

CGI 2014 Stereo Completion

T.-J. Mu et al.

Background Related Work Methodology Conclusions CGI'14

31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

Stereoscopic Image Completion and Depth Recovery

## Tai-Jiang Mu\*, Ju-Hong Wang<sup>†</sup>, Song-Pei Du\*, and Shi-Min Hu\*

\*TNList, DCS&T, Tsinghua University <sup>†</sup>Tsinghua-Tencent Joint Laboratory for Internet Innovation Technology

June 13, 2014



## Outline

31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

CGI'14

CGI 2014 Stereo Completion

T.-J. Mu et al.

Background Related Work Methodology Conclusions Background

• Stereoscopic Media Processing

## Related Work

- Single Image Completion
- Stereoscopic Image Completion

## 3 Methodology

- Completion via optimization
- Metric for patch distance
- Iterative color and depth synthesis
- Parameters
- Results





## Outline

31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

CGI'14

### CGI 2014 Stereo Completion

### T.-J. Mu et al.

- Background Stereoscopic Media Processin
- Related Work
- Methodology
- Conclusions

## Background

• Stereoscopic Media Processing

### Related Work

- Single Image Completion
- Stereoscopic Image Completion

## Methodology

- Completion via optimization
- Metric for patch distance
- Iterative color and depth synthesis
- Parameters
- Results

## 4 Conclusions



#### CGI 2014 Stereo Completion

T.-J. Mu et al.

Background Stereoscopic Media Processing

Related Work

Methodology

Conclusions

### Stereopsis

- Stereopsis, is the *impression of depth* that is perceived when a scene is viewed by someone with two eyes and normal binocular vision.
- The two views are slightly different, characterized by disparity, or horizontal parallax.





#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

Stereoscopic Media Processing

Related Work

Methodology

Conclusions

### Development of capture technology

 consumer cameras and smart phones bloom the stereoscopic media.





31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

CGI 2014 Stereo Completion

T.-J. Mu et al.

Background

Stereoscopic Media Processing

Related Work

Methodology

Conclusions

### Applications

• Digital entertainment(films, games), 3DTV broadcast, medical diagnosis/surgery, etc.



New need for stereoscopic media processing!



CGI 2014 Stereo Completion

### T.-J. Mu et al.

- Background
- Stereoscopic Media Processing
- Related Work
- Methodology
- Conclusions

### Applications

• Digital entertainment(films, games), 3DTV broadcast, medical diagnosis/surgery, etc.



New need for stereoscopic media processing!



31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

Stereoscopic Media Processing

Related Work

Methodology

Conclusions

## Rules for handling 3D contents

- Additional information, i.e., disparity (depth), is available and should be accounted.
- Stereopsis should be kept after processing.
- e.g. Copy and Paste: [Lo10]<sup>a</sup>, [Luo12]<sup>b</sup>, [Tong13]<sup>c</sup>.



(a) Lo10

(b) Luo12

(c) Tong13

<sup>a</sup>Lo, W.-Y., Van Baar, J., Knaus, C., Zwicher, M., and Gross, M. Stereoscopic 3d copy & paste. ACM Trans. Graph. 29(6), 147:1–147:10, 2010.

<sup>&</sup>lt;sup>b</sup>Luo, S.-J., Shen, I.-C., Chen, B.-Y., Cheng, W.-H., and Chuang, Y.-Y. Perspective-aware warping for seamless stereoscopic image cloning. ACM Trans. Graph. 31(6), 182:1–182:8, 2012.



CGI 2014 Stereo Completion

T.-J. Mu et al.

### Background

Stereoscopic Media Processing

Related Work

Methodology

Conclusions

### Rules for handling 3D contents

• Additional information, i.e., disparity (depth), is available and should be accounted.

• Stereopsis should be kept after processing.

e.g. Copy and Paste: [Lo10]<sup>a</sup>, [Luo12]<sup>b</sup>, [Tong13]<sup>c</sup>.



(a) Lo10

(b) Luo12

(c) Tong13

<sup>a</sup>Lo, W.-Y., Van Baar, J., Knaus, C., Zwicher, M., and Gross, M. Stereoscopic 3d copy & paste. ACM Trans. Graph. 29(6), 147:1–147:10, 2010.

<sup>&</sup>lt;sup>b</sup>Luo, S.-J., Shen, I.-C., Chen, B.-Y., Cheng, W.-H., and Chuang, Y.-Y. Perspective-aware warping for seamless stereoscopic image cloning. ACM Trans. Graph. 31(6), 182:1–182:8, 2012.



#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

Stereoscopic Media Processing

Related Work

Methodology

Conclusions

## Rules for handling 3D contents

- Additional information, i.e., disparity (depth), is available and should be accounted.
- Stereopsis should be kept after processing.

e.g. Copy and Paste: [Lo10]<sup>a</sup>, [Luo12]<sup>b</sup>, [Tong13]<sup>c</sup>.



(a) Lo10

(b) Luo12

(c) Tong13

<sup>a</sup>Lo, W.-Y., Van Baar, J., Knaus, C., Zwicher, M., and Gross, M. Stereoscopic 3d copy & paste. ACM Trans. Graph. 29(6), 147:1–147:10, 2010.

<sup>&</sup>lt;sup>b</sup>Luo, S.-J., Shen, I.-C., Chen, B.-Y., Cheng, W.-H., and Chuang, Y.-Y. Perspective-aware warping for seamless stereoscopic image cloning. ACM Trans. Graph. 31(6), 182:1–182:8, 2012.



#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

## Background

Stereoscopic Media Processing

Related Work

Methodology

Conclusions

## Rules for handling 3D contents

- Additional information, i.e., disparity (depth), is available and should be accounted.
- Stereopsis should be kept after processing.
- e.g. Copy and Paste: [Lo10]<sup>*a*</sup>, [Lu012]<sup>*b*</sup>, [Tong13]<sup>*c*</sup>.



(a) Lo10

(b) Luo12

(c) Tong13

<sup>a</sup>Lo, W.-Y., Van Baar, J., Knaus, C., Zwicher, M., and Gross, M. Stereoscopic 3d copy & paste. ACM Trans. Graph. 29(6), 147:1–147:10, 2010.

<sup>b</sup>Luo, S.-J., Shen, I.-C., Chen, B.-Y., Cheng, W.-H., and Chuang, Y.-Y. Perspective-aware warping for seamless stereoscopic image cloning. ACM Trans. Graph. 31(6), 182:1–182:8, 2012.



31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

CGI 2014 Stereo Completion

T.-J. Mu et al.

Background Stereoscopic Media Processing

Related Work

Methodology

Conclusions

### Do not directly apply 2D editing tools to 3D







(b) Single Image Completion



(c) Basic rotation result





## Outline

CGI'14 31<sup>31 t</sup> Computer Graphics Internation 10 - 13 June 2014 Sydney, Australia

CGI 2014 Stereo Completion

T.-J. Mu et al.

### Background

### Related Work

Single Image Completion Stereoscopic Image Completion

Methodology

Conclusions

## Background

• Stereoscopic Media Processing

## 2 Related Work

- Single Image Completion
- Stereoscopic Image Completion

## Methodology

- Completion via optimization
- Metric for patch distance
- Iterative color and depth synthesis
- Parameters
- Results

## 4 Conclusions



## Single Image Completion CGI'14

#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

#### Related Work

Single Image Completion

Stereoscopic Image Completion

Methodology

Conclusions

### How to fill the "holes"?

- Diffusion-based, peeling onions: Bertalmio00<sup>a</sup>
- Exemplar-based, assigning sources to targets: Criminisi03<sup>b</sup>, Sun05<sup>c</sup>, Komodakis07<sup>d</sup>, He12<sup>e</sup>

<sup>e</sup>He, K., and Sun, J.: Statistics of patch offsets for image completion. In:ECCV, pp. 16–29, 2012.

<sup>&</sup>lt;sup>a</sup>Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C.: Image inpainting. In: SIGGRAPH, pp. 417–424, 2000. <sup>b</sup>Criminisi, A., Pérez, P., and Toyama, K.: Object removal by exemplar-based inpainting. In: IEEE CVPR, pp. 721–728, 2003. <sup>C</sup>Sun, J., Yuan, L., Jia, J., and Shum, H.Y.: Image completion with structure propagation. ACM Trans. Graph. 24(3), 861–868, 2005.

<sup>&</sup>lt;sup>d</sup>Komodakis, N., and Tziritas, G.: Image completion using efficient belief propagation via priority scheduling and dynamic pruning. Trans. Image Proc. 16(11), 2649–2661, 2007.



## Single Image Completion CGI'14

#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

#### Related Work

Single Image Completion

Stereoscopic Image Completion

Methodology

Conclusions

### How to fill the "holes"?

### • Diffusion-based, peeling onions: Bertalmio00<sup>a</sup>

 Exemplar-based, assigning sources to targets: Criminisi03<sup>b</sup>, Sun05<sup>c</sup>, Komodakis07<sup>d</sup>, He12<sup>e</sup>

### <sup>a</sup>Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C.: Image inpainting. In: SIGGRAPH, pp. 417–424, 2000.

<sup>D</sup>Criminisi, A., Pérez, P., and Toyama, K.: Object removal by exemplar-based inpainting. In: IEEE CVPR, pp. 721–728, 2003. <sup>C</sup>Sun, J., Yuan, L., Jia, J., and Shum, H.Y.: Image completion with structure propagation. ACM Trans. Graph. 24(3), 861–868, 2005.

<sup>d</sup>Komodakis, N., and Tziritas, G.: Image completion using efficient belief propagation via priority scheduling and dynamic pruning. Trans. Image Proc. 16(11), 2649–2661, 2007.

<sup>e</sup>He, K., and Sun, J.: Statistics of patch offsets for image completion. In:ECCV, pp. 16–29, 2012.



## Single Image Completion CGI'14

CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

Related Work

Single Image Completion

Stereoscopic Image Completion

Methodology

Conclusions

### How to fill the "holes"?

- Diffusion-based, peeling onions: Bertalmio00<sup>a</sup>
- Exemplar-based, assigning sources to targets: Criminisi03<sup>b</sup>, Sun05<sup>c</sup>, Komodakis07<sup>d</sup>, He12<sup>e</sup>

<sup>a</sup>Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C.: Image inpainting. In: SIGGRAPH, pp. 417–424, 2000. <sup>b</sup>Criminisi, A., Pérez, P., and Toyama, K.: Object removal by exemplar-based inpainting. In: IEEE CVPR, pp. 721–728, 2003. <sup>c</sup>Sun, J., Yuan, L., Jia, J., and Shum, H.Y.: Image completion with structure propagation. ACM Trans. Graph. 24(3), 861–868, 2005.

<sup>d</sup>Komodakis, N., and Tziritas, G.: Image completion using efficient belief propagation via priority scheduling and dynamic pruning. Trans. Image Proc. 16(11), 2649–2661, 2007.

<sup>e</sup>He, K., and Sun, J.: Statistics of patch offsets for image completion. In:ECCV, pp. 16-29, 2012.



## Stereoscopic Image Completion

#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

### Related Work

Single Image Completion

Stereoscopic Image Completion

Methodology

Conclusions

### Frontal-parallel scenes

- Depth assumption: the "holes" should be filled with content from further regions than the original ones.
- Measure depth similarity.
- Wang08<sup>a</sup>, half occlusion, greedily search, depth-assist texture synthesis.
- Morse12<sup>b</sup>, pre-computing depth maps[Bertalmio00<sup>c</sup>], stereo propagation.

<sup>&</sup>lt;sup>a</sup>Wang, L., Jin, H., Yang, R., and Gong, M.: Stereoscopic inpainting: joint color and depth completion from stereo images. In: IEEE CVPR, pp. 1–8, 2008.

<sup>&</sup>lt;sup>b</sup>Morse, B., Howard, J., Cohen, S., and Price, B.: Patchmatch-based content completion of stereo image pairs. In: 3DIMPVT, pp. 555–562, 2012.

<sup>&</sup>lt;sup>c</sup>Bertalmio, M., Sapiro, G.,Caselles,V., and Ballester,C.: Image inpainting. In: SIGGRAPH, pp. 417-424, 2000.



## Outline

31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

CGI'14

CGI 2014 Stereo Completion

T.-J. Mu et al.

Background

Related Work

### Methodology

Completion via optimization Metric for patch distance Iterative color and depth synthesis Parameters Results

Conclusions

### Background

• Stereoscopic Media Processing

### Related Work

- Single Image Completion
- Stereoscopic Image Completion

## Methodology

- Completion via optimization
- Metric for patch distance
- Iterative color and depth synthesis
- Parameters
- Results

## 4 Conclusions



## Completion via optimization GI'14

#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

Background

Related Work

Methodology

Completion via optimization

Metric for patcl distance Iterative color and depth synthesis Parameters Results

Conclusions

### Problem description



- Input image pair  $(I^l, I^r)$ , with disparity maps  $(D^l, D^r)$  and holes  $(\Omega^l, \Omega^r)$ .
- Denote  $(\Psi^l,\Psi^r) \triangleq (I^l \setminus \Omega^l, I^r \setminus \Omega^r)$ , source regions.
- Completed color images  $(\hat{I}^l,\hat{I}^r)$  and disparity maps  $(\hat{D}^l,\hat{D}^r).$



## Formulation

31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

CGI 2014 Stereo Completion

T.-J. Mu et al.

Background

Related Work

Methodology

Completion via optimization

Metric for patc distance Iterative color and depth synthesis Parameters Results

Conclusions

 $SCC(\hat{I}^{l}, \hat{I}^{r}, \hat{D}^{l}, \hat{D}^{r} | \Psi^{l}, \Psi^{r}, \Omega^{l}, \Omega^{r}, D^{l}, D^{r}) = \sum_{t \in \Omega^{l} \cup \Omega^{r}} \min_{s \in \Psi^{l} \cup \Psi^{r}} \tilde{d}(t, s) + \lambda_{sc} \cdot \sum_{t \in \Omega^{l} \cup \Omega^{r}} \tilde{d}(t, M(t))$ (1)

CGI'14

- The stereoscopic image completion is then formulated as an optimization to maximize the coherence and stereo consistency of the completion results.
- $d(\cdot, \cdot)$  is a measure of difference between patches concerning about both appearance and depth.
- $M(\cdot)$  define a mapping for stereo correspondences between  $\hat{I}^l$  and  $\hat{I}^r$  with disparity maps  $(\hat{D}^l, \hat{D}^r)$ .



## Formulation

31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

CGI 2014 Stereo Completion

T.-J. Mu et al.

Background

Related Work

Methodology

Completion via optimization

Metric for patc distance Iterative color and depth synthesis Parameters Results

Conclusions

 $SCC(\hat{I}^{l}, \hat{I}^{r}, \hat{D}^{l}, \hat{D}^{r} | \Psi^{l}, \Psi^{r}, \Omega^{l}, \Omega^{r}, D^{l}, D^{r}) = \sum_{t \in \Omega^{l} \cup \Omega^{r}} \min_{s \in \Psi^{l} \cup \Psi^{r}} \tilde{d}(t, s) + \lambda_{sc} \cdot \sum_{t \in \Omega^{l} \cup \Omega^{r}} \tilde{d}(t, M(t))$ (1)

CGI'14

- The stereoscopic image completion is then formulated as an optimization to maximize the coherence and stereo consistency of the completion results.
- *d*(·, ·) is a measure of difference between patches
   concerning about both appearance and depth.

•  $M(\cdot)$  define a mapping for stereo correspondences between  $\hat{I}^l$  and  $\hat{I}^r$  with disparity maps  $(\hat{D}^l, \hat{D}^r)$ .



## Formulation

31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

CGI 2014 Stereo Completion

T.-J. Mu et al.

Background

Related Work

Methodology

Completion via optimization

Metric for patc distance Iterative color and depth synthesis Parameters Results

Conclusions

 $SCC(\hat{I}^{l}, \hat{I}^{r}, \hat{D}^{l}, \hat{D}^{r} | \Psi^{l}, \Psi^{r}, \Omega^{l}, \Omega^{r}, D^{l}, D^{r}) = \sum_{t \in \Omega^{l} \cup \Omega^{r}} \min_{s \in \Psi^{l} \cup \Psi^{r}} \tilde{d}(t, s) + \lambda_{sc} \cdot \sum_{t \in \Omega^{l} \cup \Omega^{r}} \tilde{d}(t, M(t))$ (1)

CGI'14

- The stereoscopic image completion is then formulated as an optimization to maximize the coherence and stereo consistency of the completion results.
- $\tilde{d}(\cdot, \cdot)$  is a measure of difference between patches concerning about both appearance and depth.
- $M(\cdot)$  define a mapping for stereo correspondences between  $\hat{I}^l$  and  $\hat{I}^r$  with disparity maps  $(\hat{D}^l, \hat{D}^r)$ .



31<sup>st</sup> Computer Graphics International 0 - 13 June 2014 Sydney, Australia

CGI 2014 Stereo Completion

T.-J. Mu et al.

Background

Related Work

Methodology

Completion via optimization

Metric for patch distance

and depth synthesis Parameters Results

Conclusions

$$\tilde{d}(p_1, p_2) = (1 - \lambda_g) d_c(p_1, p_2) + \lambda_g \cdot d_g(\vec{G}(p_1), \vec{G}(p_2))$$
 (2)

$$d_g(\vec{g_1}, \vec{g_2}) = \sum_{\vec{x}} \|\vec{g_1}(\vec{x}) - \vec{g_2}(\vec{x})\|$$
(3)

gradient domain, free of the depth assumption.
suitable for both frontal-parallel and non-frontal-parallel scenes.



CGI 2014 Stereo Completion

T.-J. Mu et al.

Background

Related Work

Methodology

Completion via optimization

Metric for patch distance

and depth synthesis Parameters Results

Conclusions

$$\tilde{d}(p_1, p_2) = (1 - \lambda_g) d_c(p_1, p_2) + \lambda_g \cdot d_g(\vec{G}(p_1), \vec{G}(p_2))$$
 (2)

$$d_g(\vec{g_1}, \vec{g_2}) = \sum_{\vec{x}} \|\vec{g_1}(\vec{x}) - \vec{g_2}(\vec{x})\|$$
(3)

- gradient domain, free of the depth assumption.
- suitable for both frontal-parallel and non-frontal-parallel scenes.



31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

CGI 2014 Stereo Completion

T.-J. Mu et al.

Background

Related Work

Methodology

Completion via optimization

Metric for patch distance

and depth synthesis Parameters Results

Conclusions

## Depth inconsistency in stereo propagation

• DI(p) denotes the depth inconsistency at location p, defined as the shift between p and its stereo reflection.



### Cost of selecting s for t

$$F(s,t) = \mathcal{L}_{\lambda_{ic}} \Big( \mathcal{L}_{\lambda(s,t)} \big( \tilde{d}(s,t), \tilde{d}(t,M(t)) \big), DI_{\epsilon}(t) \Big)$$
(4)  
$$\mathcal{L}_{\lambda}(A,B) \triangleq (1-\lambda) \cdot A + \lambda \cdot B.$$
  
$$\lambda(s,t) = \lambda_m \cdot e^{-DI_{\epsilon}(t)}$$
(5)



31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

CGI 2014 Stereo Completion

T.-J. Mu et al.

Background

Related Work

Methodology

Completion via optimization

Metric for patch distance

Iterative colo and depth synthesis Parameters Results

Conclusions

## Depth inconsistency in stereo propagation

• DI(p) denotes the depth inconsistency at location p, defined as the shift between p and its stereo reflection.



### Cost of selecting s for t

$$F(s,t) = \mathcal{L}_{\lambda_{ic}} \Big( \mathcal{L}_{\lambda(s,t)} \big( \tilde{d}(s,t), \tilde{d}(t,M(t)) \big), DI_{\epsilon}(t) \Big)$$
(4)  
$$\mathcal{L}_{\lambda}(A,B) \triangleq (1-\lambda) \cdot A + \lambda \cdot B.$$
  
$$\lambda(s,t) = \lambda_m \cdot e^{-DI_{\epsilon}(t)}$$
(5)



#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

Related Work

### Methodology

Completion via optimization Metric for patch distance

Iterative color and depth synthesis

Parameters Results

Conclusions

### Conditions of iterative algorithm for Eq. 1

## • For each point p in $\Omega^l \cup \Omega^r$ :<sup>a</sup>

- (i). All patches containing p appear exactly somewhere in  $\Psi^l \cup \Psi^r;$
- (ii). All patches containing p agree on the values at p.
- An iterative algorithm based on PatchMatch<sup>b</sup> is adopted to satisfy the two conditions by propagating the optimized candidate patches from neighbors.

<sup>&</sup>lt;sup>a</sup>Wexler, Y., Shechtman, E., and Irani, M.: Space-time completion of video. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 463–476, 2007.

<sup>&</sup>lt;sup>b</sup>Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D.B.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24:1–24:11, 2009.



#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

Related Work

### Methodology

Completion via optimization Metric for patch distance

Iterative color and depth synthesis

Parameters Results

Conclusions

### Conditions of iterative algorithm for Eq. 1

- For each point p in  $\Omega^l \cup \Omega^r$ :<sup>a</sup>
  - (i). All patches containing p appear exactly somewhere in  $\Psi^l \cup \Psi^r;$
  - (ii). All patches containing p agree on the values at p.
  - An iterative algorithm based on PatchMatch<sup>b</sup> is adopted to satisfy the two conditions by propagating the optimized candidate patches from neighbors.

<sup>&</sup>lt;sup>a</sup>Wexler, Y., Shechtman, E., and Irani, M.: Space-time completion of video. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 463–476, 2007.

<sup>&</sup>lt;sup>b</sup>Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D.B.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24:1–24:11, 2009.



#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

### Related Work

### Methodology

Completion via optimization Metric for patch distance

Iterative color and depth synthesis

Parameters Results

Conclusions

### Conditions of iterative algorithm for Eq. 1

- For each point p in  $\Omega^l \cup \Omega^r$ :<sup>a</sup>
  - (i). All patches containing p appear exactly somewhere in  $\Psi^l \cup \Psi^r;$
  - (ii). All patches containing p agree on the values at p.
- An iterative algorithm based on PatchMatch<sup>b</sup> is adopted to satisfy the two conditions by propagating the optimized candidate patches from neighbors.

<sup>&</sup>lt;sup>a</sup>Wexler, Y., Shechtman, E., and Irani, M.: Space-time completion of video. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 463–476, 2007.

<sup>&</sup>lt;sup>b</sup>Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D.B.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24:1–24:11, 2009.



#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

Related Work

### Methodology

Completion via optimization Metric for patch distance

Iterative color and depth synthesis

Parameters Results

Conclusions

## Scan order and initialization

• Compute the scanning priorities as in Criminisi03<sup>a</sup>, outside in and along structures.

Mutual initialization:  $p(x,y) \in \Psi^l$  and  $(x + D^l(x,y), y) \in \Omega^r$  or  $p(x,y) \in \Psi^r$  and  $(x + D^r(x,y), y) \in \Omega^l$ .

<sup>a</sup>Criminisi, A., Pérez, P., and Toyama, K.: Object removal by exemplar-based inpainting. In: IEEE CVPR, pp. 721–728, 2003.



#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

Related Work

### Methodology

Completion via optimization Metric for patch distance

Iterative colo and depth synthesis

Parameters Results

Conclusions

## Scan order and initialization

- Compute the scanning priorities as in Criminisi03<sup>a</sup>, outside in and along structures.
- Mutual initialization:

$$\begin{array}{l} p(x,y)\in \Psi^l \text{ and } (x+D^l(x,y),y)\in \Omega^r \text{ or } \\ p(x,y)\in \Psi^r \text{ and } (x+D^r(x,y),y)\in \Omega^l. \end{array}$$

<sup>a</sup>Criminisi, A., Pérez, P., and Toyama, K.: Object removal by exemplar-based inpainting. In: IEEE CVPR, pp. 721-728, 2003.



#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

### Related Work

### Methodology

Completion via optimization Metric for patch distance

Iterative color and depth synthesis

Parameters Results

Conclusions

## Stereoscopic patch refinement

Refine  $p\in \Omega^l\cup \Omega^r$  from the following candidates:

• p

- p's 4-connected neighbors (only those with higher priority than p)
- $\bullet \ p$  's stereo-corresponding point in the other view

Then a random jump around the current best one.



#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

### Related Work

### Methodology

Completion via optimization Metric for patch distance

Iterative col and depth synthesis

Parameters Results

#### Conclusions

## Color and depth update

- Color is averaged.
- Depth is "shifted" before averaged:

$$\vec{d}(s,t) = \sum_{v \in \mathcal{N}_t} w_{s,t}(v) \cdot (d_{s+v} - d_{t+v}) \tag{6}$$

$$w_{s,t}(v) = \frac{g_x(\|v\|/\sigma_x)g_c(\|\boldsymbol{c}_{t+v} - \boldsymbol{c}_s\|/\sigma_c)}{\sum_{u \in \mathcal{N}_t} g_x(\|u\|/\sigma_x)g_c(\|\boldsymbol{c}_{t+u} - \boldsymbol{c}_s\|/\sigma_c)} \quad (7)$$
$$\hat{d}_t = d_s - \overrightarrow{d}(s, t) \quad (8)$$



#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

### Related Work

### Methodology

Completion via optimization Metric for patch distance

Iterative cole and depth synthesis

Parameters Results

#### Conclusions

## Color and depth update

- Color is averaged.
- Depth is "shifted" before averaged:

$$\overrightarrow{d}(s,t) = \sum_{v \in \mathcal{N}_t} w_{s,t}(v) \cdot (d_{s+v} - d_{t+v})$$
(6)

$$w_{s,t}(v) = \frac{g_x(\|v\|/\sigma_x)g_c(\|\boldsymbol{c}_{t+v} - \boldsymbol{c}_s\|/\sigma_c)}{\sum_{u \in \mathcal{N}_t} g_x(\|u\|/\sigma_x)g_c(\|\boldsymbol{c}_{t+u} - \boldsymbol{c}_s\|/\sigma_c)} \quad (7)$$
$$\hat{d}_t = d_s - \overrightarrow{d}(s, t) \quad (8)$$



## Parameters



### T.-J. Mu et al.

### Background

Related Work

### Methodology

Completion via optimization Metric for patch distance Iterative color and depth synthesis

Parameters Results

Conclusions

• CIE  $L^*a^*b^*$  color space, color images and disparity maps are normalized into [0,1]

CGI'14

### • Patch size: $15 \times 15$

) 
$$\lambda_g$$
: 0.1  $\sim$  0.2,  $\varepsilon$  = 3.0,  $\lambda_m$  = 0.35,  $\lambda_{ic}$  = 0.2

• 
$$\sigma_x = 0.2$$
,  $\sigma_c = 0.1$ 

• no more than 20 iterations



## Parameters



### T.-J. Mu et al.

### Background

Related Work

```
Methodology
```

```
Completion via
optimization
Metric for patch
distance
Iterative color
and depth
```

and depth synthesis

Results

Conclusions

• CIE  $L^*a^*b^*$  color space, color images and disparity maps are normalized into [0,1]

CGI'14

• Patch size:  $15 \times 15$ 

• 
$$\lambda_g$$
: 0.1  $\sim$  0.2,  $\varepsilon$  = 3.0,  $\lambda_m$  = 0.35,  $\lambda_{ic}$  = 0.2

• 
$$\sigma_x = 0.2, \ \sigma_c = 0.1$$

• no more than 20 iterations



## Parameters



### T.-J. Mu et al.

### Background

Related Work

```
Methodology
```

```
Completion via
optimization
Metric for patch
distance
Iterative color
and depth
```

Parameters Results

Conclusions

• CIE  $L^*a^*b^*$  color space, color images and disparity maps are normalized into [0,1]

CGI'14

• Patch size:  $15 \times 15$ 

• 
$$\lambda_g$$
: 0.1  $\sim$  0.2,  $\varepsilon$  = 3.0,  $\lambda_m$  = 0.35,  $\lambda_{ic}$  = 0.2

• 
$$\sigma_x = 0.2$$
,  $\sigma_c = 0.1$ 

• no more than 20 iterations





### Background

### Related Work

#### Methodology

Completion via Iterative color and depth Results

#### Conclusions

### Non-frontal-parallel



CGI'14

(b) Left and right completion results

(c) Result anaglyph 🖉 💻 🗎



31<sup>st</sup> Computer Graphics International 0 - 13 June 2014 Sydney, Australia



### T.-J. Mu et al.

Background

Related Work

#### Methodology

Completion via optimization Metric for patch distance Iterative color and depth synthesis Parameters Results

Conclusions

### Non-frontal-parallel



CGI'14



# 1980aaaaa

31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

CGI 2014 Stereo Completion

### T.-J. Mu et al.

Background

Related Work

Methodology

Completion via optimization Metric for patch distance Iterative color and depth synthesis Parameters Results

Conclusions

### Frontal-parallel







(c) Competion results of our method



CGI'14



(d) From Morse et al.



(b) result analyph of our method



31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

#### CGI 2014 Stereo Completion

### T.-J. Mu et al.

### Background

Related Work

### Methodology

Completion via optimization Metric for patcl distance Iterative color and depth synthesis Parameters Results

Conclusions

# Frontal-parallel



(a) Original images with masks(green), and disparity maps(inset)

CGI'14



(c) From Morse et al.

(b) Completion results of our method



#### CGI 2014 Stereo Completion

### Background

### Related Work

### Methodology

Completion via Iterative color and depth Results

### Conclusions



Frontal-parallel



(a) Original images with masks(green), and disparity maps(inset)



CGI'14



(c) From Morse et al.









### (d) From Wang et al.



31<sup>st</sup> Computer Graphics International 0 - 13 June 2014 Sydney, Australia

### CGI 2014 Stereo Completion

### T.-J. Mu et al

### Background

### Related Work

### Methodology

Completion via optimization Metric for patcl distance Iterative color and depth synthesis Parameters Results

#### Conclusions

### More



CGI'14



## Outline

CGI'14

31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia

CGI 2014 Stereo Completion

- T.-J. Mu et al.
- Background Related Work
- Methodology
- Conclusions

### Background

• Stereoscopic Media Processing

## Related Work

- Single Image Completion
- Stereoscopic Image Completion

## 3 Methodology

- Completion via optimization
- Metric for patch distance
- Iterative color and depth synthesis
- Parameters
- Results





## Conclusions

### CGI 2014 Stereo Completion

### T.-J. Mu et al.

Background Related Work Methodology Conclusions • A patch-based refine scheme which produces stereoscopically consistent results and can be used to handle the depth inconsistency problem.

CGI'14

- A depth gradient domain patch distance metric, which is suitable for completing both frontal-parallel and non-frontal-parallel scenes.
- A disparity estimation method, which estimates disparity using depth shift in local feature space, facilitating simultaneously images and depth map completion.



## Conclusions

### CGI 2014 Stereo Completion

- T.-J. Mu et al.
- Background Related Work Methodology Conclusions

• A patch-based refine scheme which produces stereoscopically consistent results and can be used to handle the depth inconsistency problem.

CGI'14

- A depth gradient domain patch distance metric, which is suitable for completing both frontal-parallel and non-frontal-parallel scenes.
- A disparity estimation method, which estimates disparity using depth shift in local feature space, facilitating simultaneously images and depth map completion.



## Conclusions

### CGI 2014 Stereo Completion

- T.-J. Mu et al.
- Background Related Work Methodology Conclusions

• A patch-based refine scheme which produces stereoscopically consistent results and can be used to handle the depth inconsistency problem.

CGľia

- A depth gradient domain patch distance metric, which is suitable for completing both frontal-parallel and non-frontal-parallel scenes.
- A disparity estimation method, which estimates disparity using depth shift in local feature space, facilitating simultaneously images and depth map completion.



## Q&A

31<sup>st</sup> Computer Graphics International 10 - 13 June 2014 Sydney, Australia



T.-J. Mu et al

Background Related Work Methodology Conclusions

# Thanks! Questions?

CGI'14