COMMUNICATIONS IN INFORMATION AND SYSTEMS
Volume 17, Number 1, 45-[64] 2017

Nerva: Automated application synthesis
for humanoid robot from user natural
language description

Hao L1, Yu-PiNnG WANG AND TAI-JiaANG Mu*

With the development of computer technology, humanoid robot
becomes more and more popular. The user often hopes to use the
robot to perform different kinds of tasks as needed. However, the
robot manufacturer only provides limited number of robot appli-
cations in its application store, which cannot satisfy user demands
in many cases. Furthermore, it is often difficult for the user to
develop new robot applications as needed, because much robotic
programing knowledge and manual work are required. To solve this
problem, we propose a practical framework named Nerva, which
can automatically synthesize robot applications from user natural
language descriptions. There are three phases when Nerva works.
Firstly, Nerva converts user natural language descriptions into syn-
tax trees using natural language processing (NLP) techniques. Sec-
ondly, Nerva uses the syntax trees to synthesize intermediate lan-
guage scripts. Finally, Nerva translates the intermediate language
scripts into target robot applications based on robotic system APIs.
We have implemented Nerva on the NAO robotic system. The ex-
perimental results show that Nerva can automatically and success-
fully synthesize 78.9% user-level robot applications in the NAO
robot application store with a short time usage. Moreover, Nerva
can also automatically synthesizes practical and useful applications
for user-defined tasks which are not in the store.

1. Introduction

Nowadays, the humanoid robot has been a promising and important indus-
try. A humanoid robot is often expected to do different kinds of tasks for
the user. However, the robot manufacturer only provides limited number

* Tai-Jiang Mu is the corresponding author. This work was supported by Ts-
inghua University Initiative Scientific Research Program (20141081140).

45

46 H. Li, Y.-P. Wang and T.-J. Mu

of robot applications in its application store, which cannot satisfy user de-
mands in many cases. Expecting the user (especially end user) to develop
new robot applications as needed is often impractical, because much robotic
programing knowledge and manual work are required. Thus, it is necessary
to help user to synthesize robot applications as needed with less manual
work.

To help the user to synthesize robot applications with less manual work,
many previous approaches have been proposed. Some approaches [5] [7], [I§]
uses visual programming systems to provide abstract building blocks to em-
body robot behavior. But when using these approaches, the user needs to
understand how to use each building block and how to combine those blocks
visually in a logical order. To further reduce manual work of the user, some
approaches [9, [T0, [13] provides natural language interaction for the user to
instruct the robot. They use some predefined command patterns to make
the robot perform simple instructions, such as “sit down” and “open your
O hand” (where O can be “left” or “right”), etc. However, these approaches
use predefined keywords or grammars, instead of semantic information, to
understand the user natural language description. But the user is often more
willing to say more natural sentences to generate more complex robot ap-
plications (like triggered task: “When the bell rings, open the door.”), in-
stead of simple instructions. In this situation, these approaches cannot well
understand the user’s demands, and cannot generate corresponding robot
applications according to the descriptions.

In this paper, we propose a practical framework named Nerva, which
can automatically synthesize robot applications from user natural language
descriptions. There are three phases when Nerva works:

1) Nerva converts user natural language descriptions into syntax trees
with text chunk nodes, which are tagged with part-of-speech(POS)
information.

2) Nerva transforms the syntax trees into formal intermediate language
scripts. Text chunk nodes are mapped to tokens in the intermediate
language and the syntax structure information is also preserved.

3) Nerva translates the intermediate language scripts into final executable
robot applications.

Compared to previous approaches, Nerva has three main advantages:

e Nerva allows the user to use natural language with compound sentence,
instead of simple instructions.

Automated application synthesis for humanoid robot 47

e Nerva can synthesize more complex robot applications to handle trig-
gered tasks.

e Nerva provides a robot-independent intermediate language, which can
support different robotic systems.

In this paper, we make three main contributions:

e We propose Nerva, which uses NLP and program synthesis techniques
to automatically synthesize robot application from user natural lan-
guage description. Users can describe their tasks naturally with mini-
mal vocabulary or grammar restrictions.

e We have implemented Nerva on the NAO humanoid robotic system.

e By using Nerva, we have automatically and successfully synthesized
78.9% user-level robot applications in the NAO robot application store,
with a short time usage. Moreover, we also use Nerva to automati-
cally synthesize practical and useful robot applications for user-defined
tasks.

The rest of this paper is structured as follows. Section [2| shows the mo-
tivation. Section [3] introduces Nerva in detail. Section M introduces our im-
plementation of Nerva on the NAO humanoid robotic system. Section
shows the evaluation of generating NAO robot applications. Section [6] shows
the limitations and future works. Section [7 introduces the related works.
Section 8] concludes this paper.

2. Motivation

In the traditional way, the user describes a task to robot developer and the
developer implements a robot application to achieve the task. This process is
time consuming and requires a lot of manual work. Nerva aims to automat-
ically synthesize robot applications from user natural language descriptions
directly.

Here are some challenges for Nerva to achieve this goal.

Firstly, the user usually describes a task in compound sentences. These
sentences othen consist of phrases, clauses and conjunctions. Previous works
focus on “understanding” a simple sentence that can be handled by an in-
struction, such as booking a flight, setting a meeting remember, etc. How-
ever, many tasks cannot be described by one instruction, such as “If it is
sunny tomorrow, book me a flight to Beijing.” For this kind of descriptions,

48 H. Li, Y.-P. Wang and T.-J. Mu

not only each simple sentence but also conditional relations between them
should be well understood.

Secondly, according to the understanding of these sentences, Nerva
should be able to synthesize correct applications on target robot.

Thirdly, Nerva should have good scalability when supporting different
kinds of robotic systems.

Finally, Nerva should be friendly for users without programming knowl-
edge. The generation process should be effective and automatic.

In the next section, we will give the approach Nerva used to overcome
these challenges.

3. Approach

We will first give a high level architecture of our approach, then use an
example to explain the detail of each phase in the approach.

Figure [I] shows the high level architecture of Nerva. There are three
phases when Nerva works:

1) Nerva accepts the user’s task description in natural language. It then
uses the Stanford parser [4] to convert the description into a POS
tagged syntax tree.

2) Nerva discovers all key components, particularly SBAR clause, Verb
Phrase, Noun Phrase, and structure information from the tree. Then,
mapping these components to corresponding tokens defined in our
Nerva intermediate language, which are FEwvent, Action and Value.
Nerva finally combines them together and synthesizes an intermedi-
ate robot script by using a bottom-up algorithm and the structure
information extracted from the tree.

3) Nerva translates the intermediate scripts to applications on target
robotic systems.

In this section, we illustrate the three phases of Nerva via the following
example:

Ezxample 1: Suppose you have a baby and you have to leave for a moment.
You wish to consign your baby to the care of your domestic robot: Keep an
eye on my baby. If he is out of your sight, shout out “baby lost” please.

Automated application synthesis for humanoid robot 49

= NLParser
- Struct PR
NL Description | —— | Syntax Tree | —» Infgrrﬁ;:(em Target Robot igi
Application *::*

' POs tag

Synthesize . Translate
.| Intermediate Target Robot
’ SBAR Clause H Verb Phrase H Noun Phrase ‘ Script Application Kﬁ’
] I '

i i
NervalIL ! !
\ \ \ Target Robot @
’ Caller: Event ’ Callee: Action Value ‘ — Application ®
!

Figure 1. Architecture of Nerva.

3.1. Parse NL description to syntax tree

In this phase, Nerva accepts NL descriptions and annotates each sentence
using the Stanford NLP tools. For Example 1, the parser produces a syntax
tree as shown in Figure [2| Items in bold type in the tree are POS tags for
phrase level items. Items in italic type are POS tags for word level items.
VP, NP, and PP are the abbreviations of “Verb Phrase”, “Noun Phrase”
and “Prepositional Phrase”. SBAR represents a clause introduced by a
subordinating conjunction. The phrase level units are the basic text chunks
used in our synthesis algorithm.

ROOT

/ \
s S
Y~ . \\
VP . SBAR ’ VP .
VB/ N‘P\PP | WHADﬁ’ ~ S | 5 ekt m |
: ' %] PRT NP
| / \ PN \ T | | VRN
Keep DT NN IN NP WRB NP VP shout RP NN NNS
I | | 7\ | | — | T | | |
an eye on PRP NN When PRP VBZ ADVP PP out "baby lost"please
[\ [[\ RN
my baby he is RB IN NP
| I 7/ N\

out of PRP NN
I I
your sight

Figure 2. Stanford NL Parsing for Example 1.

3.2. From syntax tree to Nerva intermediate script

This phase aims to describe the user task in a robot-independent script,
so that Nerva can support various robot platforms. Nerva transforms the

50 H. Li, Y.-P. Wang and T.-J. Mu

syntax tree to a Nerva intermediate script using an assembly line. We first
introduce the Nerva Intermediate Language (NIL), then give the detail of
the three steps in the assembly line:

1) The data identifier performs initial data collection.

2) The analysis engine tries to discover actions and events from the
syntax tree.

3) The intermediate language synthesizer constructs the script using
structure information from the syntax tree.

3.2.1. Nerva intermediate language. NIL is designed to represent a
wide variety of humanoid robot tasks, and keep the structure information
from NL.

The syntax of NIL is shown in Figure 3] A module M in NIL represents
a new task. P is a set of initial values. B is the main body of the module.
S consists of a sequence of instructions that executed in order. A condition
C consists of an event for a triggered task and a S to be executed when the
event raised. Each instruction Z is a basic robot action.

Module M == PB

Parameter P = Input(ps, Pz, .-, Pn) | €
Body B = SB|CB|e

Sequence S = 7S|e

Condition C = when Event(P)do S
Instruction 7 = Action(P)

Figure 3. Syntax of Nerva intermediate language.

Figure {4| shows the relation between syntax tree and NIL. (a) is the
skeleton of key components in the syntax tree for Example 1. (b) is the
corresponding expression in NIL. (c) is the mapping from POS tags to NIL
tokens.

3.2.2. Data identifier. The data identifier accepts the syntax tree from
the NL parser and extracts initial data from each NP for further analysis. In
natural language, NP implies an object. Nerva uses both regular expressions
and a static mapping table to identify them and converts them into typed
values.

The two identification strategies are:

Automated application synthesis for humanoid robot 51

ROOT M
- P - B POS | NIL
VP SBAR VP C 7 T haor A
‘ AN ~ AN ~ ~ ROOT 1 M
NP PP S NP P ~ B P S i B
NP NP \\/p P ‘P/ \'] SBAR i C
N N VP 1
PP . !
N N NPl
NP P
(a) skeleton of syntax tree (b) corresponding expression in NIL ~ (¢) mappings

Figure 4. Relation between Syntax Tree and NIL.

e Regular expression. Some types of data can be easily recognized
using regular expressions, such as integers, dates, phone numbers, etc.

e Static Mapping Table. The static mapping table maintains a list of
named-entity, such as “London” which mapped to a city type value,
“last one” which mapped to an integer type value and “my baby”
which mapped to a person type value.

There are 5 NP nodes in Example 1 (see Figure. “Baby lost” is mapped
to string type value by regular expressions. Others are mapped by our static
mapping table except the node “he” in the when-clause. “he” is a personal
pronoun. It should be mapped to a person type value. However, in the NP
node, we can not determine that value. The data identifier uses a heuristic
search strategy within the tree. The Data Identifier accesses its parent node
recursively to find the closest and most suitable person type value previ-
ously extracted in the input. In this case, “he” would be assigned the value
“myBabylID”.

SBAR

— ~
WHADVP S
e vP ! < T
g WRB NP |V I -
— S~ -
N =N | | — T (L
When . PRP VBZ ADVP PP \ — T
I / N\ N | | | N VB PRT NP
Keep | DT NN | IN “NP he,is RB IN ,7 NP N\ %\ \ | /N
Lt SN /N X shout RP NN NNS
an eye, on PRP NN out of | PRP NN \ | | |
| | | | “\ out \"baby lost" please,
my baby, your sight,
l ; , } ,
(camera: eye)(person: myBabyID) (person: ?) (camera: sight) | (string: "baby lost") ./
N PeoplePerception(Person:[]) PeopleTrackFailed(Person:[]) < Say(String:[0) »

Figure 5. Mappings: NP — Value, VP — Action / Event.

52 H. Li, Y.-P. Wang and T.-J. Mu

3.2.3. Analysis engine. The analysis engine tries to map VP to actions
or events.

Actions are a set of predefined basic functions for humanoid robot. A
sequence of actions combined in different order can perform different user
tasks. Events are special functions that monitor whether certain conditions
are satisfied.

Action and event are annotated with:

e keyword tags used by the mapping algorithm. Nerva use a synonym
service from WordNetﬂ to generate an extended set for each keyword.

e parameter type signatures used by the synthesis algorithm to synthe-
size only type-safe scripts.

Example 1 has 3 VP nodes. The analysis engine find 2 actions and 1
event mapping to them (see Figure |5 and Table .

‘ No. ‘ VP node ‘ Result ‘ Type ‘ Parameter ‘ Tags ‘
1 | keep an eye on my baby PeoplePerception | Action | Person HUMAN, TRACK, FACE
2 | is out of your sight PeopleTrackFailed | Event | Person HUMAN, LOST, OUT SIGHT
3 | shout out “baby lost” please | Say Action | String SPEAK, SAY, SHOUT

Table 1. VP Mapping Result for Example 1.

The analysis engine works in three steps as shown in Algorithm

1) The algorithm searches the syntax tree to determine whether mapping
the VP node to action or event. For each VP node, if it’s parent is an
SBAR node, the analysis engine searches the set of possible events F
to find the most likely event. Otherwise, the analysis engine will search
the action set A to find an action mapping (Lines 1-5).

The first and third VP nodes in Example 1 should be mapped to
actions, and the second should be mapped to an event.

2) Find all candidate mappings for the VP node. A candidate mapping
should satisfy the type constraint that its parameters have values,
extracted from the VP’s parent sentence node, of suitable types (Lines
7-15). The candidates are stored in 7.

Take “is out of your sight” for an example. There are 2 typed values
in its parent sentence node, camera type value “your sight” and person
type value “he”. There are 5 mapping candidates in this case, such as

LA lexical database of English—see https://wordnet.princeton.edu/

https://wordnet.princeton.edu/

Automated application synthesis for humanoid robot 53

Algorithm 1 Analysis Engine

Input: {A, E,nodeyp,Vs}
action set A, event set E, verb phrase node nodey p, values extracted by the
data identifier from the VP’s parent sentence node V.

Output: t;,,, the best mapping candidate.

1: if nodey p € nodespar then

2 C+FE

3: else

4: C+ A

5: end if

6: T+ 0

7: foreach c € C do

8: P,.q < GetParameterTypeList(c)

9: Prait < {plp € Parg NVv € Vg, AType(v) = Type(p)}

10: if Pfail == @ then

11: Distance <=} ¢ p, dist(node,,nodey p)
12: Relation < RelationBetween(ciqgs, nodey p)
13: T < T U{< ¢, Distance, Relation >}

14: end if

15: end for

16: if 7 # 0 then

17: tiop <— ChooseBestMatch(T)
18: else

19: NotFoundHandling(e)

20: end if

21: return t4,),

“CameraStarted” which needs a camera type value and “PeopleTrack-
Failed” which needs a person type value.

3) Choose the best matched result from 7. Line 17 use two metrics to
choose the best match one. One metric is distance (Line 11). The
parameters used by a candidate action or event come from some NP
nodes of the tree. Distance metric is the sum of the distance from these
NP nodes to the target VP node on the syntax tree. Distance is the
metric for data relevance. The closer, the better the match. We use
the lowest common ancestor (LCA) algorithm to calculate the value
distance. The other metric is Relation (Line 12). We compare all the
lexical tokens of the VP node with candidate’s tags. Two words are
matched if they are the same or synonyms. Relation metric gives the
number of lexical tokens found in the candidate’s tags.

54 H. Li, Y.-P. Wang and T.-J. Mu

The second VP has lexical tokens “out of sight” which match the
tags of “PeopleTrackFailed”. However, “PeopleTrackFailed” needs a
person type value from its brother NP node “he”. “CameraStarted”
has higher distance metric while “PeopleTrackFailed” has higher rela-
tion metric. After calculating the final score, the best match is “Peo-
pleTrackFailed”.

3.2.4. Intermediate language synthesizer. In the previous two steps,
Nerva finds all key components from the NL description, and maps them to
tokens in NIL. Based on the initial data, the mapped actions and events,
the intermediate language synthesizer now generates the intermediate script
using the structure information from the syntax tree.

The structure information used by the intermediate language synthesizer
is shown in Figure [0} It starts from the root of the syntax tree and does a
depth first search for each child node in turn. Each sentence is used to output
a basic code block. If the sentence includes an SBAR node, a when clause
will enclose the block.

@4» PeoplePerception(‘'myBabyID')
: / SBAR when PeopleTrackFailed('myBabyID')

\ @ Say('baby lost')

Figure 6. Structure Information

At last, Nerva synthesizes the intermediate script (shows in Code 1)) for
Example 1.

1 PeoplePerception(‘myBabyID’)
2 when PeopleTrackFailed(‘myBabyID’) do
3 Say (‘baby lost’)

Code 1. Intermediate Script for Example 1

3.3. From Nerva intermediate script to target robot application

This phase is robot-dependent. Generally, there are four parts in the trans-
lation.

Automated application synthesis for humanoid robot 55

1) Nerva uses a static mapping table to identify initial values. We need
to add robot-dependent part to the table, such as the name of joints
for target robot.

2) A set of actions and events on humanoid robot are predefined in NIL.
Actions are the simple instructions the robot would support, such as
“move forward”, “turn left”, “say hello”. Events are functions to check
the status of robot (such as the status of battery, WiFi connection) or
inputs from devices (such as camera, microphone, tactile sensors). We
need to implement these actions and events on the target robot.

3) An event mechanism is needed to support triggered tasks. The event
mechanism includes event register and event monitor.

4) A backend translator which translates Nerva intermediate scripts to
programs executed on target robots.

In this paper, we implement Nerva on NAO robot, we will discuss the im-
plementation in the next section.

4. Implementation on NAO

We have deployed Nerva on NAO humanoid robot from SoftBank Robotics
(Aldebaran). We choose NAO robot because it is a widely used humanoid
robot and its system NAQOqi has implemented an event mechanism. Besides,
NAOqi API provides lots of method modules we can reuse to implement our
predefined actions and events.

4.1. NAO joints and NAOqi APIs

NAOqi is the framework used to program NAO robot applications. The
robot has 25 joints which can be controlled with NAOqi APIs. We first add
the name of them to Nerva static mapping table. For example, the phrase
“right hand” is mapped to a particular joint “RHand”.

NAOQqi is based on a broker-module-method model (see Figure . The
broker provides lookup services so that any module can find any method
that has been advertised by other modules. Each module includes a group
of actions or events related to a certain kind of task. For example, the
ALMotion module provides actions for making the robot move; the ALDialog
module allows you to endow your robot with conversational skills by using
a list of rules written and categorized in an appropriate way.

56 H. Li, Y.-P. Wang and T.-J. Mu

Broker Modules Methods
wakeUp()
stopMove()
loadTopic()

Network —_

Access — NAO ALDialog activateTag()

openSession()

forgetPerson()
ALFaceDection learnFace()

clearDatabase()

Figure 7. NAOqi Broker-Module-Method model.

4.2. Event mechanism

Figure [§] shows how the NAOqi event mechanism works: Simple Instruc-
tions are executed immediately. Triggered Tasks should be executed when
some conditions are satisfied. In the case of simple instructions, Nerva ap-
pends them to the robot’s task queue directly. For triggered tasks, Nerva
generates a caller-callee pair where the caller provides code to check whether
the conditions are satisfied and the callee provides actions that would be ap-
pended to the robot’s task queue.

\

Task queue -
-
Caller Callee o A
Simple Instruction "J/)
Event_0 Action_0 |——— |
2
i ¥ (s D
Event_1 Action_1 ——» 2]) oY
(— 2
Event_n Acton.n *—————— o E_}
Triggered Task —

Task descriptions in NL Input
—
‘ Natural Language Nerva

Figure 8. NAQOqi Event Mechanism.

The NAOQOqi event mechanism is based on a centralized memory which
stores all key information related to the hardware configuration, the current
state of the actuators, and the sensors of NAO robot. The memory works
as a hub for the distribution of event notifications. The memory is managed
by the NAOqi ALMemory module, which guarantees that read and write

Automated application synthesis for humanoid robot 57

1 from naoqi import ALProxy

2

3 memory = ALProxy("ALMemory")

4 PeopleTrackFailedReact = None

5

6 class PeopleTrackFailedReactModel (ALModule):

7 def _init_(self, name):

8 ALModule.__init__(self, name)

9 self .name = name

10 global memory

11 memory.subscribeToEvent ("PeopleTrackFailed", self.name,
12 "onPeopleTrackFailed")

13 def inCall(self):

14 global memory

15 memory.unsubscribeToEvent ("PeopleTrackFailed", self.name,
16 "onPeopleTrackFailed")

17 def offCall(self):

18 global memory

19 memory.subscribeToEvent ("PeopleTrackFailed", self.name,
20 "onPeopleTrackFailed")

21 def onPeopleTrackFailed(self, *_args):

22 self.inCall()

23 TextToSpeechProxy = ALProxy("ALTextToSpeech")

24 TextToSpeech.say("baby lost")

25 self.offCall ()

26

27 def run():

28 trackerProxy = ALProxy("ALTracker")

29 myBabyID = 0x01

30 myBabyFaceWidth = getFaceWidth(myBabyID)

31 trackerProxy.registerTarget ("Face", myBabyFaceWidth)

32 trackerProxy.tarck("Face")

33 global PeopleTrackFailedReact

34 PeopleTrackFailedReact = PeopleTrackFailedReactModel (
35 "PeopleTrackFailedReact")

36

37 def main():

38 pip = sys.argv[1] # The IP address of your robot
39 pport = sys.argv[2] # The port NAOqi is listening to
40 myBroker = ALBroker ("myBroker", "0.0.0.0", 0, pip, pport)
41 run ()

Code 2. Python Module for Example 1

operations are thread safe. Furthermore, ALMemory notifies all subscribers
to an event when the event is triggered.

4.3. Translator

After synthesizing the intermediate script from the syntax tree, Nerva trans-
lates the intermediate script into target programs to run on the robot. On
NAO robot, the target programs are python modules. Code [2|shows the new
python module Nerva generated for Example 1.

In the NAQOqi framework, each new module should create a broker to
represent itself and use the broker to communicate with other modules. The
broker must stay alive until the program exists. The initial code to make this
happen must be added first in the main function of our new module (Line
38-40). Then a function named “run()” is called after the initialization. The

58 H. Li, Y.-P. Wang and T.-J. Mu

“run()” function (Line 27-35) is generated by our translator and it is the
entry point of our new module.

The generator generates an immediate function call for each simple in-
struction. In NAOqi framework, before calling the function, a proxy object
is created to represent the module that provides this function. For exam-
ple, “TextToSpeechProxy” is the proxy for the predefined module “ALText-
ToSpeech” (Line 23 of Code [2)). After that we can call the “say” function of
“ALTextToSpeech” module (Line 24).

Under NAQOqi event mechanism, a class should be generated to handle
event for triggered task. Lines 6-25 of Code [2 show the class generated to
handle “PeopleTrackFailed” event. Class function “onPeopleTrackFailed” is
registered as the callback of the event. Within the callback function, the
“say” function is called to execute the action when the event is raised. At
the entry and exit of the callback function, “inCall” and “offCall” are set to
ensure the callback is not recursively called during its execution.

5. Evaluation

To show how useful our system is, we tried to synthesize applications which
replicate the behaviors of all user-level applications collected from the NAO
application store H Then we give some user-defined tasks which are not in
the NAO application store to show that Nerva is user-friendly.

Nerva runs on a machine with a 3.2 GHz Intel i5-3470 CPU with 8GB
of RAM. The target robot is a NAO with NAOqi framework version 2.1.3.

5.1. Applications from NAO online store

The store provides 27 NAO applications. 19 of them are usr-level appli-
cations. Nerva successfully synthesized python modules for 15 of them, a
success rate of about 78.9%. Table [2| briefly describes the applications con-
sidered; the last two columns indicate the line of final modules and time
used.

5.1.1. A successful example. Taking “Go to rest” for an example. The
application tells the NAO robot to rest and wait until someone pats his
head.

2NAO application store, login is required. https://cloud.aldebaran-robotics
.com/

https://cloud.aldebaran-robotics.com/
https://cloud.aldebaran-robotics.com/

Automated application synthesis for humanoid robot 59

‘ No. ‘ Application ‘ Description ‘ Success ‘ LOC ‘ T (ms) ‘
1 Dialog move move according to the user’s instructions Vv 174 1384
2 Dialog touch react when his bumpers are touched Vv 46 219
3 Grasping grasp small objects. Vv 68 311
4 Ask Nao talk about himself, the applications and the interface Vv 248 879
5 Touch my head play a small game Vv 102 641
6 Taichi dance free some taichi exercises Vv 48 94
7 | Night before Christmas | tell the night before Christmas story V4 64 193
8 Walk to the ball walk to a red ball in your hand V4 129 398
9 Follow me give you its hand and walks with you X
10 Soccer demonstrate some simple soccer behavior Vv 131 252
11 Fall recovery try to go back to his previous stable posture after falling X
12 Blind me react when it is blinded by somebody Vv 62 104
13 Go to rest sit down and react when touching head N 104 213
14 Presentation talk about himself and what he can be used for N 169 693
15 Exploration explore its environment using sonar X
16 Move recorder copy some moves made by a human X
17 Dialog abilities list what he can do Vv 142 549
18 Dialog about me answer several questions about himself Vv 87 493
19 Dialog greetings respond to “hello” according to the time of the day Vv 242 1293

Table 2. 19 Applications from NAO Application Store.

We can give the task description as “Go to rest. When I touch your

head, stand up.”. This application is based on a set of motion instructions.
The task can be split into two sub-tasks:

1) A simple motion instruction “go to rest”. The NAO robot’s motion is
managed by the “ALMotion” and “ALRobotPosture” module. “AL-
Motion” module provides different levels of robot body control from
joint angles to Cartesian space movement or consistent, stabilized
whole body motions. “ALRobotPosture” module provides predefined
postures such as “Stand”, “Sit”, “Rest”.

2) A Triggered task “When I touch your head, stand up”. In local static
mapping table, NAO robot’s head is bound to middle head tactile
sensor. Nerva subscribes to the event “MiddleTactilTouched” which is
raised when the middle head tactile sensor is touched by users.

Code (3] gives the intermediate script. The final python module generated

from the intermediate script has 104 lines of code.

1
2
3

GoToPosture (‘Sit?)
when MiddleTactilTouched () do
GoToPosture (‘Stand’)

Code 3. Nerva Intermediate Script for Go To Rest

H. Li, Y.-P. Wang and T.-J. Mu

5.1.2. Failed tasks analysis. There are 4 applications Nerva failed to
synthesize, because of the following limitations in the implementation of
Nerva.

e Nerva does not support event nesting. Nerva uses a simple event-action
model to handle triggered tasks, but cannot yet cope with more com-
plex event structures. For example, the application “Fall recovery”
requires the NAO robot to go back to a stable posture if he falls. If
he fails to get up by self, he calls a human for help. The second event
“failed to get up” is raised only when the first event happened that
he has fallen down. Such nested event structures cannot at present be
represented in NIL, so Nerva does not support them.

Nerva does not support action loops, so Nerva cannot tell the robot
how many times an action should be executed. For example, the appli-
cation “Move recorder” tells NAO to stop moving, stand up and and
let his head and arms go limp. The human then moves them to show
NAO what to do. Finally, NAO makes the same moves by himself.
However, Nerva does not know when to quit the guide process.

5.2. Practical user-defined tasks

Nerva is friendly to users without programming knowledge. Nerva can syn-
thesize other practical applications for user-defined tasks which are not in

the application store.

| Task Description [LOC | T (ms) |
Walk to the door and open it. 32 304
Open your right hand. 26 125
Say “hello” to my friends. 26 149
Play “Little Star” for me. 28 211
When the bell rings, go to the door and open it. 56 782
Move forward. Stop and turn left when you encounter obstacles. 60 822
When someone comes in, say “Hi, nice to meet you”. 54 725

Table 3. Examples of User-Defined Tasks.

Table [3| shows some examples. The first column gives the descriptions of
tasks, the later two columns show line of code for the final NAOqi modules
and the time used. User-defined tasks are not too complex but ever-changing.
Based on NLP techniques, Nerva can split them into simple actionss and put

Automated application synthesis for humanoid robot 61

them together in the order guided by the structure of the NL descriptions.
Besides, Nerva can be used without significant restrictions to vocabulary or
grammar. “Walk to the door” or “go to the door” is the same to Nerva. For
Example 1, the description “Keep a watch on my baby. When you can’t see
her, send a message ‘baby lost’ to my phone 123-4567” would work too.

6. Limitations and future works

Although successfully synthesized 78.9% applications in the NAO applica-
tions store, Nerva still have the following limitations.

e Nerva heavily relies on the result of NL parser. If the result of NL
parser is incorrect, Nerva will failed either. In this paper, we choose
the state-of-art Stanford NLP tool as our parser, but it is still very hard
to handle typo or grammar errors or ambiguity of natural language in
the task description. We will keep attention on the development of
NLP techniques and update our parser to improve the accuracy.

e To support different robotic systems, Nerva defines an intermediate
language. We need to implement a set of actions and events as well as
an event mechanism on each target robot, which brings a lot of manual
work. We could simplify this process by semi-automatically generating
with robot specification files in the future.

e Nerva only focuses on NP, VP and SBAR nodes of the syntax tree.
Other kind of nodes, like prepositional phrase or adjective phrase, may
also have useful information. The ability of Nerva is limited without
that information. we will try to analyze other kinds of nodes and sup-
port more complex structures like event nesting and action loops.

7. Related works
7.1. Visual programming systems for robots

Some approaches focus on designing a visual programming system for robots.
There are two common categories of visual programming systems. One is
developer focused and the other is end-user focused.

LabVIEW [19], Simulink [3], SCADE System [I1] and ControlShell [17]
belong to the former category. With specialized add-ons [2], these products

62 H. Li, Y.-P. Wang and T.-J. Mu

provide powerful tools for rapid robot application development for experi-
enced developers. However, they require a level of sophistication and knowl-
edge unlikely to be possessed by many end-users.

In the latter category, LEGO’s RoboLab [I4] aims to control educational
LEGO robotics, Choregraphe [15] provides a graphical environment for pro-
gramming Aldebaran Robotics robots, and Microsoft’s Robotics Develop-
ers Studio (MRDS) [6] facilitates the mapping between decoupled software
modules and hardware components. Those systems are more friendly to end-
users. However, they often focus on specific types of robots or suffer from
limited capabilities when used to address complex problems.

7.2. Robot instruction system by natural language

Many works have proposed robot instruction systems based on natural lan-
guage (NL). For example, Kollar [8] extracts a sequence of spatial descrip-
tion clauses from NL input and uses a probabilistic model to connect them
together to find a path for a robot. Bugmann [I] implemented an instruction-
based learning (IBL) system with 15 primitive functions (go until, turn,
exit from, etc.), each of which has a fixed parameter list. MacMahon [12]
infers a set of predefined actions from knowledge of both linguistic condi-
tional phrases and local configurations. Many of these focus on navigating
the robot, but a comprehensive instruction system should handle more gen-
eral tasks. Rybski [I6] proposed a system that can learn simple action scripts
from NL, but the instructions must follow a predefined grammar.

8. Conclusion

Nerva brings three enhancements to previous human-robot interaction sys-
tems.

Firstly, Nerva is more intelligent in “understanding” end-user’s tasks. By
combining natural language processing and program synthesis techniques,
Nerva synthesizes code blocks from sentence clauses, by mapping text chunks
to tokens in NIL at the level of phrases: events, actions, and values.

Secondly, Nerva supports triggered tasks, which allows human-like re-
sponses to the external world.

At last, Nerva provides a robot-independent intermediate language so
that we can easily port it to different robotic systems.

Automated application synthesis for humanoid robot 63

References

[1] G. Bugmann, E. Klein, S. Lauria, and T. Kyriacou, Corpus-based
robotics: A route instruction example, in: Proceedings of Intelligent Au-
tonomous Systems, 96-103, Citeseer (2004).

[2] P. Corke, Robotics, vision and control: fundamental algorithms in MAT-
LAB, Vol. 73, Springer (2011).

[3] J. B. Dabney and T. L. Harman, Mastering simulink, Pearson/Prentice
Hall (2004).

[4] C. D. M. Danqi Chen, A Fast and accurate dependency parser using
neural networks, in Proceedings of EMNLP (2014).

[5] D. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph, and K. Doyle, Fabrik: a
visual programming environment, in: ACM SIGPLAN Notices, Vol. 23,
176-190, ACM (1988).

[6] J. Jackson, Microsoft robotics studio: A technical introduction, IEEE
Robotics & Automation Magazine 14 (2007), no. 4, 82-87.

[7] S. H. Kim and J. W. Jeon, Programming LEGO Mindstorms NXT
with visual programming, in: Control, Automation and Systems, 2007.
ICCAS’07. International Conference on, 2468-2472, IEEE (2007).

[8] T. Kollar, S. Tellex, D. Roy, and N. Roy, Toward understanding natural
language directions, in: 2010 5th ACM /TEEE International Conference
on Human-Robot Interaction (HRI), 259-266, IEEE (2010).

[9] S. Lauria, G. Bugmann, T. Kyriacou, J. Bos, and E. Klein, Personal
robot training via natural-language instructions, IEEE Intelligent sys-
tems 16 (2001), no. 3, 38-45.

[10] S. Lauria, G. Bugmann, T. Kyriacou, and E. Klein, Mobile robot pro-
gramming using natural language, Robotics and Autonomous Systems
38 (2002), no. 3, 171-181.

[11] T. Le Sergent, SCADE: A comprehensive framework for critical system
and software engineering, in: International SDL Forum, 2-3, Springer
(2011).

[12] M. MacMahon, B. Stankiewicz, and B. Kuipers, Walk the talk: Con-
necting language, knowledge, and action in route instructions, Def 2
(2006), no. 6, 4.

64

[13]

[14]

[15]

H. Li, Y.-P. Wang and T.-J. Mu

C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox, Learning to parse
natural language commands to a robot control system, in: Experimental
Robotics, 403-415, Springer (2013).

M. Portsmore, ROBOLAB: Intuitive robotic programming software
to support life long learning, APPLE Learning Technology Review,
Spring/Summer (1999).

E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier, Choregraphe: a
graphical tool for humanoid robot programming, in: RO-MAN 2009-The
18th TEEE International Symposium on Robot and Human Interactive
Communication, 46-51, IEEE (2009).

P. E. Rybski, J. Stolarz, K. Yoon, and M. Veloso, Using dialog and
human observations to dictate tasks to a learning robot assistant, Intel-
ligent Service Robotics 1 (2008), no. 2, 159-167.

S. A. Schneider, V. W. Chen, G. Pardo-Castellote, and H. H. Wang,
Controlshell: A software architecture for complex electromechanical sys-
tems, The International Journal of Robotics Research 17 (1998), no. 4,
360-380.

N. C. Shu, Visual programming, Van Nostrand Reinhold New York
(1988).

L. K. Wells and J. Travis, LabVIEW for everyone: graphical program-
ming made even easier, Prentice-Hall, Inc. (1996).

TSINGHUA NATIONAL LABORATORY FOR INFORMATION SCIENCE AND TECHNOL-
0GY(TNLIST), DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY
TSINGHUA UNIVERSITY, BEIJING, CHINA

E-mail address: roselonelh@gmail.com

TSINGHUA NATIONAL LABORATORY FOR INFORMATION SCIENCE AND TECHNOL-
0GY(TNLIST), DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY
TSINGHUA UNIVERSITY, BEIJING, CHINA

E-mail address: wyp@tsinghua.edu.cn

TSINGHUA NATIONAL LABORATORY FOR INFORMATION SCIENCE AND TECHNOL-
OGY(TNLIST), DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY
TSINGHUA UNIVERSITY, BEIJING, CHINA

E-mail address: dejungle@mail.tsinghua.edu.cn

	Introduction
	Motivation
	Approach
	Implementation on NAO
	Evaluation
	Limitations and future works
	Related works
	Conclusion
	References

