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Abstract In this paper, we have proposed a novel patch-
based method for automatic completion of stereoscopic
images and the corresponding depth/disparity maps simul-
taneously. The missing depths are estimated in local fea-
ture space and a patch distance metric is designed to take
the appearance, depth gradients and depth inconsistency into
account. To ensure the proper stereopsis, we first search for
the proper stereoscopic patch in both left and right images
according to the distance metric, and then iteratively refine
the images. Our method is capable of dealing with gen-
eral scenes including both frontal-parallel and non-frontal-
parallel objects. Experimental results show that our method
is superior to previous ones with better stereoscopically con-
sistent content and more plausible completion.

Keywords Stereoscopic · Completion · Depth inconsis-
tency · Distance metric

1 Introduction

3D techniques have gained great success in recent years.
The success in turn inspires the development of stereoscopic
3D capture and display techniques, which brings in masses
of stereoscopic 3D content, making 3D editing techniques
and applications on the agenda, some of which have been
explored, such as stereo cloning [27,28,38], stereoscopic
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warping [10,30], disparity mapping [23], stereoscopic retar-
geting [2,6,24], stereo painting [20], just to name a few.

In this paper, we focus on image completion for stereo-
scopic image pairs. We define “holes” by the missing or
removed regions, which are filled by proper synthesized con-
tent based on other parts of the image. Massive researches
have been conducted for single image completion, some of
which have been proved to be of good quality [1,13,21,37].
Completing the left and right images separately may produce
good results for monocular viewing, while this may probably
break the stereo correspondence and affect the 3D viewing
experience. Especially for the content which is missing in one
view but present in the other (refer to Figure 1(c) in [29]),
known as half occlusion. Additionally, depth/disparity is
available for producing more visual plausible results [8,14]
when it comes to stereoscopic 3D. More importantly, depth
constraint should be carefully taken into consideration to
guarantee a comfortable and consistent 3D viewing expe-
rience [17,22,33].

This paper has proposed a patch-based refine method to
complete the missing regions in a stereoscopic image pair
such that the filled color image content is stereoscopic as
well as consistent, simultaneously recovering the underlying
depth/disparity maps. Our method takes the depth inconsis-
tency (see Sect. 3.3) into account and achieves better stereo-
scopically consistent completion than previous method [29].
As the depth maps usually contain some deviations, espe-
cially in those smooth regions, we do not seek to pre-
complete full disparity maps as performed in [29]. Instead,
the depth maps and color images are simultaneously com-
pleted in a mutual promotion way using an iterative fashion.
Current best matched patches, according to a depth gradi-
ent domain patch distance metric, will be found out for the
unknown regions in each iteration and the missing depths
will be inferred using depth shift (see Sect. 3.4.4) from its
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(a) (b)

Fig. 1 We present a novel technique for stereoscopic image comple-
tion and depth recovery. Given a stereoscopic image pair with undesired
regions (green) and its disparity maps, we complete the non-frontal-

parallel road, plants in (a) and ground in (b) in a stereoscopically con-
sistent manner, resulting in reasonable disparity maps (inset). The result
anaglyphs can be better viewed with red-cyan glasses

local feature space (pixel color and pixel location). The esti-
mated depth map, in turn, helps to find out better patch can-
didates. The designed gradient domain metric of patch dis-
tance also helps to make our method capable of handling
both frontal-parallel and non-frontal-parallel scenes (demon-
strated in Figs. 1, 3) to recover structures spanning a large
depth range, relieving the assumption, adopted in [29,39],
that the “holes” should be filled with content from further
regions than the original ones. This assumption is not suit-
able for all cases and can even be wrong in some extreme
cases.

Specifically, this paper makes the following contributions:

• a patch-based refine scheme which produces stereoscopi-
cally consistent results and can be used to handle the depth
inconsistency problem, one that can bring in inconsistent
completion in previous methods;

• a depth gradient domain patch distance metric, which
is suitable for completing both frontal-parallel and non-
frontal-parallel scenes;

• a disparity estimation method, which estimates disparity
using depth shift in local feature space, facilitating simul-
taneously images and depth map completion.

This paper is organized as follows: Section 2 will review
the related work; our method will be presented in detail in
Sect. 3; then we will show our results in Sect. 4; finally, Sect. 5
concludes our work and discusses the future work.

2 Related work

Single Image Completion Single image completion concerns
about two things. One is to find out the optimal content for

each unknown (target) pixel/patch, and the other is to syn-
thesize the content in a visually plausible manner. The filling
content can be propagated or directly chosen from known
(source) pixels/patches. In the former case, diffusion-based
methods, like [3], usually involve solving partial differential
equations (PDEs), propagating the source surroundings into
the target regions along salient structures with the assump-
tion of smoothness in color. However, these methods are
less capable of handling large target areas where highly tex-
tured contents or semantic structures are desired. The latter
case is often referred to as exemplar-based methods. In these
methods, image completion problem is regarded as assign-
ing each pixel/patch in the target regions a source one. The
problem can be further formed as a discrete Markov Random
Fields (MRFs) optimization [21,37] or just a patch search-
ing problem. The MRFs can be optimized via belief prop-
agation(BP) [21,37]. Though the MRF-based methods can
achieve satisfying results via global optimization, they are
indeed time consuming, usually quadratical in the number of
image pixels. In patch searching, source patches are matched
to the target regions to give the best candidates. Criminisi et
al. [7] fill the blank left behind when the foreground objects
are removed and the filling order is incorporated to prefer
the one with high structure information and more available
surroundings. Methods like [7], performed in greedy fash-
ions, are easily fallen into local optima as well as sensitive
to initialization and the optimization strategy.

Searching for the best match for some pixels/patches,
typically known as the approximate nearest-neighbor fields
(ANNF) problem, can be computationally expensive with
the increase of search space and scale of problem. Barnes
et al. [1] assume that there is a good chance that at least
one good match can be found in a randomly assigned ANNF
and iteratively refine the ANNF by propagating the good one
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to its neighbors. He et al. [12] make significant improve-
ment in ANNF by combining candidate distributions and
query dependency, which is further used to find out the main
patch offsets to combine shifted images to complete the target
regions [13].

With additional depth information available, He et al. [14]
extended PatchMatch [1] to RGB-D(depth) to simultane-
ously inpainting color image and depth map.

Stereoscopic image/video editing With the rapid growth
of consumption in 3D production, such as 3D movies, 3D
cameras and so on, developing individual stereoscopic 3D
media editing tools becomes more and more popular in the
research group. To avoid visual discomfort [17,22] when
watching stereoscopic content, disparities of presented con-
tent should be bounded in the comfort zone [17,22] as sug-
gested in [5,31,33]. Stereo motion also affects the perceived
level of visual comfort [11] and should be carefully manip-
ulated [19].

As to specific editing tools, Lo et al. [27] and Luo et al. [28]
both focus on stereoscopic image cloning, copying the stereo
content of interest somewhere else and then compositing it
into a new 3D scene. Tong et al. [38] make it different by
copying intended content from 2D images. Niu et al. [30]
extend 2D image warping to 3D. Du et al. [10] make it pos-
sible to switch among different perspectives for stereoscopic
images using feature correspondences between the image
pair. Lang et al. [23] exploit a nonlinear and locally adaptive
fashion to remap the disparity range of stereoscopic images
and videos. Lee et al. [25] also develop a nonlinear disparity
mapping technique using disparity histogram. Yan et al. [41]
propose a linear depth mapping method to adjust the depth
range of stereo videos according to the viewing conditions.
Didyk et al. [9] provide a near real-time solution to display
stereoscopic videos on multi-view autosteresocopic screens.
Zhang et al. [42] and Liao et al. [26] convert conventional
videos into stereoscopic ones. Stereoscopic image retarget-
ing is also addressed in [2,6,24].

Wang et al. [39] develop a stereoscopic inpainting system
for simultaneous color and depth recovery. They complete
the half occlusion regions using 3D warping of the coun-
terpart in the other image and then greedily search for the
optimal patch for unknown pixels using depth-assist texture
synthesis [7]. Morse et al. [29] accomplish completing the
target regions in a stereo pair by exploiting PatchMatch to
search for candidate patches within both left and right images
guided by pre-completed depth maps.

Hervieu et al. [15] present a two-step algorithm for
inpainting stereo images by first diffusing disparities into
holes and then synthesizing textures using a variation of [7].
Later, in [16], they propose to inpaint one of the stereoscopic
images in a texture-by-number manner using depth layers
and fill-in the corresponding pixels of the other using dispar-
ity map.

The methods proposed by Wang et al. and Morse et al.
are most related to ours. The carefully designed depth gra-
dient patch distance metric makes our method produce more
consistent results and relieves the depth assumption, i.e., the
“holes” should be filled with content from further regions
than the original ones. Our method, thus, is more practical
to general scenes including both frontal-parallel and non-
frontal-parallel objects.

3 Stereoscopic image completion

This paper addresses the image completion problem for
stereoscopic image pairs as shown in Fig. 1. In particular,
given a source image pair, (I l , I r ), which is assumed recti-
fied, and its disparity maps, (Dl , Dr ), users are asked to draw
loosely corresponding contours, (∂�l , ∂�r ), to identify the
undesired regions, (�l ,�r ), as described in Sect. 3.1. The
stereoscopic image completion is then formulated as an opti-
mization to maximize the coherence and stereo consistency
of the completion results in Sect. 3.2. The final completed
color images ( Î l , Î r ) and disparity maps (D̂l , D̂r ) are itera-
tively synthesized using a stereoscopic patch refine scheme
and local disparity estimation (Sect. 3.4).

3.1 Preprocessing

Disparity estimation Estimating a full dense disparity map
from a stereo image pair is still a challenge in computer
vision. All disparity maps used in this paper are estimated
using the method proposed by Smith et al. [35] for its good
performance and sub-pixel disparities.

Region selection We simply ask users to specify loosely
corresponding contours (∂�l , ∂�r ) on both views to identify
the undesired regions (�l ,�r ), though more sophisticated
scheme can be used, such as the contour transfer proposed
by Luo et al. [28].

3.2 Completion via optimization

In research community, single image completion is usually
formed as a global optimization problem, seeking to min-
imize the following objective function which measures the
coherence [1,34,40] between the target and source regions
of the image:

dcoh(T, S) =
∑

t∈T

min
s∈S

d(t, s), (1)

where T is the missing region (target), S is the rest of the
image (source), t and s are patches traversing target and
source regions, respectively, and d(t, s) is a distance mea-
sure between t and s.
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When it comes to stereoscopic media, additional informa-
tion is available, i.e., another view and depth about the scene.
Thanks to the human visual system, objects can be perceived
even if they appear just in one view, which implies that some
missing content in one view can be inferred from the other.
Also, depth information should be taken into account when
measuring difference between patches. More importantly,
to guarantee the stereo consistency within missing regions
(�l ,�r ), the stereo correspondences of the filled content in
the missing region should be kept in mind.

In particular, let (�l , �r ) � (I l \ �l , I r \ �r ), denot-
ing the source regions. Also let M(·) define a mapping
for stereo correspondences between Î l and Î r with dispar-
ity maps (D̂l , D̂r ), i.e., M(t) represents the correspond-
ing right(left) view patch centered at (x + D̂l(r)(x, y), y)

when t is a left(right) view patch centered at (x, y). We
then extend the objective function for single image com-
pletion in Eq. 1 to stereoscopic image pair to take both
appearance coherence and stereoscopic consistency into
consideration. Finally, we define the stereoscopic image
completion as a minimization of the following objective
function [29]:

SCC( Î l , Î r , D̂l , D̂r |�l , �r ,�l ,�r , Dl , Dr ) =
∑

t∈�l∪�r

min
s∈�l∪�r

d̃(t, s) + λsc ·
∑

t∈�l∪�r

d̃(t, M(t)), (2)

where d̃(·, ·) is a measure of difference between patches con-
cerning about both appearance and depth (see Eq. 3), and λsc

controls the importance of stereoscopic consistency. Similar
to Eq. 1, the first term tries to fill the target coherently with
source information in either of the views; meanwhile, the
second term ensures that the filled content in target regions
looks stereoscopically consistent.

This optimization can be approximately achieved using an
E–M (expectation–maximization) style approach, iteratively
alternating between patch matching and value update, just
like the completion presented in [29], and we will explain
the details in Sect. 3.4.

3.3 The metric for patch distance

As we can see from Eq. 2, the distance measurement between
patches plays a key role in the whole algorithm. Depth has
been directly adopted in previous methods [14,29,39] to
measure difference between patches, encouraging to choose
patches from similar depth layer for the target regions. This
performs well for frontal-parallel scenes, for the scenes can
be simplified as different depth layers. In non-frontal-parallel
scenes, depths at different pixels, even close ones, can change
a lot. Therefore, we adapt the measurement to evaluate dif-
ference in depth gradients. In particular, let G(p) denote the

depth gradient field of patch p, and then we define the dis-
tance metric between patches p1 and p2 in Eq. 2 as:

d̃(p1, p2) = (1 − λg)dc(p1, p2) + λg · dg(G(p1), G(p2)),

(3)

where dc(·, ·) is the sum of square difference in color space,
dg(·, ·) measures the difference in depth gradient field, and
λg controls the weight. Further, dg(·, ·) is defined as sum of
L-2 distance in gradient field, namely,

dg(g1, g2) =
∑

x

‖g1(x) − g2(x)‖, (4)

where g1(x) and g2(x) denote the corresponding depth gra-
dient vectors for each location x within the patches.

A significant difference between methods proposed in
[15,29,39] and ours is that we do not exploit the assump-
tion that the target should be filled with contents farther than
the original. This assumption is unsuitable for non-frontal-
parallel scenes and will produce inconsistencies when struc-
tured content is to be inpainted, such as a straight line crossing
the missing region, where the missing depths of the straight
line should be extended from both the available farther and
nearer parts of the line. This assumption can even be wrong
in some extreme cases, where the “holes” are the farthest
parts of the image, for all the available depths are nearer than
the missing depths. Our measurement evaluates the depth
similarity in gradient domain and is free of comparing depth
values, thus suitable for both frontal-parallel and non-frontal-
parallel scenes.

Morse et al. [29] try to maintain the stereoscopic consis-
tency through stereo propagation, namely, including offsets
from stereo-corresponding patch and its neighbors in the can-
didate set. This method could handle scenes without depth
inconsistency. However, when depth inconsistency occurs
(e.g., occlusions) in the underlying disparity maps, stereo-
scopic inconsistency may exist between completed color
images.

To better understand this point, we refer to Fig. 2 for illus-
tration. In the top row, two views are presented with red
dashed contours marking the target regions. The horizontal
object (far) is occluded by the vertical object (near) in the
right view. According to the pre-completed disparity map
for the left view in [29], the stereo-corresponding point for
target point A (yellow) is expected to be point A

′ = M(A)

(green, in source region) in the right view. Then there is good
chance that the patches around A

′
are chosen to be candidates

for target point A, resulting in a stereoscopically inconsistent
completion in the bottom row.

Looking into Fig. 2 further, we observe that depth incon-
sistency occurs at point A, i.e. A mismatches A

′′ = M(A
′
)

(green, let us name it as A’s stereo reflection), which is the
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Fig. 2 Depth inconsistency occurs at target point A (yellow) for the
Left view. Stereo propagation may result in inconsistent completion
(bottom row) when the depth inconsistency exists in underlying dispar-
ity maps

stereo-corresponding point of A
′
. This implies that depth

inconsistent patch pair can differ a lot, especially when an
occlusion occurs.

So, when a candidate source patch is selected, we should
account for the similarity between the stereo-corresponding
pair of patches, i.e., the severer the depth inconsistency is, the
less similarity is required. In particular, let DI (p) denote the
depth inconsistency at location p, defined as the shift between
p and its stereo reflection. Then the cost of choosing source
patch s for target location t is calculated as:

F(s, t) = Lλic

(
Lλ(s,t)

(
d̃(s, t), d̃(t, M(t))

)
, DIε(t)

)
, (5)

where Lλ(A, B) � (1−λ)·A+λ·B is the linear combination
between A and B with correlation λ, and λ(s, t) controls the
weight of similarity between the stereo-corresponding patch
pair when source patch s is considered for target patch t . t
is mapped to M(t) based on the estimated disparity maps
as described in Sect. 3.4.4. λic is introduced to trade off the
depth inconsistency. DIε(t) is a cut of DI (t) designed to tol-
erate depth inconsistency to a certain degree with a threshold
ε, i.e., DIε(t) is set to zero only when DI (t) < ε, otherwise
remains the same as DI (t). According to previous analyses,
λ(s, t) decreases with the increase in depth inconsistency, so
we take the following definition,

λ(s, t) = λm · e−DIε (t), (6)

where λm is the maximal weight for stereo consistency.
F(s, t) is the final metric of patch distance when a source

patch s is considered for a target patch t . The effectiveness
of taking depth inconsistency into account is demonstrated
in Fig. 6.

Algorithm 1 Pseudo-code for stereoscopic image comple-
tion
1: Pre-sort scan order;
2: Random initialization;
3: for each iteration do
4: Calculate disparity gradient;
5: for all p ∈ �l ∪ �r do
6: Refine the optimized source patch;
7: Update color and disparity values;
8: end for
9: end for

3.4 Iterative color and depth synthesis

3.4.1 Overview of the algorithm

The inputs to the optimization in Eq. 2 include the source
image pair (I l , I r ), the corresponding disparity maps
(Dl , Dr ), and “holes” (�l ,�r ), marking the missing regions
to be completed. The algorithm seeks an assignment, ( Î l , Î r )

and (D̂l , D̂r ), for the pixels in “holes” to minimize the objec-
tive function in Eq. 2. As discussed in [40], an iterative algo-
rithm can be applied to optimize the objective function when
the following two local conditions are satisfied at each point
p in �l ∪ �r :

(i) All patches containing p appear exactly somewhere in
�l ∪ �r ;

(ii) All patches containing p agree on the values at p.

So, the iterative algorithm should try to find patches meet-
ing the above two conditions. Instead of searching the opti-
mized candidate source patch for each unknown pixel in a
greedy way as Wang et al. [39], an E-M style approach [29]
with PatchMatch is adopted to satisfy the two conditions
by propagating the optimized candidate from neighbors. We
present our pseudo-code for stereoscopic image completion
in Algorithm 1. Firstly, the filling order is prepared in Step 1
and Step 2 initializes the source candidate patch for each
unknown pixel in �l ∪�r with available patches in �l ∪�r ;
then in each iteration, disparity gradient is estimated to facil-
itate patch distance calculation; later, we refine the current
best candidate patch in a stereoscopically consistent manner
for unknown pixels with the scan order obtained in Step 1,
followed by updating color images and disparity maps in
Step 7. Compared to [29], our algorithm does not take pre-
completed disparity maps as inputs; instead, the disparity
maps and color images are completed simultaneously. We
explain the details of the algorithm in the following sections.

3.4.2 Scan order and initialization

The order of the unknown pixels to be processed is respon-
sible for completion results of high quality. We hope that
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(a) (b) (c)

Fig. 3 Completion for different depth layers in non-frontal-parallel scene. The seawater, embankment and guardrail, occupying different depth
ranges, are stereoscopically completed with reasonable disparity maps

the patch with more already known information will be han-
dled first. So we use the confidence term when computing
patch priorities as in [7], differently extended to stereoscopic
image pair, i.e., the order is sorted for unknown pixels in
both views together, and thus the two views are processed
together.

In standard PatchMatch algorithm, all patch offsets for
the unknown pixels are randomly distributed. In stereo case,
this random distribution can be improved in the following
manner: if pixel p(x, y) ∈ �l and (x + Dl(x, y), y) ∈ �r ,
then the offset for location (x + Dl(x, y), y) in right view is
set to (−Dl(x, y), 0), with initial disparity −Dl(x, y); Sim-
ilarly, if pixel p(x, y) ∈ �r and (x + Dr (x, y), y) ∈ �l ,
then the offset for location (x + Dr (x, y), y) in left view is
set to (−Dr (x, y), 0), with initial disparity −Dr (x, y); the
offsets and disparities for remaining unknown pixels are still
randomly initialized in �l ∪ �r .

Similar to the mutual completion in [39], this improve-
ment is based on the fact that some occluded parts in one
view can be visible in the other one due to the viewpoint dif-
ference in the stereoscopic image pair. This is also the reason
why we do not need a pair of accurately corresponding con-
tours to indicate the missing regions. However, due to the
greedy optimization strategy adopted in [39], the offset for a
missing pixel is fixed ever since it is visited and will no longer
change. This is obviously sensitive to the accuracy of under-
lying disparity maps. In our initialization, it only performs
as a “good” guess and the imperfect ones will be refined
later.

The effectiveness of taking scan order initialization into
account is demonstrated in Figs. 5 and 6, respectively.

3.4.3 Stereoscopic patch refinement

Like PatchMatch, for each pixel p ∈ �l ∪�r , the offset of p
is refined by finding the best matched one within a set of can-
didate patches, C (p), followed by a random search around
the best one to jump out of local minima. The candidate set
C (p) contains two parts:

• the one currently found in p and the ones propagated
from its 4-connected neighbors with higher priorities or
in source regions;

• the one found in p’s stereo-corresponding point in the
other view.

The first part is adopted in the original PatchMatch algo-
rithm, and the second one is referred to as cross-image prop-
agation, which has also been exploited in [4,29].

3.4.4 Color and depth update

The new color for a pixel p in the missing regions is computed
as the average of color values at p for all patches containing
p. The disparity value is updated in a similar way, except
that the disparity values at p for all pathes containing p will
be “shifted” before averaging, since the depth similarity is
measured in gradient domain. This makes sure that the sec-
ond condition in 3.4.1 is satisfied and thus guarantees the
optimization.

The disparity maps used in [39] contain many flat blocks
(constant values) due to the limitation of the adopted stereo
matching algorithm [36]. Consequently, their segmentation-
based plane fitting disparity estimation will also recover flat
blocks in the final disparity maps, which makes it unsuitable
to complete non-frontal-parallel scenes. The diffusion-based
inpainting methods adopted to pre-complete the disparity
maps in [15,29] try to propagate disparity values near the
hole boundaries inside. This can produce apparent seams in
the center of target regions when the underlying disparities
seem to be changing gradually, which is common in non-
frontal-parallel scenes.

When we choose a source patch as a candidate for a target
location, the depth of the target location can be regarded as
a shift to the source one. Based on this rule, we propose to
estimate the mean value of the depth shift from source to
target. We also notice that pixels of similar color and close
position are likely to have the same depth shift. So, the depth
shift is weighted in the local feature space, pixel color c and
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pixel location x. Specifically, we consider a target location
t with its neighbors Nt and its candidate source location s.
In our implementation, Nt contains offsets to t referring to
pixels with higher priorities than t or in source region. Finally,
the mean depth shift from s to t is modeled as:

−→
d (s, t) =

∑

v∈Nt

ws,t (v) · (ds+v − dt+v), (7)

where

ws,t (v) = gx (‖v‖/σx )gc(‖ct+v − cs‖/σc)∑
u∈Nt

gx (‖u‖/σx )gc(‖ct+u − cs‖/σc)
. (8)

In the above equation, gx and gc are the Gaussian kernel
functions for pixel location x and pixel color c, respectively,
and σx , σc are the corresponding bandwidths. Finally, the
disparity for target location t is estimated as:

d̂t = ds − −→
d (s, t). (9)

4 Implementations and results

Parameters In our experiments, all color images are han-
dled in CIE L*a*b* color space due to its close relation-
ship to human vision. To facilitate calculation, both color
images and disparity maps are normalized into [0, 1]. In our
implementation, the size of patch is 15 × 15. Although the
depth information can provide some structure cues about the
scenes, compared to color information, it is not so support-
ive as expected when searching for the better patches, for
its huge simplification about the scenes, e.g., all the back-
ground can be in the same depth layer. So, we take small val-
ues, 0.1 ∼ 0.2, for λg when calculating difference between
patches in Eq. 3. The depth inconsistency toleration thresh-
old ε is set to 3.0 for all examples in this paper. The maximal
stereo-consistent weight λm in Eq. 6 is tuned to be 0.35. The
depth inconsistency trade-off weight, λic, is set to 0.2. The
bandwidths, σx and σc, are set to 0.2 and 0.1 respectively
to account for the influence from neighboring pixels when
estimating disparities in Eq. 9.

Figures 1 and 3 exhibit our ability to complete non-frontal-
parallel scenes when the foreground bicycle and boy are
removed, respectively, noting those well-completed straight
lines. In Fig. 4, our method can still achieve satisfying result
though the underlying disparity maps suffer from serious
errors.

Next, we compare our method with Wang et al.’s [39]
and Morse et al.’s [29] (the depth maps are not available)
using two frontal-parallel examples (Figs. 5, 6) both pro-
vided in their papers. The comparison shows that our patch
refine method is comparable to Wang et al.’s when applied to

(a) (b)

Fig. 4 Serious errors exist in the blue sky, sail boat (the left one), water
(whiter values in disparity maps mean closer distance to the viewer).
The water and sky are well completed after the sail boat (the right one)
and the ball are removed

frontal-parallel scenes and results in more stereoscopically
consistent completion than Morse et al. do.

Figure 5 shows a task to complete a frontal-parallel back-
ground when the foreground bonsai (sub-figure (a), masked
in green) is removed. As expected, our method can also faith-
fully recover the occluded windows in one view from the
available windows in the other view, and the completion is
superior to what have been done in [39] (only left view is
published) and [29]. While [29] [sub-figure (d)] has diffi-
culty in completing continuous roof edges that are occluded
in both views for they employ a scan line order, our method
[sub-figure (c)] can extend the roof in a reasonable way using
the scan order sorted for the stereoscopic image pair together
mentioned in Sect. 3.4.2 to assist the roof edges to be com-
pleted earlier.

Figure 6 demonstrates the depth-inconsistent problem dis-
cussed in Sect. 3.4.3. In depth-consistent areas, such as the
occluded chimney in the top of the right view, missing objects
can be well recovered using our method, the stereo propa-
gation in [29] or the mutual completion in [39]. However,
when completing depth-inconsistent missing regions, e.g.,
the air-condition occluded by the basketball stands in the left
view, the stereo propagation in [29] prefers to the inconsistent
source content, e.g., the fence, resulting in inconsistent com-
pletion. Our stereoscopic patch refine scheme can produce
stereo-consistent content [sub-figure (b)] as well as avoid
the depth-inconsistent problem. The imperfect completion
of air-condition in sub-figure (d) also proves that the mutual
completion in [39] relies heavily on accurate disparity maps
for they adopt a greedy optimization strategy when searching
patches, i.e., the candidate patch for a missing pixel will no
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(a) (b)

(c) (d) (e)

Fig. 5 Completion for half-occluded background in frontal-parallel
scenes. Half-occluded windows in original images (a) are faithfully
recovered using our method (b, c) with underlying disparity maps(inset).

Roof edges are better recovered using our method compared to the
results (d) reported in [29]. e is the left view result in [39]

(a)
(c)

(b) (d)

Fig. 6 Completion for depth inconsistent regions. Depth inconsistency
appears at the occluded air-condition in the left view (a). Our stereo-
scopic patch refine scheme can produce stereo-consistent completion

(b), while [29] completes the air-condition with inconsistent content,
e.g., the fence, in source region in c. d is the right view result from [39]
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(a)
(c)

(b) (d)

Fig. 7 Comparison with [29] and [39]. Our method b produces more faithful and reasonable results than both c [29] and d [39]. Note the windows
and the walls

Fig. 8 More results. From left to right: original left and right images with masks (green) and disparity maps (inset), completion results of color
images and disparity maps (inset) for the both views, and the result anaglyphs ( )

longer change once the pixel is visited. Our method, on the
other hand, will iteratively refine the candidate patch.

Figure 7 shows another comparison with [29] and [39].
Note the windows and the walls. The patch searching strategy
adopted by our method produces more faithful and reason-
able results than [29] (scan line searching) and [39] (greedy
searching). More results are presented in Fig. 8.

Limitations Currently, our method is less capable of sup-
porting interactive editing. The time complexity is linear with
the production of iterative times, the size of “holes” and the

size of patch. The method proposed by He et al. [12] can be
used to speed up the patch matching process. The parame-
ters are selected empirically and should be better justified in
future.

5 Conclusions and future work

In this paper, we have presented a method that fills the missing
“holes” in both color images and disparity maps simultane-
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ously when undesired regions are removed in a stereoscopic
image pair. Stereo-consistent completion results are ensured
through a novel patch matching scheme which takes the depth
inconsistency, one that can cause inconsistent completion
in previous methods, into account. The carefully designed
patch distance metric makes our method capable of handling
non-frontal-parallel scenes, as well as frontal-parallel ones,
and free of employing the unnecessary depth constraint, i.e.,
missing regions should be filled with contents further than the
original. Experimental results show that the proposed algo-
rithm is capable of producing more stereoscopically consis-
tent content or more reasonable completion.

As future works, an intuitive extension is to investigate the
problem of stereoscopic video completion [32]. In stereo-
scopic video completion, the number of available source
patches can be repetitive as well as huge. To reduce the
searching time, using the stereo correspondences between
views to study the distribution of candidate patches [12] will
be critical. Furthermore, we could also extend some inter-
esting applications of visual media [18], such as interactive
editing and composition, to stereoscopic cases.
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