.2 Parameter Configuration

Since considering all parameter combinations is infeasible,
we choose to select the parameter configuration of the 6 pa-
rameter pairs sequentially with parameter cross validation.
Specifically, for each parameter pair, we evenly sampled n
candidate values for the parameters and randomly selected
m pairs of values of the parameters for the other 5 parameter
pairs. For each parameter configuration, we performed LC-
CRF SLAM on the six TUM RGB-D dynamic sequences and
calculated the average ATE to assess the accuracy for this
parameter configuration. In total, we thus considered 6nm

parameter configurations in the parameter study. Typically,
we setn = 10 x 10, m = 10.

For each candidate value in each parameter pair, we
further computed the average of the averaged ATE for its
m corresponding parameter configurations. In total, this led
to 6n averaged ATEs, as shown in Fig. 7. Typically, each pair
of parameters tends to have an optimal choice within its m
corresponding parameter configurations, independently of
the choice for the other parameters. The parameter study
led to the following parameter configuration: {{, = 1.7,
0a = 0.6}, {ug = 54,05 = 1.5}, {, = 0.3,0, = 0.2},
{op =0.5,0, = 18}, {w' =8, w? =30} and {t = 0.8,c =
0.7}. These settings achieved relatively small ATE errors
across all parameter configurations, and were used for all
experiments in this paper. The supplementary materials
detail the ATE errors for all 6nm parameter configurations.

4.3 Comparison with unmodified ORB-SLAM

We first evaluate the performance of our dynamic camera
tracking compared with the original ORB-SLAM to demon-
strate the effectiveness of our dynamic point detection mod-
ule as a dynamic SLAM method. We tested our method on
the six dynamic sequences from the TMU RGB-D dataset,
and compared the resulting ATE and RPE with those of
ORB-SLAM in Table 1.

As can be seen, for highly dynamic sequences (those
whose names begin with ‘walking’, i.e. fast moving persons
or camera), our proposed method achieves significantly
lower ATEs and RPEs than ORB-SLAM. In the last two
scenarios with less dynamic contents, i.e. ‘sitting-xyz’ and
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TABLE 1
ATE (m) and RPE (m/s, translational RPE-RMSE) of different methods on TUM RGB-D dynamic datasets.
ATE
Sequence BaMVO DVO SPW FF ORB-SLAM RF SF MF ours w/o GC ours
Mean Mean Mean Mean Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)
fr3/walking-xyz - 0.093 0.060 0.041 0.366 (0.256) 0.088 (0.065) 0.094 (0.064) 0.104 (0.330) | 0.028 (0.016) 0.016 (0.011)
fr3/walking-halfsphere - 0.047 0.043 0.029 0.382(0.188) 0.063 (0.034) 0.434 (0.333) 0.106 (0.335) | 0.058 (0.032) 0.028 (0.015)
fr3 /walking-static - 0.066 0.026 0.014 0.214 (0.084) 0.016 (0.008) 0.015 (0.008) 0.035 (0.129) | 0.016 (0.007) 0.011 (0.008)
fr3/walking-rpy - 0.133 0.179 - 0.745 (0.401) 0.257 (0.157) 1.183 (0.667) 0.827 (0.374) | 0.100 (0.062) 0.046 (0.034)
fr3/sitting-xyz - 0.048 0.040 0.043 0.011 (0.005) 0.035 (0.020) 0.039 (0.022) 0.031 (0.049) | 0.024 (0.012) 0.009 (0.005)
fr2 /desk-with-person - 0.060 0.048 - 0.074 (0.016) 0.057 (0.018) 0.055 (0.027) 0.308 (0.121) | 0.065 (0.014) 0.069 (0.015)
Mean (all sequences) - 0.075 0.066 0.032* 0.299 0.086 0.303 0.235 0.049 0.030
Std (all sequences) - 0.030 0.052 0.012* 0.242 0.080 0.418 0.280 0.029 0.021
t.RPE

fr3/walking-xyz 0.233  0.436 0.065 0.060 0.518(0.388) 0.122(0.080) 0.133 (0.083) 0.159 (0.736) [ 0.040 (0.021) 0.021 (0.015)
fr3/walking-halfsphere | 0.174  0.263 0.053 0.071 0.570 (0.316) 0.092 (0.047) 0.579 (0.499) 0.085 (0.533) | 0.085 (0.048) 0.035 (0.024)
fr3/walking-static 0.134  0.382 0.033 0.036 0.311(0.212) 0.025 (0.013) 0.023 (0.011) 0.089 (0.384) | 0.024 (0.012) 0.014 (0.011)
fr3/walking-rpy 0.358  0.404 0.225 - 1.093 (0.632) 0.356 (0.219) 1.751 (1.116) 0.534 (0.673) | 0.187 (0.088) 0.050 (0.046)
fr3/sitting-xyz 0.048 0.045 0.022 0.036 0.016 (0.007) 0.050 (0.028) 0.056 (0.031) 0.085 (0.088) | 0.034 (0.017) 0.012 (0.007)
fr2 /desk-with-person 0.035 0.035 0.017 - 0.104 (0.052) 0.092 (0.043) 0.126 (0.082) 0.091 (0.316) | 0.091 (0.051) 0.086 (0.045)
Mean (all sequences) 0.164 0261 0.069 0.051* 0.435 0.123 0.444 0.174 0.077 0.036
Std (all sequences) 0.111  0.165 0.072 0.015* 0.356 0.109 0.613 0.163 0.055 0.026

" only 4 sequences are considered for FullFusion (FF).

‘desk-with-person’, our algorithm also achieves slightly bet-
ter results.

4.4 Comparison using TUM dataset

To evaluate the effectiveness of our approach for cam-
era pose tracking of dynamic scenes, we compared
our LC-CRF SLAM method with other state-of-the-
art dynamic SLAM systems, ie. dense visual odom-
etry (DVO) [32], background-model-based dense-visual-
odometry (BaMVO) [7], and static point weighting
(SPW) [9], as well as dynamic fusion methods: ReFu-
sion(RF) [13], StaticFusion(SF) [12], MaskFusion(MF) [11]
and FullFusion(FF) [40], using the standard TUM RGB-
D dynamic dataset. To make a fair comparison, we used
the results produced by publicly released code or reported
in the original paper. Table 1 gives the corresponding
ATE and translational RPE accuracy results for the various
dynamic SLAM systems. Due to a lack of public source
code or correct code, we do not show results for Full-
Fusion with ‘fr3/walking-rpy” and ‘fr2/desk-with-person’
sequences and only report the RPE for BaMVO from the
original paper. Averages and standard deviations of accu-
racy results for every single sequence and for all sequences
are also calculated (BaMVO, DVO, SPW and Fullfusion do
not report the standard deviation in their original papers).
As shown in Table 1, our full LC-CRF SLAM achieves an
average ATE error of 0.030 m (with standard deviation
0.021 m) and an average RPE error of 0.036 m/s (with
standard deviation 0.026 m/s), which is significantly lower
than methods like DVO, RF, SE, MF and FF, and better than
the SPW method. For all sequences, our LC-CRF SLAM
achieves almost the lowest ATE and RPE errors, except for
the "fr2/desk-with-person” sequence. In this almost static
scene, a few static landmarks are labeled as dynamic by
the GC-RANSAC filter with its standard parameter settings,
degrading the accuracy of the initial pose estimation.

4.5 Comparison using Bonn dataset

To further evaluate the accuracy of camera pose tracking,
we compared our approach with three start-of-the-art dense

reconstruction methods: ReFusion (RF) [13], StaticFusion
(SF) [12] and MaskFusion (MF) [11], on the Bonn RGB-D
dynamic dataset. Results were obtained by running avail-
able open source implementations for each method. Table 2
shows the statistics of ATE and RPE errors for both single
sequence and all sequences. Our method outperforms the
others in most sequences (17 of 20) in terms of ATE, and
achieves the lowest RPE for half of the sequences.

The ATE between estimated trajectories and ground-
truth is further visualized in Fig 8. As can be seen clearly,
the trajectories estimated by our LC-CRF SLAM are much
closer to the real trajectories than those provided by RF,
SF and MF. This confirms again that long-term consistency
is effective for dynamic landmark detection in such highly
dynamic scenes using only sparse feature points.

4.6 Effectiveness of GC-RANSAC Filter

We also evaluated the performance of the initial camera pose
estimation using the GC-RANSAC filter from Sec. 3.2. We
built a SLAM system without the initial camera pose esti-
mation component by just assigning an initial camera pose
using velocity prediction like ORB-SLAM. Consequently,
the unary and pairwise potentials also do not contain the
initial static/dynamic priors for the LC-CRF for the dynamic
landmark detection. We compared such a system (without
the GC-RANSAC filter) with our full LC-CRF SLAM sys-
tem by evaluating the ATE and RPE of the six dynamic
sequences of the TUM RGB-D dataset.

Table 1 includes ATE results for our LC-CRF SLAM
with and without the GC-RANSAC filter. Without the GC-
RANSAC filter, the ATEs are significantly greater for highly
dynamic sequences such as fr3/walking-xyz and fr3/walking-
halfsphere. For less dynamic sequences, the ATEs are slightly
increased. This shows that GC-RANSAC plays an effective
role for camera pose estimation, especially in highly dy-
namic scenarios.

4.7 Dynamic Dense Reconstruction

To further evaluate the benefit of static/dynamic 3D land-
mark detection and intuitively show the accuracy of camera
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TABLE 2

ATE (m) and RPE (m/s, translational RPE-RSME) for different methods on Bonn RGB-D dynamic datasets.

ATE t.RPE
Sequence RF SF MF ours RF SF MF ours
Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)
balloon 0.205 (0.126)  0.264 (0.095) _ 0.165 (0.073) _ 0.027 (0.014) | 0.576 (0.370) 0585 (0.372) _ 0.509 (0.317) _ 0.612 (0.373)
balloon2 0.195 (0.110)  0.250 (0.120)  0.114 (0.049)  0.024 (0.011) | 0.540 (0.301) 0.534 (0.287)  0.499 (0.286)  0.541 (0.275)

balloon-tracking
balloon-tracking?2
crowd

crowd2

crowd3
kidnapping-box
kidnapping-box2
moving-no-box
moving-no-box2
moving-o-box
moving-o-box2
person-tracking
person-tracking?2
placing-no-box
placing-no-box2
placing-no-box3
placing-o-box
removing-no-box

0.445 (0.237)
0.277 (0.137)
0.114 (0.062)
0.192 (0.100)
0.115 (0.067)
0.169 (0.078)
0.132 (0.057)
0.079 (0.035)
0.186 (0.092)
0.319 (0.134)
0.608 (0.248)
0.354 (0.125)
0.494 (0.235)
0.109 (0.056)
0.121 (0.074)
0.181 (0.076)
0.605 (0.365)
0.050 (0.028)

0.202 (0.147)
0.286 (0.098)
0.132 (0.081)
0.193 (0.114)
0.146 (0.094)
0.252 (0.097)
0.186 (0.078)
0.087 (0.046)
0.224 (0.110)
0.376 (0.125)
0.242 (0.116)
0.390 (0.137)
0.497 (0.214)
0.133 (0.086)
0.209 (0.071)
0.219 (0.097)
0.261 (0.107)
0.061 (0.040)

0.194 (0.135)
0.238 (0.097)
0.473 (0.161)
0.653 (0.282)
0.341 (0.108)
0.200 (0.106)
0.182 (0.076)
0.120 (0.050)
0.193 (0.084)
0.216 (0.066)
0.298 (0.133)
0.301 (0.128)
0.220 (0.069)
0.325 (0.120)
0.153 (0.067)
0.156 (0.058)
0.424 (0.144)
0.058 (0.040)

0.025 (0.019) | 1.031 (0.587) 0.900 (0.565) 0.991 (0.614)  0.965 (0.575)
0.045 (0.023) | 1.059 (0.687) 0.949 (0.624)  0.937 (0.600)  0.935 (0.596)
0.019 (0.012) | 0.198 (0.104) 0211 (0.128)  0.633 (0.400)  0.238 (0.170)
0.031 (0.033) | 0.315(0.178) 0313 (0.184) 0.854 (0.618)  0.199 (0.103)
0.023 (0.015) | 0.223 (0.125) 0.266 (0.153)  0.503 (0.306)  0.194 (0.109)
0.023 (0.015) | 0.886 (0.754) 0.853 (0.715)  0.840 (0.683)  1.001 (0.801)
0.020 (0.010) | 1.077 (0.752) 1.030 (0.729)  1.027 (0.724)  1.184 (0.798)
0.018 (0.009) | 0.939 (0.584) 0.939 (0.583) 0.947 (0.604)  0.936 (0.586)
0.038 (0.019) | 1.287 (0.791) 1.267 (0.782)  1.252 (0.765)  1.399 (0.850)
0.253 (0.064) | 1.274 (0.839) 0.894 (0.546)  0.847 (0.520) 1.158 (0.772)
0341 (0.259) | 1.523 (1.145) 0.649 (0.412)  0.576 (0.378)  1.143 (0.932)
0.035 (0.013) | 1.209 (0.684) 1.197 (0.678) 1.312 (0.857) 1.193 (0.676)
0.040 (0.014) | 1.165 (0.681) 1.192 (0.701)  1.267 (0.837)  1.297 (0.892)
0.014 (0.009) | 0.355 (0.240) 0361 (0.240)  0.598 (0.332)  0.333 (0.192)
0.016 (0.011) | 0.282 (0.187) 0.361 (0.226)  0.330 (0.192)  0.271 (0.199)
0.036 (0.023) | 0.511 (0.342) 0534 (0.365) 0.491 (0.358)  0.482 (0.339)
0.320 (0.095) | 1.180 (0.862) 0.528 (0.285)  0.791 (0.443)  0.505 (0.257)
0.013 (0.006) | 0.262 (0.150) 0.274 (0.163)  0.263 (0.157)  0.240 (0.126)

Mean (Std)-all
Max (Min)-all

0.248 (0.170)
0.608 (0.050)

0.231 (0.109)
0.497 (0.061)

0.251 (0.140)
0.653 (0.058)

0.068 (0.103) | 0.795 (0.432)  0.692 (0.342)  0.773 (0.307) _ 0.741 (0.419)
0.341 (0.013) | 1.523 (1.198) 1.267 (0.211) 1.312 (0.263)  1.399 (0.194)

fr3/walking-xyz

RF

SF

MF

ours

F—

Jir3/walking-halfsphere balloon kidnapping-box

Fig. 8. Demonstration of the camera trajectories (blue) estimated by approaches ReFusion, StaticFusion, MaskFusion and our LC-CRF method
(each column), along with the ground truth trajectories (black) of sequences (from left to right) fr8/walking-xyz, fr3/walking-halfsphere (from the
TUM dataset), balloon, and kidnapping-box (from the Bonn dataset). The red segments connecting the corresponding positions between ground
truth trajectories and estimated trajectories represent the ATE.

pose determined by our method, we considered a simple by registration errors between the current frame and the pre-
dense reconstruction method based on our dynamic RGB-D  vious one; finally we fuse the remaining static points using
SLAM. Specifically, like MaskFusion [11], we recognise the the camera poses tracked by our RGB-D SLAM method.

dynamic regions, e.g., people, using the mask predicted by
Mask R-CNN [51] as well as the dynamic points determined

Example dense reconstruction results are shown in Fig. 1
and 9. As can be seen clearly, dynamic regions, e.g., mov-
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Fig. 9. The reconstructed point clouds for two scenes (top: fr3/walking-
xyz, bottom: fr3/walking-static) from TUM RGB-D dataset.

0.050 1 - translation error of ATE, unit:m

0.0454 — translation error of RPE, unit:m/s

0.040 -
0.035 A
0.030 A
0.025 A

0.020 A

0.015 A

10% 20% 30% 40% 50% 60% 70% 80% 90%
percentage of dynamic feature points

Fig. 10. Variation in ATE and RPE translation error with differing propor-
tions of dynamic content. z-axis: percentage of dynamic feature points
compared to all feature points. y-axis: Red: ATE translation error. Blue:
RPE translation error.

ing people, are effectively removed from the reconstructed
scenes. These results demonstrate that our method provides
accurate camera poses and can produce good 3D reconstruc-
tion results for dynamic scenes.

4.8

Clearly, the accuracy of camera pose estimation for a dy-
namic scene will be affected by the presence of human

Impact of dynamic objects

http://dx.doi.org/10.1109/TVCG.2020.3028218
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TABLE 3

Time taken for each step of the tracking thread (s). #Fr.: number of
frames, IPE: initial pose estimation, DLD: dynamic landmark detection.

Sequence #Fr. IPE DLD Total FPS
fr3/walking-xyz 859  26.50 318  47.68 18.02
fr3/walking-halfsphere 1067  34.75 3.92 65.68 16.24
fr3/walking-static 743 17.71 4.81 4031 1843
fr3/walking-rpy 910  28.05 3.13 5323 17.10
fr3/sitting-xyz 1261 60.81 442 9256 13.62
fr2 /desk-with-person 4067 14940 1344 24182 16.82
balloon 439 12.74 1.91 2540 17.28
balloon2 469 14.03 239 2747 17.07
balloon-tracking 590  32.84 196  48.04 1228
balloon-tracking?2 451 17.81 1.74 2639  17.09
crowd 928  32.61 391 5851 1586
crowd2 895 2747 580 5843 1532
crowd3 854 3243 538  59.41 14.38
kidnapping-box 1091 60.09 5.67 81.80 13.34
kidnapping-box2 1294 7267 695 9216 14.04
moving-no-box 778 39.46 3.52 61.33  12.69
moving-no-box2 937 61.83 4.81 80.58 11.63
moving-o-box 590  34.32 171 4891 12.06
moving-o-box2 783 4591 2.80 66.90 11.70
person-tracking 580 20.07 1.77 3339 17.37
person-tracking?2 567 26.25 1.62 41.27 13.74
placing-no-box 721 40.01 3.18 5410 13.33
placing-no-box2 677 3294 3.69 4560 14.85
placing-no-box3 662 34.47 3.02 4255 15.56
placing-o-box 998  54.48 2.95 68.36  14.60
removing-no-box 494 21.60 2.40 31.21 15.83

beings and other moving objects. To quantitatively evaluate
the impact of dynamic objects on the accuracy of pose
estimation, we analyzed the relationship between the pro-
portion of dynamic content in the scene and camera pose
estimation error by computing the ATE and RPE for each
frame, using the TUM dynamic dataset. Here we define the
ratio of dynamic objects to be r(k) = nq(k)/n(k), where
ng(k) denotes the number of dynamic feature points in
frame fj, and n(k) is the total number of feature points in
that frame.

Fig. 10 shows the ATE and translational RPE with respect
to the dynamic ratio. These errors increase with a greater
proportion of dynamic feature points. As expected, the
camera poses estimated by our approach get worse with
increasing amounts of dynamic content. Our approach can
still handle significant amounts of dynamic content (up to
about 50%) while keeping the ATE and translational RPE
under about 0.2 m and 0.2 m/s, respectively.

4.9 Timings

Our approach has two main processes, ie., initial pose
estimation and dynamic landmark detection. The time taken
by these processes was recorded for both TUM and Bonn
RGB-D sequences and listed in Table 3. While the initial
pose estimation is expensive due to the time-consuming
GC-RANSAC, our method still achieves a near-real-time
processing rate: 16 and 13 fps for TUM and Bonn RGB-D
sequences, respectively. These experiments were performed
on a CPU without GPU acceleration.

4.10 Discussion and Limitations

One of the main benefits of our approach comes from
the unary and pairwise potentials used in dynamic land-
mark detection, which leverages information from widely
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(a) Failure case 1

(b) Failure case 2

Fig. 11. Typical failure cases: in both frame 699 (a) and frame 727 (b) of
the sequence of fr3/walking-xyz, the landmarks on the moving person
are labeled as dynamic accurately; however, almost all landmarks for
the person sitting stationary for a long time are labeled as static.

separated frames, not just consecutive frames. The static
likelihood is estimated for every landmark for every frame
(see Section 3.3) of the whole video sequence, which implic-
itly enforces long-term consistency in the unary potential
computation. Also, the observation kernel used in the pair-
wise potential computation leverages the total number of
observations, again providing a feature across long spans of
frames.

Our approach still suffers from four main drawbacks.
Firstly, wrong static/dynamic landmark detection occurs,
influencing the final camera pose estimation. This happens
mainly in highly dynamic scenes with insufficient reliable
static landmarks for camera pose estimation. Another cause
arises from the epipolar line constraints used in the GC-
RANSAC filter. Some dynamic objects may move along the
direction of the epipolar line between consecutive frames,
leading to incorrect initial static/dynamic labeling. One
possible solution to this problem may be introducing more
structural prior hints, such as planarity constraints.

Secondly, it is not as effective for almost static scenes,
mainly because it may wrongly label static feature points
as dynamic, thereby lowering camera pose estimation accu-
racy. One possible solution is to allow the user to choose
whether to use the dynamic object detection module. If it is
turned off, the final pose estimate is mainly determined by
the process of initial camera pose estimation.

Thirdly, as shown in Fig. 11, our approach does not
perform very well for objects which are stationary for a
long time before starting to move, since our approach
mainly relies on geometric rules to identify static/dynamic
feature points without understanding the scene. This could
be overcome by temporally matching object arrangements
(including object locations and spatial relationships) for the
whole scene, to infer when previously static objects start to
move [52].

Lastly, initial ego-motion estimation depends on GC-
RANSAC, a randomized algorithm. Thus the final result
of dynamic landmark detection is inherently somewhat
random. Nevertheless, our method is still typically superior
to many existing methods. We hope to explore non-random
initial ego-motion estimation methods to ensure that the
system works robustly in various scenarios.

5 CONCLUSION

This paper has presented our LC-CRF SLAM system for
accurate pose estimation and effective dynamic point de-
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tection. To reduce the impact of dynamic points on pose
estimation, we firstly compute an initial pose using GC-
RANSAC and assign each landmark a static/dynamic prior.
Then, we use a CRF with appropriate unary and pairwise
potentials to label each landmark as static or dynamic. We
have shown that our proposed LC-CRF SLAM is signifi-
cantly more accurate than existing methods for the highly
dynamic examples in the public TUM RGB-D dataset and
Bonn RGB-D dataset, and that it can be incorporated into
the dynamic 3D reconstruction. In the future, we hope to
explore potential AR/VR applications for dynamic scenar-
ios, taking advantage of the static/dynamic information
identified by our light-weight camera pose tracking.
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