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Abstract We propose a novel depth perception model to
determine the time taken by the human visual system (HVS)
to adapt to an abrupt change in stereoscopic disparity, such
as can occur in a scene cut. A series of carefully designed
perceptual experiments on successive disparity contrast were
used to build our model. Factors such as disparity, changes
in disparity, and the spatial frequency of luminance contrast
were taken into account. We further give a computational
method to predict the response time during scene cuts in
stereoscopic cinematography, which has been validated in
user studies. We also consider various applications of our
model.

Keywords Stereoscopy · Perception · Response time ·
Visual comfort

1 Introduction

The goal of the stereoscopic film industry is to add realism
to the screen by mimicking a sense of depth. Unlike in nat-
ural viewing, accommodation is separated from vergence—
it is restricted to the display screen in stereoscopic three-
dimensional (S3D) viewing [21,25]. This conflict [20] can
be characterized by the binocular disparity, the difference
of the object’s retinal locations in left and right eyes [43].
Although a smoothly varying disparity range [33] provid-
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ing stereo video can be achieved by carefully controlling
the camera configuration [18,42], perceived depth jumps are
inevitable and frequently occur between shots or during scene
cuts in 3D film-making [33,38].

A depth jump in S3Dmovies is much more elaborate than
in the real world for two reasons. First, the field of view in
the real world is very large and the viewer controls where it
is. Therefore he/she can make predictions about what will be
seen next and thereby anticipate a change from far to near
fixation. This is not easy with S3D movies where a scene cut
may be completely unpredictable from the viewer’s stand-
point. Second, the real world maintains consistency between
the stimulus for vergence and the stimulus for accommoda-
tion. Sowhen the viewer changes fixation from a far object to
a near one, vergence and accommodation remain consistent
with one another. However, it is not so with S3D movies.

Vergence and accommodation are cross-coupled [47,48]
in the human visual system (HVS) to maintain a clear single
vision at the fixation. Vergence eye movements are driven by
retinal disparity and accommodation is driven by blur. But
vergence is also driven by accommodation (so-called accom-
modative vergence, AV) and accommodation is also driven
by vergence (so-called vergence accommodation, VA). The
cross-coupling has different temporal properties than the
direct paths for vergence and accommodation control [47,48]
and vergence would be faster when the accommodative stim-
ulus changes in unison with it [9]. In S3D movies, the visual
system has to fight against the cross-coupled responses to
maintain accommodation at the screen and vergence on the
stereo content that may be in front of or behind the screen.
And that effort has been reported to be an important cause of
visual discomfort [20]. Schor and Kotulak [49] have shown
that cross-coupling pathways (AV and VA) are high-pass,
i.e., they do not respond to slow changes in the vergence
and accommodation stimuli. So, there is a strong likelihood
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Before After Tp

Fig. 1 A scene cut ( , The Smurfs 2 © 2013 Sony Pictures Anima-
tion Inc., left andmiddle), with disparity maps of the left view inset, and
corresponding per-pixel response time map (right); brighter red indi-

cates longer response time. We propose a novel response time model,
based on perceptual experiments, to predict the time taken to adapt to
the new binocular disparity during a scene cut

of visual fatigue when abrupt disparity changes occur fre-
quently [15].

When adapting to a step change in disparity, theHVS takes
time to accomplish stereo fusion starting from the previous
incorrect vergence response [45,52], which in turn affects the
3D viewing experience [33]. However, little work has been
conducted to investigate how the HVS responds to an abrupt
change in binocular disparity.

In this paper, we explore the temporal performance of the
HVS when an abrupt change in binocular disparity occurs.
Binocular disparity is used to simulate the conflict between
vergence and accommodation in S3D viewing. Human per-
ception results have been increasingly important for com-
puter graphics, such as computing, processing, and display-
ing [11,12,14,23,44,45].Wemeasure the time theHVS takes
to fuse the new disparity, and hence obtain a clear vision of
the new scene, through a series of successive contrast [21,
Chapters 21.1] perceptual experiments. We take into account
disparity, both crossed and uncrossed, as well as the disparity
change, in both forward and backward directions. The influ-
ence of luminance contrast spatial frequency on the response
time is also considered in our experiments, as it has pre-
viously been shown to have an impact on disparity sensi-
tivity and discrimination [12,19,29]. We have statistically
analyzed the data obtained and fitted a bilinear model which
quantifies response time. Our results help to understand how
the HVS adapts between different scene conditions, espe-
cially with respect to binocular disparity, and we provide a
computational model to predict response time during a real
scene cut (see Fig. 1). This model can be used to optimize
the response time during a scene cut in S3Dmovies and used
as a guideline when shooting or planning 3D film, or when
arranging scene changes in post-production.

Contributions In summary, our work makes the following
contributions:

(i) This is the first work to conduct systematic perceptual
experiments on the temporal aspects of how the HVS
adapts to abrupt changes in binocular disparities.

(ii) We show that the response time taken by the HVS to
clearly fuse the new binocular disparity is significantly
influenced by the change in disparity, no matter whether
it is forward or backward, as well as the level of the new
crossed or uncrossed disparity; it is also modulated by
the spatial frequency of luminance contrast.

(iii) Following statistical analysis, we have built a bilinear
model for response time, which takes into account the
above factors aswell as the new disparity and the change
of disparity.

(iv) We provide a computational model to evaluate the
expected response time during a scene cut and suggest
several applications that could directly benefit from our
model.

Limitations Though our experimental results and model
reveal some temporal aspects of how the HVS responds
to new S3D scenes, the mechanisms underlying how the
HVS deals with S3D information are far from being eluci-
dated. Further neurophysiological evidence is needed to pro-
vide understanding of themechanisms underpinning how the
HVS responds to disparity contrast [21, Chapters 21]. Addi-
tionally, we have only considered some of the parameters
which could be relevant, and others could also have a sig-
nificant impact, such as color contrast, luminance contrast,
etc. Finally, our current model is an empirical one based on
observations, and more sophisticated models based on an
understanding of the brain would be preferable.

2 Related work

Various principles [33,38] have been proposed to reduce
viewing discomfort in S3D cinematography [27]. Besides
excessive disparity, discontinuous change in disparity is also
a key contributor to visual fatigue when viewing S3D [15].
Repeated depth jumps force viewers to adjust vergence
between shots frequently, which can inhibit the sense of
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stereoscopic immersion [33], even when all depths lie in the
zone of comfort [4,50].

There exists works on how disparity affects time to fusion.
Akeley et al. [1] and Hoffman et al. [20] showed that the dif-
ferences between vergence and focal distances affect the abil-
ity to fuse stereo stimuli—the stimulus can be fused quickly
if the two distances change together, while more time is
required if not.

Neri et al. [40] revealed that absolute and relative dispar-
ities are processed stereoscopically in different areas of the
human visual cortex. Liu et al. [33] noticed that crossed and
uncrossed depth jumps are not equal in effects, and the former
aremore problematic for some viewers in terms of the resting
states of vergence and accommodation [50]. Yang et al. [54]
conducted an identification task to discern differences and
changes in object depths. Participants were asked to deter-
mine which of four circles was closest under various dis-
parity conditions. Results showed that depth differences and
motion in depth are more accurately and quickly discerned
with a smaller baseline of crossed disparity for background
objects and larger separations between objects.

A change in disparity results in convergence or divergence
movements of the eye. Rashbass et al. [46] showed that eyes
respond to an abruptly imposed disparity with an eye move-
ment speed roughly proportional to the amount of abruptly
imposed disparity. Erkelens et al. [16] found eye vergence
tracking to be more accurate and less noisy when changes
in object disparity are combined with changes in object size,
compared to changing either alone, even though responses
to size-change and disparity-change are independent. Later,
vergence shifts between real objects, which provided all nec-
essary natural cues for depth perception, were determined to
be fast and accurate [17].

Most previous works on binocular disparity change either
focus on disparity sensitivity or disparity discrimination
threshold [11,12], or the eye movements induced by dis-
parity change. Our work differs in that it provides a series
of comprehensive and systematic perceptual experiments to
study a more fundamental aspect of the HVS: how quickly
the HVS adapts to changes in binocular disparity.

3 Methodology

We now present in detail our perceptual experiments used to
measure the observers’ response time to fuse a new disparity,
after an abrupt change to an attentively perceived scene.

Parameters The first key factor to take into account is clearly
the disparity d, as we wish to determine the response time
the HVS takes to fuse the new disparity. Another factor of
interest is the spatial frequency f of luminance contrast. The
impact of luminance contrast spatial frequency on disparity

discrimination has already been explored [19,29], and it has
been exploited to develop a disparity discrimination thresh-
old model [12], as well as a visual comfort metric for stereo-
scopicmotion [14]. Though adaptation to luminance contrast
is a well known phenomenon in human vision (dark adapta-
tion and light adaptation), the influence of the frequency of
luminance contrast on human vision, especially stereo adap-
tation, remains to be investigated.

As our experiments are dependent on changing quanti-
ties (see Sect. 3.1), two further derived parameters were also
considered: the change in disparity �d and the change in
frequency δ f . We measured d in terms of angular disparity
(in degrees [14, Figure 2]) and f (measured in cpd) was the
number of repeated luminance contrast patterns per viewing
angle (in degrees).

Stimuli All stimuli were frontal-parallel disparity sinusoidal
corrugations with luminance noise of various frequencies.
Left and right views of the stereo stimulus were generated
using image warping for the luminance pattern [12]. The
mean disparity of the corrugation was set to d and the ampli-
tude for all stimuli was fixed at 0.1◦. We sampled the two
explicit dimensions of our parameter space as follows:

– d = {−1.6◦,−0.8◦, 0◦, 0.8◦, 1.6◦};
– f = {1cpd, 4cpd, 16cpd}.

Taking all combinations produced a total of 15 different
stimuli. Additionally, we produced four different corruga-
tion orientations o = {0◦, 45◦, 90◦, 135◦} for each stimulus
(see Sect. 3.1). The corrugation’s spatial frequency was set
to 0.3cpd, which is within the peak sensitivity range of the
HVS [11]. We set the maximum disparity as large as pos-
sible, from −1.6◦, a crossed disparity corresponding to a
position approximately 82 mm in front of the screen, to 1.6◦,
an uncrossed disparity indicating a position approximately
125 mm behind the screen. Stimuli exceeding this interval
are difficult to fuse for some observers. Due to the angular
disparity, it is convenient to extend to different viewing con-
figurations, such as scenes in cinema or virtual reality.We set
the sample step to be 0.8◦, to restrict the number of stimuli, as
well as being large enough to be well discerned between dif-
ferent disparities. The luminance contrast spatial frequency
was sampled following Du et al. [14]. Example stimuli are
shown in Fig. 2.

3.1 Procedure

We used a 23 inch interleaved AOC 3D display with a reso-
lution of 1,920×1,080 pixels, viewed with passive polarized
glasses. All subjects were seated 48 cm in front of the screen,
with chins fixed so that the subjects’ eyes looked at the center
of the screen. We assumed a standard interpupillary distance
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Fig. 2 Sampled stimuli, shown
as red-cyan anaglyphs, with
different combinations of
corrugation mean disparity,
corrugation orientation and
spatial frequency of luminance
contrast. From left to right:
(0.8◦, 135◦, 16 cpd),
(0.0◦, 0◦, 4 cpd),
(−0.8◦, 90◦, 1 cpd)
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Fig. 3 A timeline for a typical trial considering disparity (ordinate).
The subject presses a key when the corrugation’s orientation is clearly
noticed for the induction stimulus and test stimulus at t0 and t3, respec-
tively, followed by a period of stereoscopic immersion until t2 and t4,
respectively. The stimulus is abruptly changed to the test stimulus at t2.
The interval between t2 and t3 is the response time

of 65 mm. 15 subjects participated in our experiments (2
female, 13 male), all visually normal or corrected-to-normal,
and having no difficulty in stereoscopic fusion. All partici-
pants were non-experts in stereoscopic research and were
between 20 and 30 years of age, recruited from the campus.

Since the scenes before and after a cut are inher-
ently successive in time, our experiments were conducted
using a successive contrast approach [21, Chapters 21.1],
unlike the disparity discrimination threshold experiments of
Didyk et al. [11,12] which applied a simultaneous contrast
approach [21, Chapters 21.1]. Specifically, for a successive
contrast experiment, a first stimulus, the induction stimulus,
is presented to the subject for a while, and then changed to
the second stimulus, the test stimulus, with a different value
of the feature being tested; the two stimuli are presented at
the same time in a simultaneous contrast experiment.

The 15 stereo stimuli cases resulted in 210 trials, as we
considered disparity changes in both directions i.e. both for-
ward and backward jumps. Each trial used a pair of stimuli
(induction, test). The timeline of a typical trial is illustrated
in Fig. 3; the induction stimulus and test stimulus were pre-
sented sequentially.During the presentation of each stimulus,
subjects were told to concentrate on fusing the corrugation’s

orientation, and to press a key as soon as they could clearly
see the corrugation’s orientation. After the key press at t0, the
induction stimulus, with orientation randomly picked from
{45◦, 135◦}, was kept for 1.5 s plus a random additional time
of up to 1 s to avoid predictive responses, until t1. During
this time subjects were told to continuously stare at the stim-
ulus without loss of concentration. This was followed by
an abrupt change at t2 to the test stimulus, randomly selected
from {0◦, 90◦}, lasting another 1.5 s until t4 after the key press
at t3. The program recorded the interval between the abrupt
change at t2 and the key press at t3, as the response time.

To encourage participants to participate diligently, warn-
ings were given when an advanced key press (i.e. a second
key press ahead of the abrupt change) or a late key press (i.e.
a second key press after too long, saying 2 s) occurred, and
such data were rejected as outliers. To avoid any learning
effect as the experiment proceeded, a number of irrelevant
white-to-black trials were randomly inserted. The subjects
were asked to keep their fingers on the key to avoid unnec-
essary physical movement and to press the key with a steady
speed during the whole experiment. To avoid adaptation to
repeated disparity changes [15,52], the pairs of (induction,
test) stimuli were randomly arranged for each subject. A sin-
gle trial lasted between 3.5 and 5.5 s. Subjects took a 1.5 s
break between consecutive trials during which a gray image
was shown to relax the eye muscles and a longer, 120 s break
was taken every 21 trials. It took a single subject 50–60 min
to complete a whole batch of tests.

Prior to the actual trials, subjects were presented with
the stereo stimuli and ten randomly picked trials to famil-
iarize themselves with the experiment. From the measured
response time,we also subtracted the keyboard response time
and general human reaction time, measured using a red-to-
green reaction test for each subject prior to the experiment.

4 Data analysis

We now present the statistical analysis of the collected data,
discuss how the factors considered influence the measured
response time, and present our model of time taken by the
HVS to adapt to different stereoscopic content.
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Fig. 4 Estimated marginal
mean response time for five
levels of target disparity (a),
three levels of target luminance
contrast spatial frequency (b)
and nine levels of change of
disparity (c). Error bars indicate
the standard errors of the means:
non-overlapping error bars
indicate a significant difference
under different conditions
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The entire set of trials contained 210× 15 = 3,150 records
of response time, 35 of which were rejected as outliers (see
Sect. 3.1). Each trial gives a parameter sample point s j =
(di , fi ; dt , ft ), where the subscript i and t indicate the initial
content (induction stimulus) and target content (test stimu-
lus), respectively. The response time Tj for each sample point
s j was averaged across all 15 participants, yielding 210 aver-
ages. To verify that the 210 average response times {Tj |210j=1}
were a suitable basis for further data manipulation, we per-
formed a one-way analysis of variance (one-way ANOVA)
on this data. It yielded an F value F(209, 2,940) = 2.19,
which is larger than the F test critical value (Fcrit = 1.17)
for p = .05. This means inter point (intra participant) vari-
ances are larger than intra points (inter participant) variances,
and so it is meaningful to use average response times.

To explore the impact of the level of depth jump on the
response time T , �d = dt − di and dt were substituted for
di . Similarly, δ f = ft/ fi and ft were substituted for fi .
Motivated by the work of Didyk et al. [11], the luminance
contrast spatial frequencywasmanipulated in the logarithmic
domain.

4.1 Results

Multi-variant ANOVA was used to evaluate the main effects
of all factors considered in our experiments, as well as inter-
action effects, based on the 210 average response times.

Main effect

di and fi ANOVA for the initial disparity di and spa-
tial frequency fi of luminance contrast yields an F value
F(4, 205) = 1.41 with p = .230 and F(2, 207) = .26 with
p = .774, respectively. This means neither the disparity nor
the luminance contrast spatial frequency in the initial content
significantly influences the response time T .

dt and ft The response time taken to fuse the target scene,
on the other hand, is significantly influenced by the magni-
tude of target disparity dt (F(4, 205) = 13.39, p < .001)
and the level of target spatial frequency ft of luminance con-
trast (F(2, 207) = 3.47, p = .033). Figure 4a gives the
estimated marginal mean response time taken to clearly fuse

the test stimuli for 5 different dt . Figure 4b illustrates the esti-
mated marginal mean response time to clearly fuse the test
stimuli for 3 levels of ft . Generally speaking, the response
time significantly increases with increasingmagnitude of tar-
get disparity dt , whether crossed or uncrossed (see Fig. 4a).
The mean response times (± standard error) for target fre-
quencies 1cpd, 4cpd and 16cpd were 581 ± 14, 567 ± 14,
and 619 ± 14 ms, respectively, with a minimum obtained
around 4cpd (see Fig. 4b). This minimum agrees with pre-
vious findings on disparity discrimination thresholds [12]
and effects of stereoscopic motion on visual comfort [14];
a shorter response time results in a more discriminatory and
comfortable viewing experience.A further observation is that
themean response times for different ft do not differ asmuch
as for different dt , as shown by the overlapping error bars in
Fig. 4b.

�d and δ f A change in disparity �d also significantly
influences the response time (F(8, 201) = 72.98, p <

.001). The change of luminance contrast spatial frequency
δ f , however, does not significantly affect the response time
(F(4, 205) = 1.90, p = .111). Figure 4c indicates the mean
response time for different magnitudes of �d, regardless of
dt , ft , and δ f . They clearly show that the response time
increases with increasing magnitude of delta disparity, no
matter whether depth jumps are crossed or uncrossed. There
is also a significant response time difference for different
crossed or uncrossed�d (as shown by non-overlapping error
bars in Fig. 4c).

Interaction effect

As the response time is not significantly influenced by di , fi ,
or δ f , we only considered the pair-wise interaction impacts
of �d, dt , and ft on the response time.

�d and dt There is a strong interaction between�d and dt
that influences the response time (F(24, 185) = 35.78, p <

.001). The mean response times for different levels of tar-
get disparity with different delta disparities are presented in
Fig. 5. Given a target disparity, whether crossed or uncrossed,
the response time taken to clearly fuse images increases
with magnitude of disparity change �d for both crossed and
uncrossed depth jumps, which is consistent with the findings
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Fig. 5 Mean response time for clearly fusing the test stimuli for dif-
fering levels of target disparities and different delta disparities

Fig. 6 Mean response time for clearly fusing the test stimuli for tested
levels of delta disparities and target luminance contrast spatial frequen-
cies

for the main effect of �d. Moreover, the response time is
greater for larger magnitudes of �d and dt . There is still a
significant difference in response time with different delta
disparities for all target disparities but −0.8◦.

�d and ft The interaction between�d and ft also signif-
icantly affects the response time (F(26, 183) = 29.16, p <

.001). Figure 6 illustrates the interaction effect of delta dis-
parity and target luminance spatial frequency on the response
time. The response time is significantly larger for a target
luminance contrast spatial frequency of 16cpd than for 4cpd,
for all uncrossed delta disparities. However, the same is not
true for all crossed delta disparities. Furthermore, no signif-
icant difference is found for luminance contrast spatial fre-
quencies of 1cpd and 4cpd for either uncrossed or crossed
depth jumps.

dt and ft The combination of dt and ft also has a signifi-
cant influence on the response time (F(14, 195) = 4.52, p <

.001). Figure 7 shows the interaction effect of target disparity
and target luminance spatial frequency. The mean response
time for target luminance contrast spatial frequency 4cpd is
smaller than for either 1cpd or 16cpd, for both uncrossed
and crossed target disparities, in line with the main effect of
target luminance contrast spatial frequency. However, no sig-

Fig. 7 Mean response time for clearly fusing the test stimuli for tested
levels of target disparities and target luminance contrast spatial frequen-
cies

nificant difference between different frequencies was found
for a given target disparity, except for 1.6◦ (the response time
for 16cpd is significantly larger than for both 4cpd and 1cpd
at 1.6◦).

4.2 Observations and discussions

These ANOVA analysis results allow us to make some basic
observations about the time taken by the HVS to clearly per-
ceive the target depth after an abrupt change in stereoscopic
disparity.

– The response time is mainly affected by the change in
disparity and increases with magnitude of the disparity
change, both for forward and backward depth jumps. On
the other hand, a change in luminance contrast spatial
frequency has no significant influence on the response
time.

– The target disparity and target luminance contrast spa-
tial frequency, as well as their interaction, significantly
influence the response time; the initial content has less
significant effect on perception of the target depth.
The response time increases with increasing magnitude
of target crossed or uncrossed disparity, with a mini-
mum reached at about 4cpd for target frequencies in
[1cpd, 16cpd].

– The response time is longer for greater target dispar-
ities and greater disparity changes, both crossed and
uncrossed.

– Compared to target disparity and change in disparity, both
the main and interaction effects of luminance contrast
spatial frequency are much smaller in terms of response
time.

We now further consider the effect of the luminance con-
trast spatial frequency on the response time.As for frequency,
though aminimal response time occurs at 4cpd for the whole
data (see Fig. 4b) or given a target disparity (see Fig. 7),
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the differences between different frequencies are not signif-
icant as reported in Figs. 4b, 6 and 7: note the overlapping
error bars. One possible explanation is that the time taken to
process luminance information and disparity information is
independent [36] and thus additive, while luminance infor-
mation is processed much faster than disparity information,
because processing disparity, especially disparity changes,
involves an eye vergence movement [16,36]. Additionally,
Fig. 4b shows that the difference between the maximal and
the minimal mean response times across different frequen-
cies is about 52 ms and is about 2× the standard error of the
mean (14 ms), indicating that the time taken to process lumi-
nance information is easily influenced by random factors in
the experiment.

4.3 Bilinear fitting

We now make a model of response time T : how long the
HVS takes to clearly fuse the new stereoscopic content after
a scene change, under different conditions, based on the data
presented in Sect. 4.1 and observations in Sect. 4.2.

Previous perceptual experiments on disparity discrimina-
tion threshold [11,12] or visual comfort metric for stereo-
scopic motion [14] fitted functions for all the factors consid-
ered, using quadratic polynomials for all pair-wise combi-
nations of factors as well as univariate terms, without con-
sidering the significance of each factor or their interactions
(frequencies were represented in log-space). We also use a
polynomial model for the function, but select terms to use
based on the results in Sect. 4.1 and observations in Sect. 4.2.

First, we incorporate into the response time function
T (dt , ft ,�d) all terms previously found to be significant,
i.e., dt , ft , �d, dt�d, �d lg( ft ), dt lg( ft ). Furthermore,
terms related to ft are excluded from the current model, as
the time taken to process luminance information is much less
than for the other two factors. Additionally, evidence showed
that eye movement speed was roughly proportional to the
amount of abruptly imposed disparity [46], and the response
time is approximately proportional to target disparity and/or
disparity changes, whether crossed or uncrossed, as shown
in Figs. 4a, c, 5, 6 and 7. We thus use a bilinear model for T
with respect to dt and �d:

T = T (dt , ft ,�d) ≈ T (dt ,�d)

= p1dt + p2�d + p3dt · �d + p4, (1)

where the coefficient vector P = [p1, p2, p3, p4] is to be
determined by fitting. Remember that our function measures
the response time taken to fuse the target disparity dt after
a disparity change of �d, and it is not equivalent to a dif-
ferentiation of some response time function T (dt ) on the
target disparity dt , which indicates the increased response
time given an increasing in dt .

Fig. 8 The fitted response time function T . A warmer color indicates
a longer response time. Dashed lines indicate parameter limits in our
experiments

Furthermore, to explore how differently crossed and
uncrossed disparity [14] affect the response time, as well
as directions of depth jumps, we extend Eq. 1 to allow
(p+

1 , p+
2 ) and (p−

1 , p−
2 ) for dt ≥ 0,�d ≥ 0 and dt <

0,�d < 0, respectively. Similarly, p3 is extended to
(p++

3 , p+−
3 , p−+

3 , p−−
3 ) for different sign combinations of

dt and �d. The final coefficient vector P = [p+
1 , p+

2 , p−
1 ,

p−
2 , p++

3 , p+−
3 , p−+

3 , p−−
3 , p4] is obtained by optimizing

arg min
P∈R9

210∑

j=1

(
T (s j ) − Tj

Tj
)2.

The resulting coefficient vector is P = [.0294, .0849,
−.0254, −.1165, .0203, −.0261, .0707, −.0112, .4186].
Multivariate regression analysis gives an R2 measure of
goodness of fit R2 = .960. The fitted function is visualized
in Fig. 8.

This fitted function is consistent with the ANOVA results
from Sect. 4.1. Other important quantitative conclusions can
also be directly inferred from the function:

– The direction of a depth jump affects the response time.
Response time changes more strongly after a crossed
(�d < 0) depth jump than it does after an uncrossed
(�d ≥ 0) depth jump (|p−

2 | = .117, |p+
2 | = .0849):

jumping from near to far is easier than the opposite.
– The sign of the target depth also affects the response
time. The HVS behaves differently for crossed disparity
(|p−

1 | = .0254) and uncrossed disparity (|p+
1 | = .0294),

as noted in earlier works on visual discomfort [14,50].
– The combination of dt and �d influences the response

time; moreover, this effect differs for different sign com-
binations of these quantities (p++

3 = .020, p+−
3 =

−.026, p−+
3 = .070, p−−

3 = −.011). In general, the
response time is shorter when jumping to a crossed dis-
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Fig. 9 Two scene cuts (disparity map inset, top row: Animal United
© 2010 Constantin Film, Germany; bottom row: The Smurfs 2 ©
2013 Sony Pictures Animation Inc.), with the corresponding per-pixel

response timemap. Brighter red indicates a longer response time. From
left to right the scene ( ) before the cut, the scene ( ) after the
cut, and the pixel-wise response time map

parity than to an uncrossed one, as p3dt · �d is negative
when dt < 0; see Figs. 4a and 7.

4.4 Real scene changes

So far, we have presented experiments and a model for
response time given disparity changes in artificial stimuli.
We now consider a practical computational approach to esti-
mating the response time for changes in real stereoscopic
content. In particular, we first consider a response time map
for each pixel in the new scene, and then how to combine
this information to determine the overall response time to a
scene cut.

Given two scenes (I li , I
r
i ) and (I lt , I

r
t ) with left and right

views, we first compute the disparity maps Di , Dt for the
left view of each scene. For real-world scenes, pixel disparity
maps may be estimated using the method of Smith et al. [51],
and then converted to angular disparities.

Directly using the response time function presented in
Sect. 4.3 allows us to determine a pixel-wise response time
map for the target scene after a sudden scene change, indi-
cating the time for a target position to be clearly fused after
a scene change. Before the scene change, the viewer will
typically focus on the most salient region of the image con-
tent [6]. We use a saliency map to characterize the corre-
sponding effect on response time, as the most salient region
will dominate the overall response: we expect the HVS to be
most concerned with fusing the important content. We thus
compute a region contrast-based saliency map (Si (·), St (·))
for the left view using the method of Cheng et al. [6], giving
saliency values for each region. A region in the initial scene
contributes to a target pixel by averaging all its contained
pixels. Finally, we compute the response time for each pixel
in the target scene at location x ∈ R

2 as:

Tp(x) =
∑

�∈I li
Si (�) · 1

|�|
∑

y∈�

T (Dt (x), Dt (x) − Di ( y)),

(2)

where � represents a region in the initial scene.
Two observations may be made which allow this quantity

to be quickly estimated. Firstly, in the initial scene, an aver-
age disparity can be used to represent a region’s disparity
based on the observation that disparities within a region vary
little in general. Secondly, target disparities can be carefully
quantized to allow use of a response time look-up table, as
the same disparity leads to the same response time according
to Eq. 2.

The pixel-wise response time is then spatially pooled to
evaluate the global response time during a scene cut. As
perceived depth at a point in the scene is influenced by
its surroundings and scene arrangement [3,21], we incor-
porate contributions from all regions in the target scene
into the final response time, instead of just using the area
with longest response time [14,55]. Regions are weighted
by their saliency values and the response time for a region
is simply averaged across all contained pixels. Specifi-
cally, we estimate the overall response time for a scene cut
as:

Tg =
∑

�∈I lt
St (�) · 1

|�|
∑

x∈�

Tp(x), (3)

where � represents a region in the target scene. Sec-
tion 5 presents tests performed to assess the validity of this
approach.

Figures 1 and 9 show three scene cuts from two real 3D
movies and the corresponding per-pixel response time maps;
regions with different response times can be clearly seen.We
showanother example video clip, containing two consecutive
scene cuts, in Fig. 10. Such maps could help producers to
identify the potential problem regions which would result in
a long response time if they were the main areas of interest.
Alternatively, they could be used to help ensure that viewers’
attention is drawn to regions requiring a short response time,
by making them more salient.
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Fig. 10 An example of video
clip (Animal United ©2010
Constantin Film, Germany) with
two consecutive scene cuts.
From top to bottom input
frames, disparity maps, and
per-pixel results (brighter red
indicates a longer response
time) of scent cuts

Fig. 11 Left view of controlled
scene cuts used to validate our
computational model. a Initial
scene (red); b target scenes
(cyan) with different luminance
contrast spatial frequencies
(low, medium, high); c target
scenes (green) with salient
object having different levels of
disparity. The background
disparity is 1.6◦ for all scenes.
The target scenes are referred to
as A, B, C, D in turn

5 Validation

In this section, we present a series of user studies used to val-
idate our response time formula from Sect. 4.4, taking into
account our assumptions on luminance contrast spatial fre-
quency, and region saliency. These compared the response
time predicted by our formula with subjects’ actual response
times to scene cuts. The relationship between viewing expe-
rience and response time during a scene cut was also inves-
tigated.

Model evaluation The first user study was performed in
the same way as the one in Sect. 3.1: subjects were asked to
press a key as soon as they had clearly accomplished stereo
fusion. The initial scene (see Fig. 11a) was changed to scenes
with different luminance contrast spatial frequencies (see
Fig. 11b), and scenes with salient regions having different
levels of disparity (see Fig. 11c). We further validated our
computational model using real scene cuts which exhibited
various depth jumps and target disparity ranges. Besides the
three cuts, SmurfsA, AU and SmurfsB, shown in Figs. 1 and 9;
another such scene cut, Croods, is presented in Fig. 12.

Ten subjects participated in this user study. Results are
given in Fig. 13. For the controlled scenes, the response
time differed significantly when the user focused on different
salient regions, while no significant difference was found for
different luminance contrast spatial frequencies, just as pre-
dicted by our model. Although the measured time is smaller
than the one predicted by our formula, there is a significant
correlation between them: Spearman’s rank correlation coef-
ficient is ρS = .857 (p = .007 < .05) and Pearson’s linear
correlation coefficient is ρP = .993 (p < .01).

Generally, the actual response time for both controlled
and real scene cuts is smaller than the one predicted by our
model. We believe this is mainly due to the availability of
depth cues and it should be investigated further. Our model
is merely based on the cue of binocular disparity (using ran-
dom dot stereograms) to provide depth perception, while the
scene cuts tested here provide other monocular cues, such
as size, shade, perspective, occlusion etc., all of which can
help to establish a more natural sense of stereopsis and facil-
itate a faster response [17]. Given the high linear correla-
tion between the measured data and the predicted values,
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Fig. 12 A further real scene cut
( , The Croods ©2013
DreamWorks Animation Inc.)
used to validate our
computational model

Fig. 13 Results of model validation. B, C and D show the response
time for different luminance contrast spatial frequencies; A and C show
the response time for salient objects having different disparities; the last
four show response times for real scenes

we may apply a linear correction to the function in Eq. 3 to
obtain a final model for response time, T = .963Tg − .219
(R2 = .987).

Viewing experience We conducted a further user study to
explore the relationship between viewing experience and the
response time to a scene cut. Previous studies have shown
that repeated or frequent depth jumps lead to deteriorating
visual function [15] and interrupt the feeling of stereoscopic
immersion [33].

We conducted trialswith two consecutive controlled scene
cuts (i.e. three consecutive scenes). The exposure duration to
both the first and third scenes was 2 s, while for the sec-
ond scene it was either 0.5× or 1.5× the response time for
the first scene cut. We tested both forward jumps (the fore-
ground object first changed from−1.4◦ to 1.4◦, then to 0.0◦)
and backward jumps (the foreground object first changed
from 1.4◦ to −1.4◦, then to 0.0◦). In each test, subjects were
presented with both longer and shorter durations (in random
order, with a one-minute break between trials), during which
they were asked to attempt to fuse foreground objects in the
second scene and indicate whether they had succeeded or
not. After the test, subjects were asked to indicate which trial
led to a better 3D viewing experience.

The same ten subjects from the previous user study took
part in this experiment. All subjects reported that they could
fuse the second scene in the longer trials and also had a better

3D viewing experience for the longer trials, for both forward
and backward jumps. All subjects except one indicated that
the second sceneoccurred too soon to fuse in the shorter trials,
for both forward and backward jumps. The results confirm
that response times during a stereo scene cut affect viewing
experience.

6 Applications

In this section,we consider some applications that can benefit
from our experiments and computational model derived in
Sect. 4.4.

Optimizing for stereoscopic scene cutsOur computational
model can be directly used to optimize the response time
taken to fuse the new scene during a stereoscopic scene cut.
The new response time can be calculated after linear or non-
linear disparity mapping [28] for the initial scene and/or the
new one. Viewers can even locally adjust the disparities in the
regions of interest in an interactive manner until the proper
response time is achieved.

Visual comfort assessment Many visual comfort met-
rics [7,8,24,26,55] have been proposed to evaluate long
stereo videos. All have processed cuts and between-cuts in
the sameway. Recently, Du et al. [14] presented a visual com-
fort metric for stereoscopic motion for short videos (usually
a single shot).

To evaluate the overall level of visual comfort for a long
stereo video, the cuts and parts between cuts should be treated
separately, as the HVS behaves differently in each circum-
stance. Our response timemodel can be incorporated into the
visual comfort metric by first cutting the video into different
scenes, and predicting the response time using our metric
for scene cuts. By then comparing the time for which each
scene lasts with the corresponding time needed to switch
to the scene would indicate the comfort level related to the
scene cut. Combining this approachwith themetric from [14]
metric for different scenes, an overall visual comfort score
can be determined for a long stereoscopic video. This addi-
tional information is especially useful for videos with fre-
quent scene switches, where target scenes appear fleetingly.

3D shooting 3D film shooting is still a tricky professional
task which relies on experienced film-makers, although vari-
ous principles have been suggested to guide shooting [33,38].
Methods have been introduced to plan a camera configura-
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tion to achieve smooth depth jumps [18,42]. Our metric, on
the other hand, can be exploited to quantitatively control the
amount of depth jump which is perceptually acceptable.

The response time predicted by Eq. 3 is actually a thresh-
old time for the target scene to be clearly fused, as revealed
in the second validation: the target scene can be well fused
if it lasts longer than this time, but fusing will not happen
if it less than this time. Given the duration of the target
scene, either the disparity change or the target disparity can
be directly computed using our metric if the other quantity is
constrained. This could help to guide the director in planning
the layout of the scene to be filmed.

Stereoscopic video editing When applied to stereoscopic
video, many stereoscopic editing tools, such as 2D-to-3D
video conversion [32,56], disparity mapping [28,31], retar-
geting [2,5,10,30,37], warping [13,41], completion [39],
scene arrangements [34,35,53], etc., could also benefit from
our model by constraining the response time for scene cuts
after editing. These methods usually rely on optimizing an
energy function describing the operation, and our response
timemetric for scene cuts could be incorporated into the opti-
mization process to ensure a sufficiently short response time
after editing.

7 Conclusions

We have presented a novel model to describe the time taken
by the HVS to clearly perceive a target scene following an
abrupt depth change in S3D viewing. A bilinear response
time model, involving the two most significant factors: the
target disparity and the change of disparity, is a good fit to
data collected from perceptual experiments. It was derived
following a careful statistical analysis of the significance
of both a single factor and interacting factors, taking into
account initial and target disparity, and luminance contrast
spatial frequency. Furthermore, a method has been given to
estimate overall expected response time during a scene cut
in stereoscopic videos. This has been validated in a further
user study.

In future, other potentially important factors, such as lumi-
nance contrast and color contrast should also be considered
and statistically analyzed in a similarway. It is clear thatmore
sophisticated models could be proposed given the complex-
ity of the HVS. Currently, we simply weight different scene
regions by their saliency values, but a more sophisticated
scheme is likely to provide an improvement, given that per-
ceived depth is influenced by disparity gradient [3]. Overall,
in combination with previous work on stereoscopic percep-
tion, such as disparity discrimination thresholds [11,12], and
visual comfort with stereoscopicmotion [14], we believe that
our response time model can be used to help inform a bet-

ter viewing experience for S3D content and applied to some
interesting 3D versions of applications of visual media [22].
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