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Abstract—Hyper-lapse video with high speed-up rate is an ef-
ficient way to overview long videos such as a human activity
in first-person view. Existing hyper-lapse video creation methods
produce a fast-forward video effect using only one video source.
In this work, we present a novel hyper-lapse video creation
approach based on multiple spatially-overlapping videos. We
assume the videos share a common view or location, and find
transition points where jumps from one video to another may
occur. We represent the collection of videos using a hyper-lapse
transition graph; the edges between nodes represent possible
hyper-lapse frame transitions. To create a hyper-lapse video, a
shortest path search is performed on this digraph to optimize
frame sampling and assembly simultaneously. Finally, we render
the hyper-lapse results using video stabilization and appearance
smoothing techniques on the selected frames. Our technique can
synthesize novel virtual hyper-lapse routes which may not exist
originally. We show various application results on both indoor
and outdoor video collections with static scenes, moving objects,
and crowds.

Index Terms—Hyper-lapse Video, Time-lapse, Video Editing,
Video Synthesis.

I. INTRODUCTION

W ITH the proliferation of shared videos, and as more
devices are used to capture egocentric video, it has

become much easier to find video collections containing mul-
tiple videos sharing a common view or location, e.g. the videos
informally captured by tourists at a zoo, a museum or a scenic
spot. Our work uses such collections to create continuous
hyper-lapse from multiple spatially-overlapping video sources,
generating stable navigation results with speed-ups (Figure 1).

Hyper-lapse videos are an efficient way to overview long con-
tinuous video sequences. Existing hyper-lapse video creation
methods take a single video source and a target speed-up factor
s (typically 5× to 30×) and produce fast-forward video output.
The naive approach to achieve a hyper-lapse video is to evenly
sample v = s video frames. However, such an approach can
produce unstable results as any camera shake is amplified.
Recent methods have presented non-uniform sampling of
frames and measure tempo-spatial coherency to create smooth
hyper-lapse output. Our work uses a non-uniform sampling
strategy with multiple videos, with different routes and camera
velocities, to create the hyper-lapse output.

The challenge when using multiple videos is that frame
coherency does not hold any more, and the hyper-lapse camera
route is not simple to define. When using multiple videos,
content may differ, speed may differ, lighting may differ, and

the underlying camera routes could differ. Even if the cameras’
routes overlap, the input videos are not guaranteed to be
synchronized or aligned. Even if they are synchronized, plau-
sible transitions between videos are still needed. Even if such
transitions are found, coherence of motion and appearance
of the selected frames in multiple video sources may differ.
Lastly, the amount of data to be processed in multiple videos
presents an additional challenge, requiring efficient sampling
and optimization.

To address these challenges, we present a two-stage approach:
a pre-processing stage finds commonalities in videos in the
collection, then a hyper-lapse creation stage defines a (virtual)
camera route and renders the result. In pre-processing, we
select candidate videos that potentially have similar views.
Each such pair is aligned to find candidate transition points
where the two video views are similar enough to permit a
transition from one to the other. This information is used to
build a graph of transitions for all videos in the collection;
it encodes the computational costs related to video stability,
velocity and speed-up.

In the hyper-lapse creation stage, there are multiple possible
camera routes allowing different hyper-lapse video outputs,
corresponding to different paths in the graph. We present
several ways to define routes by supporting user-defined
constraints through a simple user interface. Given the route
definition, we formulate multi-source hyper-lapse creation as a
shortest path search problem on the transition graph. Optimiza-
tion is used to find the best path in the graph that meets the
user-defined constraints, and is continuous in terms of content,
speed, movement and appearance. Our basic scheme extends
Joshi et al.’s frame sampling and assembly method [1], but our
graph path can use several videos; the hyper-lapse video output
has smooth transitions between them. Finally, we render the
hyper-lapse video with motion and appearance smoothing to
generate a visually pleasing result.

Our method is able to create hyper-lapse videos in various
scenarios (Figure 2). First, if several videos have similar
camera routes, stable hyper-lapse output is more likely to
be synthesized by combining the best part of each video
while smoothly transitioning between them. Furthermore, we
can also combine several partially-overlapping camera routes
to create longer routes, and produce virtual camera routes
that no single video portrays. The output hyper-lapse can
be customized based on user preferences. For example, the
user may prefer hyper-lapse videos having fewer distractions



2

Virtual
Route 1

Virtual
Route 2

Camera Routes
    (7 videos)

Fig. 1. Given a collection of first-person videos with partially overlapping routes (indicated at the top-left in different colors), our algorithm can generate
long hyper-lapse videos by seamlessly combining several camera routes to create a virtual route. Two such routes created from the ‘Zoo’ video collection are
shown at top-center and top-right. Representative frames of virtual route 1 are shown in the bottom row; frame borders and positions on the route map are
highlighted using the corresponding original route colors.
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Fig. 2. Different possible scenarios for multi-video hyper-lapse going from
point A to point B: multiple overlapping camera routes (left), a complex route
combining several videos (middle), and a long virtual camera route (right).

in frames, or which include specified sub-routes; a tool is
provided for interactive hyper-lapse navigation.

Our main contribution is a method to create hyper-lapse videos
from multiple spatially-overlapping video inputs. Beyond this,
our technical contributions are:

• A novel hyper-lapse transition graph data structure that
encodes possible hyper-lapse frame transitions. This
graph structure supports simultaneous optimization of a
user-specified target virtual route as well as selecting the
most visually stable frames in the hyper-lapse result.

• A multiple video hyper-lapse construction technique in-
cluding a pre-processing strategy for efficient frame
alignment in a collection of videos, a temporal distance
estimate for cross-video frames, the construction of the
transition graph and the optimization of the hyper-lapse
objective function using the shortest path on the graph.

• An interactive tool to determine virtual hyper-lapse cam-
era routes by including constraints on videos and frames
to include or exclude in the result. A simple visual
interface permits the user to add constraints, which are
automatically converted to transition graph constraints.

II. RELATED WORK

Multi-video Processing. Several recent works in graphics
have utilized multiple media sources to create novel media
output or interfaces. Large (internet) photo collections have
been used to reconstruct 3D scenes and explore them [2] , to
create time-lapse videos [3], or simply for summarization [4].
All these works assume that the photos in the collection share
a common view or location. In contrast to such dense image
collections, video collections are usually sparser. However,
they are becoming denser, allowing the use of the same
assumption for the creation of novel output or interfaces.

Various appealing editing effects have been realized given
multiple related videos. The pioneering Aspen Moviemap [5]
interactively generated a dynamic map using videodisc tech-
nology and collected images. Pongnumkul et al. [6] designed
a system which creates storyboards for browsing tour videos
with thumbnail shots of sampled locations on a map. Ma et
al. [7] explored and visualized large-scale video content via
VideoMap system. High quality video-based rendering from
structured or unstructured videos was explored to interpolate
new views [8], [9]. Rüegg et al. [10] synthesized novel content
by seamlessly blending frames from videos given user interac-
tion concerning alignment and appearance constraints. Wang
et al. [11] proposed to stabilize video tones by smoothing color
states. Chen et al. [12] blended objects from multiple sources
in the gradient domain. Our method combines several videos,
but only uses original footage frames and does not create new
viewpoints or blend frames. Arev et al. [13] automatically
edited footage of multiple social videos. They chose cuts from
one video to another according to cinematography guidelines,
to provide a better narrative flow and viewing experience.
They used a similar graph to ours, but solved a somewhat
complementary problem. They searched for cuts to edit a
movie, while we search for smooth transition points between
videos to create one continuous hyper-lapse.
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Tompkin et al. [14], [15] explored interactive video navigation
within large video collections by seeking scene co-occurrence
and smooth transitions between videos. They too used a
graph to represent the video collection. In their Videoscape
graph, nodes represent potential portals between videos and
edges represent video segments. The graph structure pro-
vides topological information for navigating between videos.
In contrast, our transition graph represents frames as nodes
and directly encodes possible hyper-lapse transitions between
frames as transition edges. The novelty of our graph structure
provides the ability to optimize the hyper-lapse route as well
as the hyper-lapse frames simultaneously in a single graph
optimization procedure.

VideoSnapping [16] temporally aligned multiple asynchronous
videos in a global view, and allowed the combination of
unsynchronized videos. This work was later used in continuous
control of facial performance in videos [17]. Visual Odome-
try [18] estimated motion from visual input alone. Chen et
al. proposed matching frames from multiple cameras into a
consistent frame [19]. Our approach adapts the VideoSnapping
approach to find candidate hyper-lapse transitions between
videos.

None of these previous approaches provides hyper-lapse out-
put. We present a novel type of multiple-source video process-
ing that uses sampling and assembly of frames from multiple
video sources.

Time-lapse and Hyper-lapse Videos. Time-lapse is an ap-
proach to video summarization which displays the main events
of a long video or a collection of images in fast-forward.
For instance, in [3], internet photos captured at popular sites
were mined and combined to generate time-lapse videos. The
basic idea of time-lapse video creation is to uniformly skip
frames to achieve the required playback speed. More advanced
is to use non-uniform sampling of frames [20] to gener-
ate results matching visual objectives. Recently, applications
based on time-lapse videos have been developed. Shih et al.
[21] proposed to transfer style of a scene to a different time
utilizing a time-lapse video dataset. Lu et al. [22] proposed
an interactive tool for image composition from time-lapse
sequences. Stroboscopic image can be produced from hand-
held video [23], where foreground objects flicker several times
while background is static.

Hyper-lapse video is a specific form of time-lapse video, in
which the original video source usually captures some human
activity in first-person view. Because such video is usually
captured by a hand-held or helmet camera, the results can be
affected by severe shaking. Directly applying time-lapse video
creation techniques to such video would amplify the shaking
and fail to produce stable results. To address this problem,
Kopf et al. synthesized hyper-lapse videos by scene recon-
struction and image-based rendering [24]. Using the recovered
3D geometry, their approach first plans a novel smooth camera
trajectory then synthesizes corresponding frames by blending
content from adjacent original frames. Their approach provides
appealing hyper-lapse results, but requires very long process-
ing time. Recently, hyper-lapse creation based on frame sam-

pling was proposed in [1], [25]. The key idea of these works is
to find frame matches in a video and then use these to jump
to different parts, forming the basis of video textures [26].
Works on hyper-lapse [1], [25] share the same strategy of
non-uniformly sampling coherent frames, while using different
optimization methods: Joshi et al. use dynamic programming
to optimize frame selection [1], while Poleg et al. formulate
frame sampling as a shortest path problem [25]. Although
generating less stable results than [24], frame-sampling based
methods are more efficient and handle dynamic objects better.
Our approach is inspired by frame sampling-based hyper-lapse
creation methods. However, it cannot be straightforwardly
adapted to multiple videos. First, valid candidate hyper-lapse
transitions between multiple videos have to be determined
carefully for visual smoothness; second, optimization on a
large collection of videos is more complicated than on a single
video.

Concurrent work closely related to ours concentrates on syn-
thesizing a wider-view hyper-lapse from single and multiple
egocentric videos [27]. It uses mostly similar input camera
routes to generate a wide view (panorama) of the same route,
but may also work with partial overlapping camera routes,
like our method. We concentrate on producing alternative
routes from diverse input camera routes, allowing different
possible input scenarios (Figure 2). To create a multiple video
panorama, they use a similar graph structure to ours, but rely
on a simpler video correspondence strategy, which only con-
siders the number of matched features without further camera
pose validation. In addition, our work allows user-specified
hyper-lapse creation using a friendly user interface. Interactive
hyper-lapse navigation and route synthesis are controlled by
defining special energy terms and a penalty encoding on the
transition graph.

Video Stabilization. Stabilization techniques estimate the
camera trajectory from 2D or 3D perspective and then syn-
thesize a new smooth camera trajectory to remove the unde-
sirable high-frequency motion. 2D video stabilization methods
estimate homography or affine transformations between con-
secutive frames and smooth these transformations temporally.
In early work, low-pass filters were applied to individual
model parameters [28]. Grundman et al. applied L1-norm
optimization to synthesize a path consisting of simple cine-
matography motions [29]. Recently, Liu et al. [30] modeled
the camera motion on multiple local camera paths. 3D-based
stabilization methods reconstruct a 3D scene [2] and estimate
the 3D camera trajectory. Liu et al. [31] proposed the first 3D
stabilization method using content-preserve warping. The later
subspace video stabilization method [32] smooths long tracked
features using subspace constraints. It can deal with cases of
reconstruction failure, and produces results that are visually
as good as a 3D-based method. Recently, a 2D-3D hybrid
stabilization approach was proposed to stabilize 360◦ video
[33]. In general, 2D stabilization methods perform efficiently
and robustly, while 3D-based methods can generate visually
better results.

As demonstrated in [1], directly imposing video stabilization
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on sped-up videos does not produce stable hyper-lapse results,
because motions are significantly amplified in the sped-up
video. So, after assembling the optimal hyper-lapse frame se-
quence we use stabilization during video rendering to remove
the remaining jitter.

III. THE HYPER-LAPSE TRANSITION GRAPH

Given a collection of n input videos denoted Ṽ =
{V1, . . . , Vn}, where each video Vi is a sequence of frames
Vi = [fi,1, . . . fi,Li ], we aim to sample and assemble T frames
F = {fø(1), . . . , fø(T )} from Ṽ to form the hyper-lapse output
video, where ø(k) = (i, j) indicates fø(k) = fi,j ∈ Vi,
meaning that the k-th frame of the output video is the j-th
frame of the i-th input video in the collection.

To take full advantage of multiple videos, we have to find
connections between them so that we can make a smooth
transition from one video shot to another. We use the hyper-
lapse transition graph structure to represent all videos and the
transitions between them. Using this graph structure, the multi-
video hyper-lapse problem is reduced to finding the shortest
path in the graph, as described in Section IV.

The hyper-lapse transition graph is constructed once for each
video collection in a pre-processing stage. It may be re-used
many times to create various hyper-lapse videos on-line. We
first compare all videos and filter irrelevant video pairs to avoid
unnecessary computation (Section III-A). Next, we compute
temporal local alignments of video frames between pairs of
possibly relevant videos (Section III-B). After alignment, we
build the hyper-lapse transition graph: each node represents a
frame in a video and edges indicate possible transition steps
in hyper-lapse paths (Section III-C).

A. Video Pair Filtering

The filtering stage aims to reduce the number of costly
computations of video-pair alignment by excluding irrelevant
video pairs. We represent each video in the collection by
a set of sampled key-frames and find irrelevant video pairs
by comparing their key-frames. Each video Vi is sampled
using a skip of 29 frames (corresponding to ∼ 1 second),
and SIFT features [34] are extracted from each key frame.
Next, we cluster all extracted feature points in all key-frames
into K = 100 categories, and compute a normalized K-
dimensional bag-of-features histogram [35] for each key-
frame. The distance between two key-frames is defined as the
chi-square histogram distance, which can be rapidly computed
for any pair of key-frames. We compare all pairs of key-frames
that originate from different videos. We regard two videos as
irrelevant if none of their compared key-frame distances is
smaller a than threshold τ = 0.01. Such pairs are excluded
from the alignment stage.

Optionally, if geographic information is provided e.g. by GPS
annotation, we can rapidly reject irrelevant video pairs by
considering their geographic coordinates. We assume that
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Fig. 3. Video Alignment. The global frame alignment matrix for a pair
of videos is shown, where white indicates large cost and black, low cost
(locally zoomed-in in the blue window). The curve represents the minimum
alignment path. Colors on the path illustrate filtering of the local alignment
by our approach (red is out, green is in). Representative frame pairs at various
positions are shown.

candidate alignments only exist in relevant video pairs. This
filtering strategy prunes unnecessary computations of align-
ments between videos.

B. Local Frame Alignments

Given a pair of relevant videos Vi and Vj , we would like
to find sub-sequences of frames where good alignment be-
tween the videos exists. Along such overlapping sub-sequences
we denote each pair of matched frames 〈fi,α, fj,β〉, where
fi,α ∈ Vi and fj,β ∈ Vj . These matched frames help to
provide a smooth and stable transition between the two videos
during creation of the multi-video hyper-lapse output, so must
be chosen carefully.

First, the content of the two matching frames must be aligned
spatially using a simple transformation. In this paper we use a
homography to estimate the camera motion and spatial frame
alignment. Second, to eliminate the possibility of producing
back-and-forth camera motions, we add a constraint that the
mappings of frames in an aligned sub-sequences should be
temporally non-decreasing. This means that for any two pairs
of matched frames 〈fi,α, fj,β〉 and 〈fi,α′ , fj,β′〉 for the two
videos Vi and Vj , with frame indices α, α′ in Vi, and β, β′

in Vj , if α < α′, then we require β < β′.

To satisfy the above criterion, we discover pairs of matched
frames as follows. We start by applying the global video
alignment algorithm of VideoSnapping [16] to Vi and Vj . In
that work, an alignment cost is assigned to every pair of frames
in the two videos, creating a dense cost matrix whose values
are in the range of [0, 1]. The globally optimal alignment
between the two videos is found using Dijkstra’s shortest path
algorithm [36], treating the matrix as a planar graph with
neighboring matrix elements connected by an edge. Each point
on the optimal path is regarded as an alignment between two
frames, with a cost c related to the matched SIFT features of
the frames. The advantage of VideoSnapping is that a global
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alignment between Vi and Vj is found even if irrelevant sub-
paths exist. The global match also favors matches that are
temporally non-decreasing. However, we do aim for a global
alignment, but to discover possible transition points between
Vi and Vj . Hence, after finding the global alignment path, we
filter out irrelevant sub-paths from the match, as well as some
unsatisfactory matched frames.

We use a two step-filtering strategy. First, we filter alignments
based on the cost metric c, and second, based on the homog-
raphy between the frames. The cost c of the alignment of
two frames is a product of feature descriptor distance and
feature position distance. We simply filter out all alignments
whose cost is above a given threshold c > 0.05. Using this
simple strategy, we are able to keep correctly matched frames
with similar content. We further filter matching frames by
considering the magnitude of the transformation required to
align the corresponding frames. We calculate the homography
T between the frame pair 〈fi,α, fj,β〉, and estimate the offset
of the original frame center Mi,α and transformed frame
center T (Mi,α) after fitting it to fj,β . We filter out all
alignments where this offset is above a given threshold (i.e.
‖T (Mi,α) − Mi,α‖ > 0.5d, where d is the length of the
frame diagonal). The thresholds of the filtering strategy were
determined empirically, with the same values used throughout
all our results.

C. Graph Construction

We now present the hyper-lapse transition graph, which is
a digraph data structure that plays a key role in multi-video
hyper-lapse creation. The transition graph is composed of
nodes and directed edges. The node Ni,p represents the p-
th video frame fi,p ∈ Vi. The graph connects all input
videos by densely assigning transition edges between nodes.
Each directed edge 〈Ni,p, Nj,q〉 connects two nodes whose
corresponding frames could possibly appear in the output
video sequence as consecutive frames. Transition edges are
of two types: if i = j, the edge connects two nodes from
the same video, and if i �= j the edge connects nodes from
different videos (Figure 4).

The first type of edges connect each node forward to all
its R following nodes in the same video up to a given
temporal distance away, i.e. 〈Ni,p, Ni,q〉 where (q − p) < R.
As the movement in the hyper-lapse video should appear as
smooth as possible, one cannot skip too many frames of the
input video. In the naive single-video hyper-lapse methods the
frame-skip is fixed, but in non-uniform sampling methods, an
upper limit is always set for the temporal distance between
possible consecutive frames. For nodes from the same video,
the temporal distance is defined as π(Ni,p, Ni,q) = (q − p)
and is forced not to exceed twice the maximal allowed speed-
up vmax = 30. This sets the maximum allowed temporal
transition distance between transition nodes to be R = 60.
Note that when using only a single video source, this graph
structure and our algorithm reduce to the case of non-uniform
single-video hyper-lapse creation.

Fig. 4. Two types of transitions. Intra-video transitions between two frames
inside a video are illustrated in green: two frames f1,p and f1,q in video 1
with temporal transition distance q− p are connected by an edge. Inter-video
transitions between frames from different videos are illustrated in blue: frame
f1,p′ in video 1 and frame f2,q′ in video 2 are connected with temporal
transition distance (q′ − β) + (α− p′).
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Fig. 5. Example hyper-lapse transition graph structure formed by three videos.
Each node corresponds to a video frame. Nodes N1,i, N2,j and N3,k are
matched frame nodes (red). The edges between the virtual start and end nodes
and the start and end node-sets ensure a complete hyper-lapse route. We
illustrate only a few of the intra-video and inter-video transition edges: the
edges starting from N1,i−1 and N2,j−1 (blue) with temporal distance π ∈
{2, 3} are shown.

The second type of edges connect nodes for one video to nodes
for another. For each pair of matched frames 〈fi,α, fj,β〉 from
videos Vi and Vj (Section III-B), we connect an edge between
their neighbors 〈Ni,p, Nj,q〉 with the following two constraints.
First, we only connect neighbors where p ≤ α and q ≥ β, so
that we only permit transitions between two nodes where the
first node is before or at the matched frame in video Vi, and
the second node is at or after the matched frame in Vj (note
that the corresponding edges 〈Nj,q, Ni,p〉, when q ≤ β and
p ≥ α also point from Vj to Vi). Second, we also constrain
the temporal distance between the transition nodes. However,
in this case, as the two nodes represent frames from different
videos, the temporal distance between them is not their index
difference. We define π(Ni,p, Nj,q) = (q − β) + (α− p) and
set the maximum allowed temporal distance using the same
threshold R.

To summarize, the temporal distance π is defined as:

π(Ni,p, Nj,q) =

{
q − p i = j

(q − β) + (α− p) i �= j
(1)

where i and j indicate video sources and 〈Ni,α, Nj,β〉 is a pair
of matched frames in these videos. Figure 4 illustrates these
two types of transitions. After collecting all valid transitions
with π(·, ·) ≤ R, we connect each pair of transition nodes by
a directed edge.
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The set of nodes N and edges E define the basic structure
of the transition graph. Assume for now that a starting node
set NS ⊆ N and ending node set NE ⊆ N are given (later
in Section IV-A we describe several methods to define them).
This indicates that the hyper-lapse route can start from any
frame node in NS and end at any frame node in NE . We
introduce two additional virtual nodes: a virtual start node
Nvs, and a virtual end node Nve. We connect Nvs to each
node in NS , and each node in NE to Nve with virtual edges
(Figure 5). Using this full graph structure, any path from Nvs
to Nve forms a possible hyper-lapse video F by assembling
the video frames of the node sequence of the path. In the next
section we introduce our method to find an optimal path for
the creation of a hyper-lapse video F .

IV. HYPER-LAPSE CONSTRUCTION

Our hyper-lapse construction method uses frame sampling and
assembly from multiple video sources. To find the frames
from the various videos, we minimize an energy function
by computing the shortest path on the hyper-lapse transition
graph. The output of the shortest path algorithm is the hyper-
lapse frame sequence F .

A. Route Definition

Because we combine several videos, and each one can have
a different camera route, there is a need to define the camera
route for the output hyper-lapse video. We do this using user
guidance.

In the simplest case, multiple input videos are given with a
fully overlapping route. The hyper-lapse route in this case
incorporates all the routes of the videos (Figure 2, left). The
aim of hyper-lapse creation is to produce a fast-forward result
which is as smooth as possible while having the target velocity.
This means that the route can start in any video and finish in
any video. To define this case, we set the start node sets NS as
the first τ frames of all videos, and the end node sets NE as
the last τ frames of all videos (we use τ = 100). Optionally,
the user can specify a specific video in which the route starts
or ends.

In cases when the routes of several input videos are partially
overlapping, a hyper-lapse video with a virtual route is gener-
ated. A virtual route is more complex as it is assembled from
parts of the original video routes (Figure 2, middle). Without
user constraints, our algorithm will simply find the smoothest
route starting in any video and ending in any video. However,
because we solve a minimization problem, such routes will
tend to be shorter. In an extreme case, when a sequence of
input videos only share a common view with one camera at
the beginning and one camera at the end (Figure 2, right), the
default output hyper-lapse will most probably choose only a
single camera route.

To overcome this problem, we allow the user to constrain
the output hyper-lapse results. As stated earlier, the user can
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Fig. 6. Possible user constraints: (a) The input camera routes share common
sub-routes A and C, and do not share sub-routes B1 and B2. (b) By default,
our algorithm selects sub-route B1 during optimization, because it is shorter
and smoother. (c) The user can specify that B2 must be included (or that B1
must be excluded), and in this case, the optimal hyper-lapse generated will
include B2.

specify a specific video in which the route starts or ends.
This can simply solve the extreme case mentioned above by
choosing the first and last videos in the sequence. The only
possible route that adheres to this constraint is a long virtual
route starting with the first camera and ending with the last
camera. To allow more freedom, we provide an interface where
the user can browse the different videos and mark specific
sub-sequences of frames either on a route-map panel or on a
frame time-line slider, to ensure that they are either included
or excluded from the final hyper-lapse output (Figure 6, and
accompanying video).

The user constraints are converted to penalties on the cor-
responding route nodes when optimizing (Section IV-D). In
most cases, such penalties guarantee that the final hyper-lapse
adheres to these constraints. However, if over-marking is used,
there may be cases when the global solution must use excluded
frames or may even fail to find a solution. In such cases the
user is notified to remove some constraints.

B. Speed-up Determination

In a single video hyper-lapse, the speed-up factor s can be
simply determined by converting it to a frame skip rate v = s.
However, in multi-source hyper-lapse, the camera movement
velocity for different input videos can differ. For example, if
we mix videos of running, walking and bicycling, and directly
use the frame skip rate v = s, the actual velocity of the hyper-
lapse camera will be unstable. To obtain coherent velocity for
the whole hyper-lapse video, we adapt the time-varying skip
rate from single video [1] to multiple videos.

We first estimate the instantaneous camera velocity v̂i,j of fi,j ,
the j-th frame in Vi, using the average movement of the four
frame corners:

v̂i,j =
1

4

4∑
k=1

‖T ij,j+1(Xk)−Xk‖2, (2)

where Xk, k = 1, . . . , 4 are the coordinates of the four frame
corners, and T ij,j+1 is the homography between frame fi,j and
fi,j+1. Next, we estimate the average camera velocity vc for
all videos by averaging all instantaneous velocities:

vc =
1

n

n∑
i=1

∑Li

j=1 v̂i,j

Li
, (3)

where Li is the length of the i-th video Vi.
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Finally, the time varying frame skip rate for a local frame is
defined as vi,j = vc

v̂i,j
·s. Intuitively, this matches the speed-up

at a specific frame to the average camera velocity.

To provide a more intuitive velocity setup, we also allow the
user to specify a specific video Vk and use its camera velocity

as the base velocity. In this case we use vc =
∑Lk

j=1 v̂i,j

Lk
. Lastly,

the user can still use a constant skip rate v = s to allow the
original camera velocity for each sub-route, if desired.

C. Formulation

We present the criteria and corresponding cost terms for the
assembled output hyper-lapse frames F = {fø(1), . . . , fø(T )}.
Following [1], we use stability, velocity and acceleration terms,
and add the user preferences and minimum duration terms to
define the camera route:

Visual Stability The camera motion should be as small as
possible between each neighboring output frames fø(i) and
fø(i+1). To measure this, we assign a cost to each pair of
neighboring frames using the offset of the frame center Mø(i)

as follows:

Cs(fø(i), fø(i+1)) = min(‖Tø(i)(Mø(i))−Mø(i)‖2, d/2),

where Tø(i) is the estimated homography which spatially
aligns fø(i) and fø(i+1) and d is the length of the frame
diagonal.

Velocity The hyper-lapse output should obtain the desired
speed up. Using the time-varying skip rate vø(i) for every
frame fø(i) (Section IV-B), this means that fø(i+1) should
be vø(i) frames away from fø(i). However, these two frames
can also come from different videos. Therefore, we use the
temporal transition distance π to assign the following cost to
each neighboring output frame:

Cv(fø(i), fø(i+1), vø(i)) = ‖π(fø(i+1), fø(i))− vø(i)‖22.

This measurement penalizes the departure from the required
skip rate. In practice, we use a truncated norm, clamping it at
200, following [1].

Acceleration Penalty By balancing the above two criteria, the
resulting hyper-lapse may have varying velocity, harming the
viewing experience. We penalize this by assigning the cost
function:

Ca(fø(i−1), fø(i), fø(i+1)) =

‖π(fø(i+1), fø(i))− π(fø(i), fø(i−1))‖22
to every triplet of consecutive output frames. In practice, we
use a truncated norm, clamping it at 200.

User Constraints To allow the user to specify a beginning or
ending video, as well as to include or exclude parts of other
videos, we introduce a cost term Cu(fø(i)). Frames that must
be excluded are given a penalty term Cu(fi,j) = θ for some
large value (we use 106). For frames that the user wants to
include in the final hyper-lapse, we set Cu(fi,j) = −θ for

its first and last frames, and in addition raise the minimum
duration value Υ along that part. This attracts the minimum
path on the graph to include this part of the video.

In addition to these optimization terms, we impose a hard
constraint of a minimum duration Υ = 10 frames, for each
sub-sequence of consecutive frames taken from each source
video Vi. This constraint is expressed as mini(D(Vi)) ≥ Υ,
and ensures that there is a transition window when switching
between videos to allow gradual color transition and camera
motion smoothing during post-processing (Section V).

Multiple source hyper-lapse creation is then formulated as a
minimization problem over the set of frames that define F
from the input videos:

F = arg min
{fø(1),...,fø(T )}

∑
t

Cs(fø(t), fø(t+1)) + Cu(fø(t)) (4)

+ λvCv(fø(t), fø(t+1), vø(t)) + λaCa(fø(t−1), fø(t), fø(t+1)),

s.t.min
i

(D(Vi)) ≥ Υ,

where λv and λa are parameters balancing the individual cost
terms. This formula sums all costs related to each selected
frame føt

∈ F . We empirically set λv = 100, λa = 40
throughout all our examples. In practice, the results are in-
sensitive to these parameter values, but they can be adjusted
according to the user’s preference in balancing visual stability
and the speed-up constraint.

D. Shortest Path Optimization

We convert the global optimization of Equation 4 to finding
a shortest path in our transition graph. First, we define a cost
function C to measure the cost of a two-step transition from
node p to node q, and from node q to node r, according to
the above criteria. The definition is the weighted sum of the
individual cost terms:

C = Cs(p, q) + Cu(p) + λvCv(p, q, v) + λaCa(p, q, r), (5)

where v is the locally determined frame skip rate for frame p,
and λv and λa are parameters as in Equation 4. Using this cost
function, the shortest path on the transition graph from Nvs
to Nve corresponds to the optimal solution with the smallest
total cost.

We solve the shortest path problem using memorization
search [37], which is a top-down recursive search approach
in the spirit of dynamic programming. From the virtual start
node Nvs, we recursively expand and visit connected nodes
under the minimum duration constraint, calculate the cost of
following specific edges, and memorize the optimal sum of
sub-path cost plus the corresponding successor node in a look-
up table. We continue the search until reaching the virtual end
node Nve. The optimal path is created by iteratively collecting
the optimal successor nodes starting at Nvs using the look-up
table. The corresponding frames are assembled as the hyper-
lapse video. Pseudo-code of this search process is provided
in the supplementary materials. The time complexity of the
algorithm is O(Ln2R2Υ), where L is the total number of
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input video frames, n is the number of input videos, R is the
maximum sampling temporal distance and Υ is the minimum
duration. In practice, the shortest path computation time taken
in all our examples was less than 5 minutes for typically tens
of thousands of nodes and edges in the hyper-lapse transition
graph.

V. RENDERING

The constructed hyper-lapse video consists of intra-source and
inter-source transitions between frames. Geometric differences
between the frames in inter-source transitions may require
large camera motions. To solve this, we average the homogra-
phy between the transition frames over several previous frames
to smooth out large camera motions. Stabilization is then
performed on the output frames to eliminate the remaining
jitter. In addition, as the input videos may be captured at
different times using different devices, the color, lighting and
movements of dynamic objects may differ in the two videos.
This can lead to reduced visual quality as a result of a sudden
appearance change at inter-source transitions. To solve this,
we apply appearance smoothing while rendering the output.

A. Motion Smoothing

Although hyper-lapse creation optimization seeks an as-
smooth-as-possible frame sequence, there may still be large
inter-video camera motions between the output frames. We
deal with such large inter-video motions by first distributing
the motion to several frames, when there is a change in the
video source, and then using standard video stabilization on
all output frames.

To eliminate inter-video motions, we estimate the camera
motion Tø(i) between two consecutive cross-video transition
frames fø(i) and fø(i+1), and instead of applying it point-
wise in the transition, we distribute the motion evenly into the
ω previous frames: 〈fø(i−ω+1), . . . , fø(i)〉. The original large
camera motion is then broken into smaller ones that are applied
from fø(i−ω+1) to fø(i+1).

Specifically, assume that Tø(i) is the homography defined by:

Tø(i) =

 h11 h12 h13

h21 h22 h23

h31 h32 h33


For each output frame fø(i−ω+t) (1 ≤ t ≤ ω), the motion
smoothed frame f ′ø(i−ω+t) = T ′t (fø(i−ω+t)), where T ′t is the
t-th motion-smoothing transformation, defined by the matrix:

T ′t =

 st11 dt12 dt13

dt21 st22 dt23

dt31 dt32 1


As h11 and h22 in Tø(i) are parameters related to x and y
coordinate scaling respectively, we distribute their value in ω
steps using the power function:

stpp = pow(hpp,
t

ω + 1
) 1 ≤ p ≤ 2

For all other parameters, we evenly divide them into ω parts
and accumulate their values from 0.

dtpq =
hpq · t
ω + 1

1 ≤ p, q ≤ 3, p 6= q.

Figure 7 shows an inter-video smoothing example carried over
several frames.

To further eliminate the remaining jitter, we follow previous
methods of single video hyper-lapse video creation [1] [25].
We perform video stabilization on the motion-smoothed se-
quence, to further remove low frequency motion noise present
in each video source. We use the single path camera trajectory
smoothing method of Liu et al. [30], under an area constraint
of at least 80%, and crop the central rectangle view to get the
final result.

B. Appearance Smoothing

The resulting hyper-lapse depends on plausible appearance
transitions for both the colors and the motions of objects in
the scene. Possible appearance smoothing solutions include
direct color adjustment of each frame or multiple-frame fusion
based on a dissolve transition. We perform color adjustment
by considering different constraints, including original spatial
gradient preservation, temporal illumination smoothing and
corresponding appearance preservation. Nevertheless, it is dif-
ficult to avoid visual inconsistency in extreme cases where
objects suddenly appear in the scene. Complicated solutions,
such as point-cloud and full 3D warping based dissolving [14],
can potentially be used for appearance smoothing, but will re-
duce the computational efficiency of the system. Therefore, we
smoothly adjust the appearance by applying simple Gaussian
smoothing temporally (with a radius of 3 frames), which our
results shows works well (Figure 8).

VI. RESULTS

All the videos in our results were taken by mobile devices
(either a GoPro Hero 4 or a smart phone), or taken from
collections of videos from the Internet. The capture devices
were handheld or fixed on a helmet. The collection of videos
were captured either outdoors or indoors while touring. The
videos include static scenes, moving objects and even crowds,
and are of length 5–15 minutes, with 1280×720 frame size.
We processed the videos on a computer with an Intel Core
i7-4790K CPU and 32GB RAM. Pre-processing to build the
transition graph took less than two hours. Note that once the
graph has been constructed, it can be reused to create multiple
results. For all examples, hyper-lapse sequence optimization
took less than 5 minutes, as did online rendering. Detailed
timings are listed in Table I.

All parameter values were fixed as reported earlier in the
text, for all experiments. The parameters that affect the visual
results most are the velocity and acceleration weights λv, λa,
and the minimum duration in the optimization objective. Our
default parameters worked well in all experiments, but could
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Fig. 7. Inter-source motion smoothing. Consecutive frames in the hyper-lapse sequence ‘Old Summer Palace 2’ taken from two videos are shown. Without
motion smoothing, a sudden horizontal jump is seen between the transition frames. After applying motion smoothing, the frames in Video 1 gradually change
towards Video 2 creating a smoother transition (bottom).

TABLE I
STATISTICS AND COMPUTATION TIME (IN MINUTES) FOR THE EXAMPLES USED IN OUR EXPERIMENTS. ALL INPUT VIDEOS IN EACH EXAMPLE WERE

USED IN THE OUTPUT HYPER-LAPSE RESULT. CREATION TIME IS THE AVERAGE TIME FOR ALL RESULT VIDEOS PER EXAMPLE.

Video Properties Pre-Processing (min.) Creation (min.)
Video Name #Videos #Frames Speed-Up Filtering Alignment Graph Const. Opt. Render
Walk and Bike 2 16344 8× 3.4 32.0 22.0 0.7 2.2
q q q 12× q q q 0.6 2.0
Bike 3 13913 8× 4.3 28.0 25.0 2.1 2.3
Gordon Square 10 41006 8× 17.0 22.0 37.0 2.8 3.2
Old Summer Palace 1 3 20817 10× 5.0 42.3 41.0 2.2 0.9
Old Summer Palace 2 3 31034 10× 8.5 40.0 51.0 2.8 2.5
q q q 20× q q q 0.6 1.9
Old Summer Palace 3 5 11926 10× 10.7 17.3 24.0 2.3 1.5
Garden Walk 1 3 23156 10× 10.0 57.0 34.5 2.0 1.8
Garden Walk 2 4 27646 10× 8.3 41.0 25.0 3.3 2.5
Short Walk 1 5 22939 10× 12.0 39.0 8.0 0.5 2.5
Short Walk 2 3 12697 10× 4.5 7.0 12.0 0.4 2.0
Short Walk 3 4 17546 10× 17.0 33.0 35.5 4.7 4.0
Supermarket 3 10682 10× 7.6 19.2 20.5 2.2 2.0
Zoo 7 38508 10× 21.0 22.5 33.8 1.5 2.6
Museum 9 61447 10× 28.0 45.0 24.5 3.3 1.0
Park Tour 1 7 40550 15× 11.5 33.2 20.0 2.3 2.0
Park Tour 2 10 53379 15× 26.0 41.0 22.3 2.7 1.5

Source Frame Target FrameDissolve

Fig. 8. Appearance smoothing processing for smooth content transition. Direct
color adjustment works poorly for sudden appearance of objects (see the
walkers in the first row) or obvious content change (the sky in the second
row).

be adjusted to match particular user preferences: for exam-
ple, increasing λv provides greater speed consistency, while
decreasing λv and λa provides more stable visual content.

One basic goal of our multi-video approach is to provide more
stable hyper-lapse results for static scenes compared to using
single-video hyper-lapse creation based on frame selection.
A further benefit is that the proposed method provides ef-
fective hyper-lapse routes synthesis for virtual camera routes.
We present several scenarios and interesting applications to

demonstrate its power.

First, given several input videos of a static scene with a
single overlapping route, in which each video includes drastic,
joggling, camera motions, we generate more stable hyper-
lapse video results than single-video frame selection. We
illustrate this in Figure 9 by showing an example of the
mean and standard deviation of five consecutive hyper-lapse
frames and the accumulated average standard deviation of
our approach compared to [1]’s method. As can be seen, our
hyper-lapse result is more stable due to the optimized hyper-
lapse transitions avoiding unstable camera sub-paths in the
original input video. The cost of these improved results is
longer run time mostly due to the need to handle multiple
videos. Our computations take 105 minutes, out of which 101
minutes are pre-processing. This is compared to 4 minutes
for Joshi et al.’s method on a single video. Nevertheless, the
pre-processing stage must only be performed once, and the
user can generate alternative results from the set of input
videos in time comparable to Joshi et al.’s method. Note that
if large camera parallax exists, hyper-lapse creation based on
the 3D scene reconstruction technique of [24] would generate
more stable results than a 2D methods like ours. However,
reconstruction of multiple videos is far more time consuming
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Fig. 9. Comparisons with [Joshi et al. 2015]’s method, using a challenging
video example with drastic camera motions. Frames from ‘Garden Walk
1’ with three videos with fully overlapping routes. (a) Example for the
mean and standard deviation of five consecutive hyper-lapse frames. (b) The
accumulated standard deviation divided by the number of video frames for
the two videos.
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Fig. 10. Combining walking and bicycling videos at 12× the average velocity
of the two videos results in higher skip rate for the walking sequences than the
bicycling. As can be seen in the supplemental video, the output hyper-lapse
maintains a consistent camera velocity.

than sampling and can sometimes also fail.

Our multiple video hyper-lapse creation can generate videos
with consistent camera velocity given videos captured during
different activities such as walking and bicycling. Figure 10
shows the sampling rate over time of a hyper-lapse combining
the content from walking and bicycling videos, where the
average speed up was set to 12× (Section IV-B). As can
be seen, the local skip rate can fluctuate, but to maintain a
consistent rate it is lower for the bicycle parts than for the
walking parts.

Our approach can find valid transitions between videos and
generate plausible hyper-lapse results with dynamic content,
even with crowds in the videos. Both the outdoor ‘Zoo’ and in-
door ‘Museum’ examples contain many tourists. Nevertheless,
we still succeeded in finding optimal hyper-lapse routes with
only moderate dynamic object inconsistency during hyper-
lapse transitions between videos (Figure 1 and supplemental
video).

User Interface As explained in Section IV-A, we allow users
to specify sub-routes which must be included or excluded from
the output hyper-lapse. There are two typical reasons for this:
to select a sub-route from several non-overlapping routes, and
to include or exclude specific content from videos. We provide
an easy-to-use interface that portrays a time-line slider for
every video in the collection using sampled thumbnails of its
frames, a preview window, a command panel and optionally a

Route Map Panel Preview Window
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e 
sl

id
er

Command Panel

Fig. 11. User interface for adding constraints to video routes and playing
hyper-lapse results. It consists of a preview window, a route map panel, a
timeline slider and a command panel.

route map panel (Figure 11). This map is created manually, but
our system will immediately map the overlaps in the routes to
the detected frame alignments in the videos. Note that video
alignment does not require any user input assistance and the
route map is only used for interaction and hyper-lapse preview.
The user can label frames either on the map panel or on the
video timeline slider. When the cursor is on the map panel,
the selected frame is snapped to the nearest frame according
to the distance between cursor and curve points. Users can
easily select sections of any video by clicking the left or right
button, indicating inclusion or exclusion at start position and
end position; the selected sub-videos are marked as green or
red, respectively. Once hyper-lapse optimization is finished,
the user can play the hyper-lapse via the interface where the
hyper-lapse result is displayed in the preview window and the
corresponding frame is highlighted on the route map and the
timeline slider. Examples of interaction are provided in the
supplemental video.

For input videos with complex routes, default hyper-lapse
creation seeks an optimal hyper-lapse route with the most
stable camera trajectory that is also short. To create longer
and more complex outputs, the user can impose sub-route
constraints using the user interface, as desired. In Figure 12,
three different hyper-lapse routes with the same start and
end points were synthesized from ten input videos by using
different user specifications on the sub-routes. Please refer to
the supplemental videos for the interaction process.

Using the interface, users can easily remove distractions from
the resulting video. For example, if some distraction, such as
an undesired person, comes into view while capturing a video,
the user only needs to re-capture a new local video clip. She
can then constrain the video to exclude the distraction (or to
include the new video). Our algorithm will automatically find
the path in the transition graph that follows these constraints
and remove the distraction. Figure 13 shows an example of
removing distracting people from a hyper-lapse.

We also have an interactive hyper-lapse navigation interface,
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a b c d

Fig. 12. Examples of virtual complex routes synthesis. Based on the input routes (a) and user-specified constraints (see supplemental video), three different
hyper-lapse routes (b)–(d) are created with the same start point and end point.

Fig. 13. Example of removing distractions. Top: the original captured video
contains distracting people. Bottom: using the corresponding sub-route from
other videos, the undesired people are removed from the hyper-lapse result.

Fig. 14. Interactive hyper-lapse navigation. The user interacts with an abstract
route map (bottom left) and sees thumbnails of the route in a preview window
(bottom right). Following selections, the hyper-lapse is shown in the viewing
window (top). We show examples of two hyper-lapse paths explored using
this interface.

which allows users to interactively select the next sub-route to
explore while watching a hyper-lapse video. Each time a junc-
tion is encountered, the user can interactively preview frames
on the next available sub-routes by exploring a user input
abstract route map. Once the user selects the corresponding
route, navigation with hyper-lapse continues (see Figure 14).
To support this application, we perform an additional junction
extraction step after discovering local alignments. We group
neighboring positions along non-overlapping routes between
video pairs. We then accumulate the length of the grouped non-
overlapping positions by counting the corresponding frames.
We mark every continuous non-overlapping route whose
length exceeds 300 frames (corresponding to ∼ 10 seconds) as
a non-overlapping section and record the start and end points

of the section as junctions. The user can synthesize a hyper-
lapse sub-route between any two neighboring junctions and
play the clips in navigation order.

Note that to be faithful to the original video content, input
videos in our experiments are not allowed to be temporally
reversed. However videos could be straightforwardly reversed
before processing for special user preference and visual ef-
fects.

VII. DISCUSSION AND CONCLUSION

Comparison to Graph Models. Graph models have been
widely used in image and video editing. Our graph methodol-
ogy is similar to other formulations. However, each problem
has its own specific requirements, and in our case the graph
is carefully designed to solve the multi-video hyper-lapse
problem. The structure of this graph models both intra-video
and inter-video transitions between frames in using edges. By
optimizing an objective function on the graph, our method can
generate a hyper-lapse sequence. We compare graph models
from recent video processing works [13], [14], [27] with
respect to some key structural and functional properties in
Table II. Compared to Videoscapes [14], our transition graph
can be used to compute stable hyper-lapse results because
of the encoded penalty for route optimization. In contrast,
Videoscapes only supports interactive navigation. Compared
to the trellis graph structure [13] where edges only connect
temporally neighboring frame nodes, our graph contains pos-
sible transitions between frames with a temporal distance we
called skipping transitions, which do not necessarily form
a dense trellis structure. Compared to the graph structure
in EgoSampling [27], our hyper-lapse transition graph can
encode interactively specified user constraints, and thus can
support interactive hyper-lapse creation or navigation to spec-
ified target positions on the routes.

Conclusion. We have presented a method to create smooth
continuous hyper-lapse videos from multiple spatially-
overlapping input videos. Our method is based on sampling
and assembly of frames, for multiple videos with different
sub-routes, camera velocities and dynamic objects. We mine
the potential connections between video pairs and encode
the potential hyper-lapse transitions in a transition graph for
all videos in the collection. Hyper-lapse frame assembly is
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TABLE II
COMPARISON TO OTHER GRAPH MODELS USED IN MULTIPLE VIDEO EDITING. FROM EACH COLUMN, Encoding Costs INDICATES WHETHER THERE ARE

COSTS OR PENALTIES EMBEDDED IN THE GRAPH; Skipping Transitions INDICATES WHETHER THERE ARE EDGES CONNECTING NON-TEMPORAL
NEIGHBORING NODES; Navigation INDICATES WHETHER INTERACTIVE USER NAVIGATION IS SUPPORTED, AND Route Optimization INDICATES WHETHER

AN OPTIMAL, VISUALLY APPEALING CAMERA ROUTE CAN BE OBTAINED FROM THE GRAPH MODEL.

Structure Function
Encoding Costs Skipping Transitions Navigation Route Optimization

Videoscapes [Tompkin et al. 2012] X X
√

X
Trellis Graph [Arev at al. 2014]

√
X X

√

EgoSampling [Halperin at el. 2017]
√ √

X
√

Our Hyper-lapse Transition Graph
√ √ √ √

formulated as a minimization problem solved by a shortest
path search on the transition graph. For challenging input
videos with severe camera motions, our approach provides
visually better results than an approach based on a single video
hyper-lapse sampling, as more options to choose frames are
available. Furthermore, our approach also allows numerous
novel applications such as virtual hyper-lapse route synthesis,
user-guided hyper-lapse creation, and interactive hyper-lapse
navigation.

Our approach has its limitations: videos that share a common
view or location must be available. However, as video capture
these days is extremely simple, we believe that collections of
similar videos will rapidly grow as have collections of images.
Given a set of similar videos, our frame alignment and camera
motion estimation procedures are based on feature matching
rather than full scene reconstruction. Videos with large camera
parallax or moving distractions may fail to be aligned properly.

In future, we wish to combine our hyper-lapse creation with
high-level semantic cues. Semantic cues such as video content
understanding and human activity recognition can assist in
pre-filtering hyper-lapse transition edges as well as provid-
ing visual aesthetic criteria for hyper-lapse creation. In this
way, human-centric video processing is addressed, which we
believe will be an important research direction.
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