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Abstract In this paper, we propose a simple but
effective framework for lane boundary detection, called
SpinNet. Considering that cars or pedestrians often
occlude lane boundaries and that the local features of
lane boundaries are not distinctive, therefore, analyzing
and collecting global context information is crucial
for lane boundary detection. To this end, we design
a novel spinning convolution layer and a brand-new
lane parameterization branch in our network to detect
lane boundaries from a global perspective. To extract
features in narrow strip-shaped fields, we adopt strip-
shaped convolutions with kernels which have 1 × n or
n×1 shape in the spinning convolution layer. To tackle
the problem of that straight strip-shaped convolutions
are only able to extract features in vertical or horizontal
directions, we introduce the concept of feature map
rotation to allow the convolutions to be applied in
multiple directions so that more information can be
collected concerning a whole lane boundary. Moreover,
unlike most existing lane boundary detectors, which
extract lane boundaries from segmentation masks, our
lane boundary parameterization branch predicts a curve
expression for the lane boundary for each pixel in the
output feature map. And the network utilizes this
information to predict the weights of the curve, to better
form the final lane boundaries. Our framework is easy to
implement and end-to-end trainable. Experiments show
that our proposed SpinNet outperforms state-of-the-art
methods.
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1 Introduction
Object detection and segmentation are two of the
most widely investigated areas of computer vision in
recent decades. Generally speaking, advances in these
domains are mostly driven by step changes made by
classic baseline systems, such as Fast/Faster R-CNN
[1, 2] and its follow-up architecture Mask R-CNN [3].
These methods provide a general and conceptional
platform which is both flexible and robust.
Autonomous driving is a concept that has the ability

to define future transportation. Fully autonomous cars
are currently a major topic for computer vision and
robotics research, both academically and industrially.
The goal of autonomous driving requires full control of
the car, which in turn necessitates understanding the
surroundings of the car by gathering information from
sensors attached to it. One of the most challenging
subtasks for such perception is lane boundary detection
for car positioning. Lane boundaries differ from
typical objects in having stronger structural features
but fewer appearance clues [4]. For instance, lane
boundaries often have long, continuous shapes, and
are located at the bottom of the scene. Because
of the lack of apperance clues, lane boundaries may
be incorrectly detected if they mainly rely on local
features. Additionally, occlusion is a significant
difficulty for lane boundary detection, as in many
scenarios, some parts of lane boundaries may be
occluded by other objects, especially vehicles.
Given the above issues, it is essential to utilize

global information for lane boundary detection so
that lane boundaries can be predicted in a holistic
way. One natural idea is to attempt to enlarge
the receptive field of the network. Spatial CNN
(SCNN) [4], inspired by RNN [5], proposed a slice-
by-slice convolution method that is able to transfer
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information between neurons in the same layer. This
architecture is also able to segment objects with long
shapes. However, due to signal decay in the SCNN
layer, distant information in the feature map is still
hard to collect.
In order to gather and analyse features in large

fields, in this paper, we present the idea of a spinning
convolution and apply it within neural networks. The
idea of a spinning convolution is to extract features
along a narrow strip using a 1×n or n×1 convolution
layer. “Spinning” means that long kernel convolution
can run at arbitrary angle. Because of the long
kernel used in a strip convolution, features covered
by the kernels can be equally collected without signal
fading caused by long distances. Generally speaking,
a straightforward strip convolution operation is
performed only along a vertical or horizontal direction;
however, the directions of lane boundaries or other
slender detection targets can vary. As rotating strip
convolution kernels to lie along arbitrary directions
is difficult, we propose to instead rotate the feature
maps to increase the number of ways of collecting
features. In this way, a vertical strip convolution
with a large kernel can process features along any
direction.
Furthermore, most existing methods consider lane

boundary detection as a segmentation problem,
that is, predicting which pixels are covered by
lane boundaries, and the final parameterized lane
boundary curves are produced by a hand-crafted
algorithm which takes the segmentation maps
predicted by the neural network as inputs. But
this sort of method may be confused when the
lane boundary mask is irregular in shape. For
instance, they have problems processing masks
with “holes”. Instead, our approach carries
out lane boundary detection by introducing a
parameterization branch. To explicitly force the
network to predict lane boundaries from a global
perspective, our parameterization branch predicts
the coefficients of lane boundary curves rather than
segmentation masks. The final predicted lines are
weighted combinations of the curves produced by
the parameterization branch. To demonstrate the
effectiveness of our proposed framework, we evaluate
our results on the CULane dataset. We show that our
SpinNet improves all prior lane boundary detection
methods. To further verify the importance of our

proposed spinning convolution and parameterisation
branch, adequate ablation analysis is conducted. It
reveals that both of the new operations contribute
evidently to the overall performance.
In summary, our proposed approach contains the

following contributions:
• A spinning convolution operation which can

extract long range features running in arbitrary
directions, without information decay.

• A novel method of determining parametric lane
boundaries using information from all the pixels
in a feature map.

• An end-to-end lane boundary detection frame-
work, called SpinNet, which achieves state-of-the-
art performance.

2 Related work
In this section, we briefly introduce some previous
approaches closely related to our work.

2.1 Traditional methods

Traditional lane boundary detection algorithms are
based on highly-specialised and hand-crafted low level
features [6–10]. Methods exploiting structure tensors
[11], color-based detectors [12], and bar filters [13]
have achieved reasonable results; they are typically
combined with Hough transforms [14] or Kalman
filters [13]. When using such traditional techniques,
post-processing is needed to weed out false detections,
and to cluster lane boundary segments into final lines
[7]. The weakness of traditional methods is that the
models cannot handle complex circumstances. For
example, occlusion, which is ever-present in real data
[4, 15], presents difficulties for pattern-recognition-
based methods: filters extracting image features fail.
Traditional methods are insufficient to process the
complex situations required in real driving conditions.

2.2 Neural-network-based methods

Deep learning has recently become mainstream
in this domain due to its better results [16, 17].
The perception module in traditional approaches is
replaced by a neural network, to overcome problems
mentioned above. Huval et al. [18] proposed a deep
learning based work, but lacked suitable large scale
datasets for training. Spatial CNN [4] is now the
state-of-the-art solution. It uses a specially designed
architecture of convolution layers, enabling message
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passing between pixels across rows and columns
in a layer. This paper also provided a brand-new
large scale dataset. However, the limited number of
message passing directions resulted in problematic
lane boundaries with unsatisfactory directions.
Methods predicting lane boundaries with the

assistance of other information are now a new trend.
For instance, some research [19, 20] has indicated that
continuous driving scenes could provide information
to constrain the predicted lane boundaries. However,
these works place significant demands on dataset
preparation. 3D vision has also been introduced to
the lane boundary detection domain [21, 22] with
reasonable results, but a major problem remains the
costliness and rarity of both devices and datasets.
Lee et al. [23] proposed a new way of predicting
vanishing points to guide lane boundary prediction,
giving a new approach to object-guided lane boundary
segmentation.

2.3 Lane boundary parameterization

LaneNet [24] proposed a lane boundary detection
framework that tackles the lane boundary detection
task as an instance segmentation problem and also
parametrizes the lane boundary by training an H-Net
for view transformation. However, this work does not
make good use of the predicted parameters, which are
only used to generate the output, and are not capable
of end-to-end training. Other works like Refs. [25, 26]
utilized similar methods, fitting a parabola or spline
for each lane boundary, but some lane boundaries are
so irregular that such curves cannot provide a good fit.

2.4 Feature map deformation

A common method [27] is to rotate the convolution
kernel, making the output of the neural network
rotationally invariant. However, features of long
strip shape are needed to detect the lane boundary,
rather than rotational invariance, in our approach.
Rotational invariance is typically of benefit in limited
specific situations, like fingerprint recognition [28],
galaxy morphology prediction [29], etc. When using
the message passing technique of Spatial CNN [4], we
have to find another solution.

3 SpinNet
In this section, we propose a framework for lane
boundary detection and positioning, called SpinNet.

SpinNet introduces two new ideas that are easy to
implement.

3.1 Overall structure

SpinNet is an end-to-end trainable neural network,
which employs VGGNet [30] as its backbone model.
The structure is shown in Fig. 1. To ensure high
resolution in the output feature map, we discard
all fully-connected layers and the last two pooling
layers (pool4 and pool5) and change the dilation
rates of all convolution layers in stage 5 from 1 to 2
to enlarge the receptive field. The proposed spinning
convolution layer, whose purpose is to extract features
along a long narrow field in a series of directions, is
deployed after conv5 in VGGNet. After the spinning
convolution layer, we also use a Spatial CNN layer,
following Ref. [4], to further enlarge the receptive field.
A fully-connected layer, followed by a softmax layer,
is then used to predict a lane boundary presence
vector ei, representing the probability that the i-
th lane boundary is present in the image. After
upsampling the feature map to the same size as the
input image, a convolution layer predicts a map
giving the probability of pixels being covered by
lane boundaries, a coefficient matrix determining the
parameters for the curves belonging to each pixel,
and a coefficient confidence map.

3.2 Spinning convolution layer

Classical convolution kernels are usually square, e.g.,
3×3, 5×5, etc. Using larger square kernels can enlarge
the receptive field of a network. However, using huge
square convolution kernels would lead to unacceptable
computational costs in our specific task if we wish
to cover a lane boundary. Furthermore, square
convolution layers would have so many parameters in
the convolution kernel, making them difficult to train.
In practice, a lane boundary only occupies a small
proportion of a square area, as they are narrow strips.
A better approach to detecting these objects is to use
strip-shaped narrow convolution kernels, e.g., 1 × n

or n × 1.
To collect information about objects, Spatial CNN

[4] borrowed ideas from RNN, passing messages
inside its layers. However, its critical weakness is
the message decay occurring in its message passing
procedure.
Our specially-designed convolution kernels possess

three clear advantages compared to square-shaped
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Fig. 1 The network structure of SpinNet and an illustration of the proposed spinning convolution. (A) shows the whole network structure of
SpinNet, in which Conv 1 to Dilated Conv 5 are VGGNet backbone and the elements in dotted box and “Existence Vector” are the output of
SpinNet.

convolution kernels and the SCNN technique. First,
strip-shaped kernels provide a set of long narrow
receptive fields in a series of directions. Second, these
kernels require fewer network parameters: while a
convolution layers with 3 × 3 and 9 × 1 kernels have
the same number of network parameters, the latter
has a much bigger receptive field than the former for
the specific task of lane boundary detection. Third,
our kernels are decay-free so that no information will
be easily lost.
But lane boundaries are not just in these two

specific directions, namely horizontal and vertical—
they are arbitrary in direction. To overcome this
problem, we have designed a method of rotating
feature maps: the tilted lane boundaries become
vertical or horizontal in one of the rotated feature
maps, allowing them to be detected by vertical
or horizontal convolution kernels. Although lane
boundaries may not always be straight, some certain
long strip kernels possessing different angles in variant
positions of the feature map can fit a curve properly.
Combining the above two concepts in a single layer
gives our spinning convolution layer. Sample outputs
of our spinning convolution are shown in Fig. 2.
The architecture of this spinning convolution layer

is based on an original convolution layer, in which we
replace the square convolution kernels by our specially
designed strip kernels, and initially, we get the feature
map generated by the backbone network. We first pad
the feature map, and the rotation operation is then

applied to the padded feature map, using a series of
angles. Each different angle gives a new padded and
rotated feature map. The strip convolution layer is
then connected to each of these feature maps, which
generates a series of new feature maps. We then
perform an inverse rotation operation on each, and
crop out the padding. Finally, we concatenate these
outputs to form the final output of our spinning
convolution layer. The process described above is
shown in Fig. 1(B), in which α is a super parameter
determining the spinning angle. We use five spinning
convolutions with different α to form a spinning
convolution stack.
Before our approach, there are many traditional

approaches that aim to collect straight lane boundary
information. However, there are several lane
boundaries in one input image, and the boundaries
may have some spatial information, or even
correlations with each other. Thus, cropping the
input to detect a lane boundary object is improper,
for it will omit spatial information and correlations.
Additionally, if we perform featuremap/input-picture
rotation at the beginning of the network, we will not
be able to finish the strip-shaped convolution, thus
not be able to collect information on various directions
explicitly. As we mentioned above, the directions of
our strip-shaped kernels are fixed into 2, namely,
horizontal and vertical. Thus, rotating feature maps
is the very method to perform convolution using strip-
shaped non-horizontal/vertical kernels, and this is
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Fig. 2 The result feature maps of spinning convolution. Given the strip-shaped kernels, performing convolution in traditional way can only
use horizontal and vertical kernels. But in our purposed method, kernels can be designed to spin at arbitrary angles, as shown in the upper-right
corner of each feature map. (a) is the original image input. (b–f) are the output feature maps of the spinning convolution stack. Each of the
feature maps has 64 channels and the mean values of them are shown. The kernels are rotated with −60, −30, 0, 30, 60 degrees respectively.
Obviously, a kernel with a certain rotation angle can collect more edge information of lane boundaries in that direction.

our original purpose to perform this rotation.
It seems that our method, rotating the feature

maps, will receive a better result compared with these
traditional techniques, since the spatial information
and the correlation between lane boundaries are
properly preserved, while the increase in calculation
just arises a little.

3.3 Parameterization branch

Various works [24–26] consider lane boundary
parameterization as a problem of fitting the lane
boundary with a spline or parabola. However, all
of the above methods share two common defects.
Firstly, lane boundary parameterization is treated
as a separate process from lane boundary semantic
segmentation. In fact, the existing parameterization
process is a hand-crafted algorithm only using the
segmentation mask as input—it is unable to exploit
the rich information in network feature maps. Instead,
the spatial information from these two tasks can be
exploited simultaneously inside the network, so that
the tasks of lane boundary prediction and coefficient
prediction can work together to provide mutual
assistance, and the network will be an end-to-end
task in this way. In our method, we combine these
two tasks into one end-to-end network. Secondly, all
previous works predict only a single set of coefficients,
i.e., a single curve, for a lane boundary in an image.
Commonly, lane boundaries are long smooth shapes,
but in complex situations, their trajectories may be
highly curved or irregular. Fitting a single curve
with simple few global coefficients, typically a low
order curve, will not give satisfactory results. In these
situations, it is necessary to predict lane boundary
curves locally, and then concatenate these local

curves into the final complex lane boundary. We
demonstrate later how we solve this problem.
We mitigate the first defect by combining

parameterization and segmentation into one organic
system: we generate two results using two branches
attached to the same backbone. During training,
gradient back-propagation influences the backbone
through two paths: a semantic segmentation branch
and a parameterization branch, allowing it to utilize
the rich information included in the feature map for
both tasks.
To alleviate the second defect, we force the network

to predict not only local probability information, but
global curve coefficients in each pixel of the feature
map. By doing so, we explicitly make every pixel
predict the curve from a global perspective.
After computing curve coefficients pixelwisely,

the next step is to acquire global lane boundary
information from this information. First, we know
curve could be represented by a set of coefficients.
Let these coefficients be P0, · · · , Pn. The curve

y = f(x) =
n∑

i=0
Pix

i (1)

then represents that lane boundary.
Let us first define the local curve. Unlike the global

curve whose origin is at the upper left of the image,
the origin of the local (relative to a certain pixel)
curve is at the corresponding pixel in the image itself.
Overall, we first treat the whole lane boundary as

a combination of several local curves, which is simple
to generate from the dataset by polynomial fitting.
As the dataset provides some key points on the lane
boundary, we choose one key point and its neighbors,
to determine the local curve coefficients near that key
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Fig. 3 The curve aggregation pipeline. (a) shows a part of an input picture. There are 4 × 4 grids, and each grid indicates one pixel in the
output feature maps and a square area in the original picture. The green horizontal line is the virtual baseline we are trying to solve the
intersection point on. A grid is in orange only if the grid has the maximum Mi on a horizontal vertical baseline. (b) shows the separate curves
Qi generated from the four orange grids. These curves have intersections xi,2 with the green horizontal baseline, which are shown in (c). These
intersections are summed after being weighted by their confidence M and the distance between their baselines and the green one, generating the
final answer x2 on the green baseline. Repeat this process, we get all the xjs, and then we perform a simple post-process to draw the predicted
lane boundary in orange shown in (d).

point by polynomial fitting. As for other key points,
the method is similar. This is a simple pre-processing
task by which we generate the ground truth of the
lane boundaries coefficients. Then, we add a branch
in parallel with the existing segmentation branch. Its
aim is to generate the local curve coefficients at each
pixel.
The method used to generate the set of coefficients

of a lane boundary is regular, and could be performed
by simply adding several dense layers after the output.
But this method will let spatial information from
the feature map be lost. Instead, for each pixel,
the coefficients of the local lane boundary are easy
to predict as this prediction only require adjacent
information. Furthermore, the accuracy of local
prediction is much better since one pixel only needs to
predict the lane boundary nearby. We can thus use a
feature-map-based pixelwise coefficient computation
branch.
As the network only predicts local coefficients and

the global coefficients are easy to acquire from the
dataset, we need a simple global–local transformation.
And this can be performed by

y − yk = fk(x − xk) (2)
where fk is the local curve function whose origin
is at pixel k:(xk, yk). Solving the equation above,
we can easily get the new lane boundary curve
coefficients Pk,i, with origin at pixel k. Preliminary
experiments showed that using n = 1, i.e., fitting
straight lines to lane boundaries, is not sufficient, but
on the other hand, using n > 2 makes imperceptible
further improvement. Thus we set n = 2, i.e., fit

parabolas. In our approach, a parameterization
branch is connected after the output layer of our
backbone to produce a pixelwise coefficient matrix.
Some may believe there is a paradox that our

output has passed the spinning pipeline, and thus
only straight edge information was preserved, which
is a misunderstanding. The shape of the convolution
kernels only indicates the shape of the sampling
points, and the ability to predict objects in other
shapes will not be lost. In Section 4, we proved by
experiments that strip-shaped convolution kernels
have a better capability of detecting lane boundaries.

3.4 Curve aggregation

In the above introduction, we could get the local
coefficient matrices generated by the neural network.
That is, for each pixel of the feature map, there are a
set of coefficients indicating the local lane boundary
curve. To merge the set of local curves into final
lane boundaries, we design the curve aggregation
algorithm.
Curve aggregation is a weighted averaging process.

For a point (x, yi) which lies in the virtual horizontal
baseline y = yi in the final lane boundary, the
target coordinate x is the weighted average of the
horizontal ordinates of the intersections of the local
curves and the virtual baselines. The weights are
positively correlated with the confidence of local
curves predicted by the network and are negatively
correlated with the distance between the pixel and
the virtual baselines. Therefore, the more accurate
the curve is, the more contribution the curve makes
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to the final lane boundary. Besides, every pixel is
mainly responsible for the section of the final lane
boundary close to the pixel. Therefore, we proposed
the following method to generate the key points of a
lane boundary.
So far, the parameterization branch has provided:

a probability map M̄ ∈ R
4×NC , where Mi is the

probability that pixel i is covered by the final lane
boundary and NC is the number of pixels, a coefficient
map P ∈ R

NC×3 where Pi is the vector of coefficients
of the curve at i, and a confidence map F ∈ R

NC ,
where Fi is the confidence in the curve coefficients at i

as predicted by the network. Detailed defination and
implementation of confidence map Fi could be found
in Section 3.5. We process the four lane boundaries
separately, so from now on, we split M̄ into four slices,
process each slice M ∈ R

NC separately. As we can
exploit M̄ to achieve the availability of reusing F and
P in different lane boundaries, so it is unnecessary
for F or P to possess four channels.
We first set Nb virtual horizontal baselines evenly

located in the image, at y = j × C, j = 0, . . . , Nb −
1 where C is the baseline interval. The result of
our algorithm is several points lying on the virtual
horizontal baselines. For each baseline, we find the
maximum Mi. The corresponding values of i indicate
the pixels most likely to be in the lane boundary,
so we call them key-points from now on. However,
we ignore any such points for which Mi is below a
threshold, as they are unlikely to be covered by a lane
boundary. Let Ki as the i-th key-point, with y value
yKi . For each key-point Ki, we can get the curve
QKi assembled by PKi . These curves in general have
several intersections with at least some of the virtual
horizontal baselines. Let the x-coordinate of the
intersection of QKi

and y = j×C, j = 0, 1, . . . , Nb−1
be xKi,j . The coordinate xj of the result for y = j×C

is given by

xj =
∑

i xKi,jFKiexp(−α|jC − yKi |)∑
i FKiexp(−α|jC − yKi |)

(3)

where α is a constant. Thus, (xj , jC) is one of our
result points. After finding such points for all virtual
horizontal baselines, the set of (xj , jC) is then the
final output.

3.5 Loss function

The loss function L should have the ability to
refine the probability maps and the coefficient maps

simultaneously. To do so, it must be a weighted sum
of multiple parts:
Loss = CbinLossbin +CexLossex +CparLosspar (4)
where the weighting coefficients are hyperparameters
which must be tuned.
The first part of the loss is the lane boundary object

binary segmentation loss Lossbin. To compute it, we
can easily calculate a softmax cross-entropy between
prediction and the ground truth in the semantic
segmentation task. The second part of the loss is the
lane boundary existence loss Lossex. This essentially
concerns a binary classification task, so again a cross-
entropy computation suffices. The third part of the
loss is the lane boundary coefficients loss Losspar. In
one step of forward propagation, after finding M̄ , we
are able to categorize each pixel. Thus, if a pixel k

belongs to lane boundary j, its coefficients Pi should
be as close to the ground truth Pi,gt,j,k as possible.
Here, Pi,gt,j,k stands for the ground truth coefficients
Pi for lane j, transformed to origin at k. We may
then calculate the loss as follows:

Losspar,Pi =
4∑

j=1

∑

k∈lanej

|Pi,gt,j,k − Pi,j,k| (5)

where | · | denotes the L1 loss. As we treat the curves
as parabolas, in the following we simply replace P2
by a, P1 by b, and P0 by c.
There are two tasks at each pixel to perform,

to predict the semantic segmentation of the lane
boundary, and to predict the confidence in the
coefficients of the lane boundary passing through
it. While it seems obvious that these two tasks are
connected, they do not in fact constitute a sound
causal relationship, as pixels with precise coefficients
prediction may lie outside any lane boundary. So, we
need a measurement of the confidence of coefficients
accuracy as the contribution factor mentioned in the
previous section. At pixel k, the ground truth value
Fgt,j,k for lane boundary j and origin at pixel k is
defined as follows:

Fgt,j,k = exp(−|bgt,j,k − bk| − |cgt,j,k − ck|) (6)
Our experiments indicate that b and c are essential

to lane boundary prediction, and the loss for b and c

is key to determining the confidence.
The loss function for F is easy to compute:

Losspar,F =
4∑

j=1

∑

k∈lanej

|Fgt,j,k − Fk| (7)
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We can then get the total loss:
Losspar = CaLosspar,a + CbLosspar,b

+ CcLosspar,c + CF Losspar,F

(8)

where Cs are the hyperparameters to finetune.

4 Experiments
In this section, we show the efficacy of SpinNet on the
large-scale CULane dataset. Comparisons with state-
of-the-art methods show that our proposed framework
outperforms all prior lane detection methods. To
further analyze the effectiveness of each component
of SpinNet, we have performed a series of ablation
experiments, and the effects of some key hyper-
parameters also are shown.
4.1 Implementation details

4.1.1 Training and testing
Images provided by datasets only have points located
evenly on each of the lane boundaries. To generate
ground truths for lane boundary coefficients, we
performed parabola fitting to these point sets.
During training, the original image, binary masks

of corresponding lane boundaries, lane boundary
existence vectors, and curve coefficients sets are fed
into our end-to-end network. During testing, in order
to judge if a lane boundary is correctly detected,
we regard the lane boundaries as polyline segments
with a width of 30 pixels, and then calculate the
intersection-over-union (IoU) between the ground
truth and the prediction. Predictions whose IoUs are
greater than a certain threshold (0.5) are regarded
as true positives (TP). This enables us to assess our
method using the F1 measure.
4.1.2 Hyper-parameters
Our proposed network was implemented on
TensorFlow [31]. The input images were not
augmented. The hyper-parameters are set as follows:
momentum (0.9), learning rate (0.05), weight decay
(0.0001). We trained our network on a single Nvidia
GTX1080 Ti GPU for 180k iterations.

4.2 Ablation study and setup

4.2.1 The effect of spinning convolution and para-
meterization branch

To evaluate the effectiveness of spinning convolution,
we replaced this operation by a traditional convolution
stack. The results in line “w/o Spin-Conv” of Table 1

indicate that spinning convolution contributes 1.1
percentage points to the overall performance.
To evaluate the effectiveness of our lane boundary

parameterization branch, we disabled local curve
prediction in our model and extracted curves from
lane boundary segmentation masks, following existing
methods such as SCNN [4]. The results in line
“w/o Parameterization” of Table 1 indicate that the
parameterization branch benefits evidently to lane
boundary detection performance.
We also disabled both operations; the inferior

experimental results further demonstrate the
effectiveness of our proposed operations.
4.2.2 Spinning angles
To better understand our spinning convolution layer
and suggest the best way to use it, we determined
how choice of spinning angles affected the results. We
used 3, 5, 7 simultaneous spinning convolutions in
each experiment, with angles chosen as in Table 2.
The experiment indicates that rotation angles affect
lane boundary detection performance. Only a
small spinning angle cannot give us the best result.
Moreover, too many or too few directions of rotations
will also harm the performance. The experiments
show that (±60◦, ±30◦, 0◦) is the optimal angle
settings we have found, implying that making the
spinning angles evenly distributed is a good strategy.

Table 1 Ablation study of our proposed SpinNet. “w/o Spin-Conv”
represents the performance when spinning convolution is replaced with
traditional convolution stack. “w/o Parameterization” means disabling
parameterization branch and generates lane boundary prediction
results from segmentation mask. The experiments show that SpinNet
achieves best performance when both proposed branches are used

Strategy Precision Recall F1-score
w/o Spin-Conv 0.856 0.638 0.731

w/o Parameterization 0.853 0.635 0.728
w/o both 0.846 0.628 0.721

w/ all branches 0.879 0.628 0.742

Table 2 Performance of SpinNet when using different rotation angles
in spinning convolution. (±20◦, ±10◦, 0◦) means that there are five
sub-branches in spinning convolution stack, with rotation angles from
−20◦ to 20◦

Angles Precision Recall F1-score
(±20◦, ±10◦, 0◦) 0.878 0.632 0.735
(±40◦, ±20◦, 0◦) 0.878 0.635 0.737
(±60◦, ±30◦, 0◦) 0.852 0.657 0.742
(±80◦, ±40◦, 0◦) 0.869 0.641 0.738

(±45◦, 0◦) 0.847 0.615 0.713
(±60◦, ±40◦, ±20◦, 0◦) 0.850 0.651 0.737
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4.2.3 Spinning convolution kernel size
A kernel of size 1 × n is used in the spinning
convolution, and its size n controls the range of the
receptive field of this convolution layer. In theory, a
large receptive field usually benefits performance, but
requires more parameters which may increase training
difficulty. We performed an experiment to find the
optimal size of spinning convolution kernel. The
results are shown in Table 3. The results reveal that a
kernel of size 12×1 achieves the best result. A shorter
or longer kernel harms the overall performance.

Table 3 Performance of SpinNet when using different size of strip-
shaped large kernel in spinning convolution. The size of the kernel we
use is 1 × n. The experiment reveals that too long or too short kernels
harm the performance, and a 1 × 12 kernel is most appropriate for
our task

No. Kernel size (n) Precision Recall F1-score
1 7 0.839 0.650 0.733
2 9 0.851 0.656 0.740
3 12 0.852 0.657 0.742
4 15 0.847 0.652 0.737
5 18 0.879 0.628 0.732

4.3 Comparison with state-of-the-art

We compared our proposed method with existing
lane boundary detection methods using the CULane
dataset. Table 4 lists the results; performance is
measured by F1-score. This table also gives efficacy
comparison in some particular scenario. It is clear
that our new approach, SpinNet, achieves the best
overall results, improving on the baseline result
presented in Zhang et al. [34] or LineNet [35] by
1.1 percentage.
In addition to quantitative evaluation, some

visualization results are shown in Fig. 4. We label
ground truth lines in green, true positive predictions
in blue, and incorrect predictions in red. Our SpinNet
is able to handle crowded road with evident occlusion.
For failure cases, we find that it is difficult to detect
lane boundaries fully occluded by cars.

5 Conclusions
This paper has presented a lane boundary detection
framework, including a novel spinning convolution

Table 4 Lane boundary results on CULane dataset (F1-measure). The columns from “Normal” to “Curve” show the effectiveness comparison
in some particular scenario. The column “Total” shows the overall performance in the whole test set of CULane dataset, indicating that our
SpinNet achieves new state-of-the-art result

Method Normal Crowded Night No line Shadow Arrow Dazzle light Curve Total
SegNet [32] 0.792 0.617 0.496 0.145 0.294 0.710 0.389 0.456 0.572

SegNet-Ego-Lane [33] 0.754 0.620 0.578 0.177 0.310 0.714 0.476 0.430 0.584
SCNN [4] 0.883 0.753 0.686 0.365 0.593 0.821 0.531 0.594 0.720

Zhang et al. [34] 0.897 0.765 0.687 0.351 0.655 0.822 0.674 0.632 0.731
LineNet [35] — — — — — — — — 0.731

SpinNet (ours) 0.905 0.717 0.684 0.432 0.729 0.850 0.620 0.507 0.742

Fig. 4 Selected examples produced by our SpinNet. Green lines are the ground truths. Blue lines are the predicted true positive line
boundaries, while red lines are the incorrect prediction results. From this figure, we can see that our framework works well even in crowded
road with obvious occlusion and scenes with low contrast.
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layer and a new lane boundary parameterization
branch. The spinning convolution layer with strip
kernel is able to extract features in long narrow fields
along a series of directions. The parameterization
branch predicts a whole curve for each pixel in
the output feature map. Experiments show that
both operations improve the performance of a lane
detection network, and that the proposed framework
outperforms prior methods on the CULane dataset.
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