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Abstract

3D mesh models are now widely available for use in various appli-
cations. The demand for automatic model analysis and understand-
ing is ever increasing. Mesh segmentation is an important step to-
wards model understanding, and acts as a useful tool for different
mesh processing applications, e.g. reverse engineering and model-
ing by example. We extend a random walk method used previously
for image segmentation to give algorithms for both interactive and
automatic mesh segmentation. This method is extremely efficient,
and scales almost linearly with increasing number of faces. For
models of moderate size, interactive performance is achieved with
commodity PCs. It is easy-to-implement, robust to noise in the
mesh, and yields results suitable for downstream applications for
both graphical and engineering models.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Geometric algorithms, languages, and systems.

Keywords: mesh segmentation, random walks, interactive

1 Introduction

With the development of 3D acquisition techniques, 3D mesh mod-
els are now widely available and used in various applications. The
demand for model analysis and understanding is thus ever increas-
ing. However, techniques for intelligent automated processing of
large mesh models have not matched the growth in availability of
models. The task of mesh segmentation is to decompose a mesh
model into a set of disjoint pieces whose union corresponds to the
original model. To be useful, segmentation must decompose a mesh
into meaningful pieces (e.g. limbs and torso of an animal) or ones
which satisfy other desirable criteria (e.g. each piece is bounded by
sharp edges or small radius blends).

Mesh segmentation is an important step towards model analysis
and understanding. A variety of different applications could benefit
from preprocessing the mesh using an efficient and reliable mesh
segmentation method. In the field of reverse engineering of CAD
models, segmentation plays an important role in splitting a model
into pieces, each of which may then be fitted with a single analyt-
ical surface [Várady et al. 1997]. In computer graphics, segmen-
tation can be applied in various applications, including mesh sim-
plification [Zuckerberger et al. 2002], collision detection [Li et al.
2001], morphing [Shlafman et al. 2002; Zuckerberger et al. 2002]
and skeleton-driven animation [Katz and Tal 2003].
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The basis for mesh segmentation derives from cognitive science.
As pointed out by Hoffmann [Hoffmann and Richards 1984; Hoff-
mann and Singh 1997], the human visual system perceives region
boundaries at negative minima of principal curvature, or concave
creases—this observation is known as the minima rule. The depth
of the concavity directly affects the salience of region boundaries.
Such concave feature regions together with other information are
important cues for segmentation. Moreover, it can be observed that
only significant features are important to segmentation; small-scale
fluctuations should be ignored, even if they represent sharp creases.
On the other hand, in the case of reverse engineering, different sur-
faces are separated along sharp edges, which may be convex or con-
cave, or even along smooth edges—different criteria are applicable
to segmentation for such uses.

Recently, Grady [2006] proposed an interactive algorithm for image
segmentation based on the use of random walks. The main ideas
are as follows: a set of seed pixels is first specified by the user. For
all other pixels, using an efficient process, we determine the prob-
ability that a random walk starting at that pixel first reaches each
particular seed, given some definition of the probability of stepping
from a given pixel to each neighbor. The segmentation is formed by
assigning the label of the seed first reached to the non-seed pixel.

Our work is an extension of the random walks method to the partic-
ular problem of mesh segmentation; previous work has already con-
sidered the use of random walks for solving the different problem
of mesh denoising [Sun et al. 2007]. By using different methods
of assigning probability distributions, we are able to segment both
engineering object models and graphical models. Our results are re-
liable even when the models are noisy or have small-scale textures
that should be ignored.

As well as a method based on user selection of seeds, we give a gen-
eralization of this method to automatic mesh segmentation, which
automatically places seeds (usually with more seeds than the re-
quired number of regions) using feature sensitive isotropic point
sampling. Our two-pass method segments the mesh using these ini-
tial seeds, and then merges the regions found based on similarities
of neighboring regions.

Compared to other methods, our proposed method has the follow-
ing advantages. Our method:

• provides results of comparable quality to state-of-the-art
methods, but is significantly more efficient, making it espe-
cially suitable for interactive applications or applications that
require segmentation of large models, or large numbers of
models,

• can be used both interactively or automatically, and in partic-
ular the optimal number of regions can be deduced automati-
cally,

• is robust to noise and small-scale texture that may be present
in real scanned models,

• is applicable to both CAD models and graphical models, and

• is easy-to-implement.

Section 2 briefly reviews related work. Interactive and automatic
mesh segmentation algorithms based on random walks are pre-



sented in Sections 3 and 4 respectively. Experimental results are
given in Section 5, with conclusions and discussions in Section 6.

2 Related Work

Compared to the problem of image segmentation, research into
mesh segmentation is much more recent; however, it is now an ac-
tive research topic, due to the wide range of potential applications.
A complete survey of mesh segmentation is beyond the scope of the
paper, but an up-to-date review and comparison of different meth-
ods can be found in [Attene et al. 2006a].

Based on the different aims, existing mesh segmentation algorithms
can be generally categorized into two classes. The first class is
aimed at applications such as reverse engineering of CAD models
(e.g. [Attene et al. 2006b]). Such methods segment a mesh model
into patches each of which is a best fit to one of a given class of
mathematical surfaces, e.g. planes, cylinders, etc. The second class
tries to segment typically ‘natural objects’ into meaningful pieces,
as expected by a human observer. Our algorithm is mainly aimed at
solving problems of the latter class, but with certain modifications,
it is also able to handle engineering objects reasonably well.

Most state-of-the-art work on mesh segmentation is based on it-
erative clustering. Shlafman et al. [2002] use k-means clustering
to segment the models into meaningful pieces. Katz [Katz and
Tal 2003] improved on this by using fuzzy clustering and minimal
boundary cuts to achieve smoother boundaries between clusters.
Top-down hierarchical segmentation has also been used to segment
objects with a natural hierarchy of features. Lai [Lai et al. 2006]
suggested combining integral and statistical quantities derived from
local surface characteristics, producing more meaningful results on
meshes with noise or repeated patterns. One of the most prominent
drawbacks of such algorithms is the necessity to compute pairwise
distances, making it expensive or even prohibitive to handle large
models directly. To handle models with e.g. more than 10,000
faces, mesh simplification [Katz and Tal 2003; Katz et al. 2005;
Liu and Zhang 2004] or remeshing [Lai et al. 2006] is typically
used. Spectral clustering has also been used [Liu and Zhang 2004]
with good results, but this approach also suffers from performance
problems, although Nyström approximation method has been used
for accelerating it [Liu et al. 2006].

Unsupervised clustering techniques like the mean shift method can
also be applied to mesh segmentation. Shamir [Shamir et al. 2004]
extended mean shift analysis to mesh models based on use of a
local parameterization method. Later, Yamauchi [Yamachi et al.
2005] applied mean shift clustering to surface normals. Such meth-
ods tend to oversegment a model into more pieces than expected or
desired.

Other methods for mesh segmentation also exist. Mangan and
Whitaker [1999] applied bobsledding watershed algorithm to tri-
angle meshes. Li [Li et al. 2001] proposed using skeletonization
based on edge contraction and space sweeping to perform mesh
decomposition. Visually appealing results are obtained; however,
their results depend mainly on large-scale features, and do not al-
ways capture salient geometric features. Recently, Reniers and
Telea [2007] used curve skeletons in hierarchical mesh segmenta-
tion. Katz [Katz et al. 2005] proposed a segmentation algorithm
based on multidimensional scaling and extraction of feature points
and cores. The method is able to produce consistent results when
regions of a mesh are placed in differing relative poses. However,
an expensive method is used to find feature points, which limits
the complexity of models that can be efficiently handled, even after
simplification. Mitani [Mitani and Suzuki 2004] proposed a tech-

nique for making paper models from meshes. This can be consid-
ered to be a specialized mesh segmentation method that produces
naturally developable triangle strips.

In the sense of segmentation of engineering objects, especially for
the purpose of reverse engineering, there exist quite a few works.
Most of such work deals with point cloud directly instead of tri-
angle meshes due to its wide availability. Sapidis and Besl [Sa-
pidis and Besl 1995] proposed a method to construct polynomial
surfaces from point cloud data, using region growing for segmen-
tation. Benkő and Várady [2002] proposed a method to directly
segment point cloud data of engineering objects based on a serial
of top-down recursive tests. Gelfand and Guibas [2004] proposed
to use slippage analysis and multi-pass region growing to segment
different regions based on different slippage signatures. Edels-
brunner [Edelsbrunner et al. 2003] proposed to segment meshes
with piecewise linear Morse-Smale theory. This idea has been ex-
tended to suit the needs for producing CAD-like segmentation re-
sults [Várady 2007].

Certain work explicitly considers the problem of interactive mesh
segmentation. Lee proposed a method to segment models us-
ing user-guided or automatically extracted cut lines based on 3D
snakes [Lee et al. 2004; Lee et al. 2005]. Funkhouser [Funkhouser
et al. 2004] provided an intuitive interactive segmentation tool to
find optimal cuts guided by user-drawn strokes, and applied it to a
modeling system based on stitching parts extracted from a model
database. An interactive segmentation method based on graph-
cut was proposed by Sharf, again for use in a cut-and-paste sys-
tem [Sharf et al. 2006].

Our method is different to any of the above in that it is based on a
random walk paradigm. The formulation leads to the need to solve
a sparse linear system, which is very efficient. Unlike most interac-
tive methods, user interaction is provided by specifying a set of seed
mesh faces, which is much easier than specifying a rough cutting
boundary. In applications where automatic methods are preferred,
we use a two-stage method that first oversegments the mesh using
a set of automatically chosen seeds, and then merges these initial
regions to give the final regions.

3 Interactive Segmentation

In this section, we will discuss our algorithm for interactive mesh
segmentation using random walks; extension to an automatic mesh
segmentation algorithm will be discussed in the next section. The
basic idea of the algorithm is in spirit similar to the corresponding
method for image segmentation [Grady 2006], but due to the differ-
ences of source data and aims, certain issues must be resolved.

We assume that the given models are triangular meshes. Random
walk mesh segmentation proceeds as follows: assume that the user
picks n faces as seeds, where n is the number of final regions
desired; seeds are placed so that one seed ‘obviously’ lies within
each of the final regions the user desires. We denote the seeds by
s1, . . . , sn. Other faces are non-seed faces, denoted by f1, . . . , fm.
We associate a probability with each of the three edges ek,i of
each non-seed face fk, denoted by pk,1, pk,2 and pk,3 respectively.
These correspond to the probabilities that a random walk will move
across a particular edge to the corresponding neighbor. These prob-
abilities satisfy the following equation:

3∑
i=1

pk,i = 1. (1)

For i = 1, 2, 3, denote the face sharing ek,i with fk by fk,i. For
a particular seed face sl, denote the probability of a random walk



starting from a particular face fk arriving at sl first, before reaching
other seeds, as P l(fk), for l = 1, . . . , n. P l(sl) = 1 and P l(sk) =
0 for any k 6= l. As the number of steps considered increases, in the
limit, the following equation holds for each non-seed face fk (for
each l = 1, 2, . . . n):

P l(fk) =

3∑
i=1

pk,iP
l(fk,i). (2)

For a particular seed face sl, the P l(fk) form a column vector of
length m (denoted by P l) that needs to be computed, and we have
m equations of the form given in Eqn. 2. We may rewrite Eqn. 2 in
matrix form as Am×mP l = Bl, where A and Bl can be deduced
from Eqn. 2. Most values in Bl are zeros. However, from Eqn. 2,
for a non-seed face fk adjacent to a seed face, the corresponding
P l(fk,i) is not a variable, but a constant, either 0 (if not the lth

seed) or 1 (for lth seed). Since the lth seed has at most (and nor-
mally, exactly) three neighbors, Bl also has at most (and normally)
three non-zero values.

Note that A is independent of the choice of l. Thus we may put the
P l together and form a matrix Pm×n with rows Pl,k = P l(fk),
to give AP = B, where B = (B1, . . . , Bn). This sparse linear
system has the same general nature as the one in [Grady 2006]; this
system is sparse as each row of the matrix contains at most 4 non-
zero entries, as shown in Eqn 2. Following the argument in [Grady
2006], the matrix A is positive semi-definite, and the solution to
this linear system is uniquely determined. Please note that random
walk model described above is in essence equivalent to electric net-
work model as the distribution of electric potentials at each face,
where the probability to move to neighboring face corresponds to
the reciprocal of resistors (i.e. conductances). See [Doyle and Snell
1984] for a thorough study.

We now define that a given face belongs to the region attached to
seed sl if a random walk starting at that face has a higher probability
of reaching this seed than any other seed. Thus, after computing
P l(fk) for l = 1, . . . , n and k = 1, 2, . . . , m, we assign the label
for seed sl to those non-seed faces fk which satisfy

P l(fk) = max
t=1,...,n

P t(fk). (3)

It can be shown that each region produced by this segmentation
process is guaranteed to be contiguous.

Given the basic framework given by the algorithm above, two sig-
nificant issues remain: to determine appropriate probabilities for
stepping from face to face, what optional preprocessing and post-
processing steps may be needed to further improve the results.

3.1 Probability computation

Choice of suitable probability assignments, i.e. pi,1, pi,2, pi,3, for
each face i is essential for the random walk approach to give good
mesh segmentation results. Appropriate probabilities are affected
by the types of models, due to the different purposes of mesh seg-
mentation. In the following, we will address ‘natural’ graphical
models and engineering object models separately.

3.1.1 Graphical models

Mesh segmentation of graphical models should split a model into
meaningful pieces. The most important information for segmenta-
tion comes from the minima rule, as used by many segmentation
algorithms, where significant (concave) features are considered as

important hints. For a given face fi, we define a difference func-
tion d(fi, fi,k) which measures the difference in some specific ge-
ometric property between fi and one of its neighboring faces fi,k,
k = 1, 2, 3. For graphical models, we define this function to mainly
depend on a function d1 measuring the dihedral angle:

d1(fi, fi,k) = η [1− cos (dihedral(fi, fi,k))] =
η

2
||Ni −Ni,k||2 ,

(4)
where dihedral(fl, fm) represents the dihedral angle between ad-
jacent faces fl and fm, and Nl is the normal to face fl. η is used to
give higher priority to concave edges: we set η = 1.0 for concave
edges and a relatively small number (e.g. 0.2) for convex edges,
according to the minima rule.

To handle variations in the dihedral distribution, we normalize d1

by its average over all edges, d̄1, giving as the overall difference
function d:

d(fi, fi,k) =
d1(fi, fi,k)

d̄1

. (5)

Given a definition for the difference function at hand, the probabil-
ity distribution is now computed as

pi,k = |ei,k| exp

{
−d(fi, fi,k)

σ

}
, (6)

where |ei,k| is the edge length of the corresponding common edge,
and σ is used to control how variation of differences maps to vari-
ations in probability. In our experiments, we have found σ = 1.0
works well for most of cases. pi,k is then normalized to sum to one
over each face. An exponential function is used above as a con-
venient way of mapping differences in (0,∞) to probabilities in
(0, 1), where a high difference corresponds to a low probability

3.1.2 Engineering models

Segmentation of engineering object meshes differs in its aims from
segmentation of graphical models. We usually want to segment
such a mesh into pieces that can each be fitted with some analyt-
ical surface [Várady et al. 1997]. In many typical cases (but not
all), Gaussian and mean curvatures should be almost uniform over
a segment, which is a different requirement from the case of graph-
ical models.

Again, we use d1 to measure the change of normals between ad-
jacent faces; however, for engineering object mesh segmentation,
we set η = 1.0 for both convex and concave edges, since they are
equally important for the segmentation of such models. Moreover,
we introduce two further difference measures for the variation of
Gaussian and mean curvatures. To begin with, we need to estimate
the Gaussian and mean curvatures on both sides of a given edge.
Such curvature estimates are known to be sensitive to noise, so we
use robust estimators for this purpose—we use PCA-based integral
invariants in ball neighborhoods [Yang et al. 2006]. The method
basically relies on a covariance analysis of the intersection volume
between a ball of radius r and the volume of interior part of the
given model. Since the method actually computes principal tensors
at a regular mesh point, we may adapt this method to directly in-
terpolate the principal curvatures at the center of each face rather
than at each vertex. We denote Gaussian and mean curvatures at
face fi as K(fi) and H(fi) respectively. If the model is relatively
clean, we may set r to be 1 to 2 times the average edge length of the
model. For noisy models, to make the result robust, we must use
a larger radius r at the cost of sacrificing the ability to accurately
locate some boundaries.



The difference functions for Gaussian and mean curvatures are now
defined as

d2(fi, fi,k) = |K(fi)−K(fi,k)|
d3(fi, fi,k) = |H(fi)−H(fi,k)| . (7)

The overall difference function is defined by combining d1, d2 and
d3 to be:

d∗(fi, fi,k) = max

{
d1(fi, fi,k)

d̄1

,
d2(fi, fi,k)

d̄2

,
d3(fi, fi,k)

d̄3

}
,

(8)
where d̄1, d̄2 and d̄3 are average values of the corresponding dif-
ference function over the whole model. Note that the maximum
of these three is used instead of their weighted average: the peak
responses of any component are significant, and this approach also
avoids the difficulty of choosing appropriate weights. Given d∗, the
probability is again defined using Eqn. 6, but with d∗ in place of d.
The method works well for separating smoothly touching regions,
as illustrated in Fig. 1.

Figure 1: segmentation of CAD models without sharp edges.

3.2 Preprocessing and postprocessing

Although the method as described is much faster than any method
based on iterative clustering, for very large models, it may be
preferable to simplify or remesh the models to a more practical size
(e.g.10, 000-20, 000 faces) for efficiency. This is also reasonable,
since extra detail in models actually provides little extra help in
segmentation. Segmentation can be computed using the faces of
the reduced model. This step is optional for the overall pipeline.

After random walk segmentation, each segment is represented by a
contiguous set of faces. The boundaries may be somewhat jagged,
partly due to noise and other variations in local properties near
the separating edges, and partially due to the limited resolution of
the mesh. We use feature sensitive smoothing as proposed in [Lai
et al. 2007] to smooth the segment boundaries while keeping them
snapped to features. This amounts to optimizing a discretized
spline-in-tension energy in the feature sensitive metric. The bound-
aries generally form a complicated graph, so branching points are
first detected and each boundary segment between branching points
is smoothed independently.

The smoothed boundaries are represented as a set of connected
points; however each point generally will not be located at any
vertex of the initial mesh. We suggest updating the input mesh
model slightly so that the smoothed boundaries map to a sequence
of edges in the updated mesh. To do so, we first project each point
on the smoothed boundary onto the input mesh model. The re-
sulting point may be located at a vertex, on an edge, or within a
face. In the latter two cases, we split the related faces to make this

point a vertex of the revised mesh (as illustrated in Fig. 2(left)).
Projection is done quickly using the approximate nearest neigh-
bors library [Mount and Arya 2005]. After projection, we find
the geodesic path across the mesh between adjacent projected ver-
tices [Surazhsky et al. 2005], and split each face crossed by the
geodesic into two. To ensure that the resulting mesh remains a tri-
angular mesh, quad faces induced by this splitting are further split
into two triangles.

Such local updates can be performed efficiently. Since the geodesic
computation requires a data structure that cannot be easily adapted
for dynamic updating of the mesh structure, we use the assumption
that adjacent points on the smoothed boundaries are usually close
to each other, build a small patch of the input mesh that covers both
projected points, and compute the geodesics on such small patches.
An example of such splitting is shown in Fig. 2(right). The blue
edges correspond to those which must be added so that geodesic
edges become edges of the mesh. Thick blue edges correspond to
edges that are part of the smoothed boundary. After this process,
the smoothed boundaries can be directly mapped to edges of the
modified input model, and the segmentation results after smoothing
may be represented by assigning a label to each face of the modified
input mesh.

4 Automatic Segmentation

The random walk segmentation method may be adapted to work
automatically. In this case, a set of seeds is automatically selected,
generally with more seeds than the number of finally expected clus-
ters. For segmentation of graphical models, we usually require a
coarse segmentation, which does not need a dense set of seeds; for
engineering object meshes, or when a detailed segmentation is pre-
ferred, more seeds may be necessary. Our interface allows users to
specify both an approximate number of seeds, and to place specific
seeds before or after automatic selection.

The random walk algorithm described above is used to segment the
model. There will in general be more resulting pieces than desired,
and so a further merging process is used to combine these overseg-
mented pieces into the final segments. This approach works well in
practice, as it is based on our experimental observation that random
walk segmentation results are not sensitive to the exact location of
the seeds (as demonstrated later).

4.1 Coarse-Scale Seeding

If it is desired to segment the model into large pieces represent-
ing large-scale structures, we should generally evenly distribute a
sparse set of seeds, so that only the most significant features or
protrusions are captured. Based on the observation that the seg-
mentation results are generally insensitive to the exact location of
seeds, we use a clustering method similar to that used in k-means
clustering segmentation.

The first seed face is selected as the (or a) face furthest away, in
terms of geodesic distance, from the face closest to the centroid
of all faces. We then iteratively add new seed faces one by one.
For any two faces fi and fj , a path from fi to fj is a contiguous
sequence of faces starting from fi and ending at fj . For any path,
we may compute the sum of the difference measures d (or d∗ if
appropriate), and select the minimal sum among all possible paths,
denoting it by D(fi, fj). Assume s1, . . . , sn are n faces already
selected as seeds. The next seed face sn+1 is determined by

sn+1 = arg max
fk∈F

{
min

i=1,...,n
D(fk, si)

}
, (9)



projected on face projected on edge

Figure 2: Projection and local update of the input model. Left: mapping smoothed boundary points onto the surface; right: mapping
smoothed boundary paths onto the surface.

Figure 3: Example of coarse seeding (left) and corresponding segmentation result (right).

where F is the set of all the faces. This process terminates when
a significant decrease of D occurs between the newly selected
sn+1 to the nearest neighboring seed, whereupon sn+1 is dis-
carded. Note that this computation is efficient, since we only need
to solve a few single-source shortest distance problems starting
from each seed face. Using Dijkstra’s algorithm gives a complexity
of O(nm log m), where n and m are the number of seed faces and
the total number of faces, respectively.

Fig. 3 shows an example of coarse seeding. The left figure gives the
positions of seeds (the colored balls indicating the seed locations)
and the right figure is the corresponding segmentation result.

4.2 Fine-Scale Seeding

In certain cases, we would like to segment the model into smaller
pieces, where significant parts are segmented as much as possible.
For example, given the skeleton example shown in Fig. 3, we may
want to segment to further detail than simply 5 fingers. Fine-scale
seeding based on automatic seed distribution and merging is then
more appropriate.

4.2.1 Automatic seed selection

We should pick a set of random faces that are in general evenly dis-
tributed over the surface, and gives higher priority to protrusions
and regions containing features. Feature sensitive sampling (the
first phase of feature sensitive remeshing proposed in [Lai et al.
2007]) suits this need well. The method basically distributes parti-
cles over the model optimizing some spring-like energy [Witkin and
Heckbert 1994]. After distribution, we pick those faces with parti-
cles in them as seeds. For our purpose, we may use a sufficiently
large number of sampling faces (e.g. 20–200 for most models).
Again assuming that n is the number of seeds, and m is the total

number of faces, the time complexity is O(n log m), since nearest
neighbor queries are performed using kd-tree acceleration. Place-
ment of initial seeds is typically very fast (much less than a sec-
ond). Note that if the original number of seeds is not large enough
to cover all the significant features, our semi-automatic interface
allows users to add further seeds where desired.

4.2.2 Merging

Using such an approach, we expect many segments to have multi-
ple seeds, which naturally leads to over-segmentation. However,
as segmentation results are in general not sensitive to the exact
placement of seeds, we may simply merge the resulting segments
to give suitable final regions. We perform merging as an iterative
process. To define the relative merging cost between two adjacent
segments Si and Sj , we first denote by ∂Si ∩ ∂Sj the common
boundary of the two segments, and by ∂Si ∪ ∂Sj the combination
of the two boundaries. We integrate the difference measure d (or
d∗ if appropriate) along the common boundary, and denote it by
D∂Si∩∂Sj =

∑
e∈∂Si∩∂Sj

|e|de, where |e| and de are the length
of edge e and the difference measure d (or d∗) between the two
faces adjacent to e. We also define the overall length of common
boundary as L∂Si∩∂Sj =

∑
e∈Si∩Sj

|e|. D∂Si∪∂Sj and L∂Si∪∂Sj

can be defined similarly. We then define the relative merging cost
ci,j as:

ci,j =
D∂Si∩∂Sj /L∂Si∩∂Sj

D∂Si∪∂Sj /L∂Si∪∂Sj

. (10)

For each adjacent pair of segments Si and Sj , we compute the
merging cost ci,j and put the pairs into a priority queue. The
merging process proceeds by picking the pair with minimal merg-
ing cost, merging them into one segment and updating the prior-
ity queue accordingly. This process can be terminated either when



Figure 4: Example of fine-scale seeding. From top left to bottom right: input model with automatic seed selection; initial (over-) segmented
results; result after merging; final result after boundary smoothing and mapping.

Figure 5: Segmentation of horse with varying seed locations. Balls represent seed locations.

there exists a significant increase in ci,j for the current pair, or when
we have reached a final number of regions desired by the user. In
our experiments, the merging process usually stops with minimal
relative cost of about 0.5.

Experimental results of automatic segmentation before and after
merging are shown in Fig. 4. The initial number of seeds is 60
and the number of segments after merging is 30.

5 Experimental Results

Our method is in general insensitive to the exact location of seeds.
Fig. 5 shows an example of segmenting a horse model. Note that
there are no clearly defined boundaries between the legs and the
body, so changing the positions of the seeds has a slight effect on
the final result; however, even if the seed positions are changed
significantly, the results are similar, and snap to some local features.

A more accurate test of stability with respect to choice of seed faces

was also performed. Given some maximal seed shift radius r, we
allow all seeds to move randomly to any face within a geodesic dis-
tance of r from their original seed position (but we restrict new seed
positions to be within the same segment found by segmentation us-
ing the original seeds). We performed tests using maximal shifts
of 3%, 6%, 9%, . . . , 30% of the size of the model. In each test
we computed the percentage of faces with the same labels found
when using the initial seeds (we call this the normalized coverage).
To obtain a robust result, we performed 100 trials for each shift
distance and averaged the normalized coverage. As illustrated in
Fig. 6, for models like the horse example in Fig. 5 where no clearly
defined boundaries exist between segments, the normalized cover-
age decreases gradually with increasing shift. Even for shifts of
up to 30%, the averaged normalized coverage is above 84%. For
models like the hand skeleton example in Fig. 3, where significant
features exist between segments, the averaged normalized coverage
is above 99.6% for shifts up to 30%, which means almost identical
results are produced even with significant change of seed locations.
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Figure 6: Stability test results of averaged normalized coverage.

Figure 7: Segmentation of engineering objects: rocker arm and
fan disk. Left: initial segmentation with fine-scale seeding. Right:
results after merging and smoothing.

For a moderate example like the hand model in Fig. 8, the averaged
normalized coverage is above 96.5% for seed shifts of up to 30%.

Our method can also be applied to meshes representing engineer-
ing objects. Fig. 7 gives the results of segmenting the well-known
rocker arm and fan disk models. On the left are the segmentation re-
sults with fine-scale seeding, while on the right are the correspond-
ing results after merging and smoothing. The number of seeds be-
fore merging is 40 for both models. The numbers of segments after
merging are 20 for the rocker arm and 25 for the fan disk, respec-

Figure 8: Examples of mesh segmentation of various graphical
models.

tively. Note that significant normal noise exists at sharp features
of the input model, making the initial segmentation results rather
jagged. These initial results also suffer from oversegmentation. Af-
ter the merging and smoothing phase, however, results are signif-
icantly improved. The averaged normalized coverage for the fan
disk (an engineering model) is also given in Fig. 7; in this case the
normalized coverage tends to lie between the values for the hand
and the horse examples, being above 91% for shifts up to 30%.

We have also tested our method on various other graphical models,
a selection of which are shown in Fig. 8. Hand, Santa, chessman,
cheetah models are segmented into 6, 17, 7 and 10 pieces, respec-
tively. Generally, intuitively reasonable and pleasing segmentation
results are produced for such examples.

Moreover, compared with state-of-the-art methods, our method is
very efficient both in time and memory usage. A detailed compar-
ison of timings for a model remeshed to 10K, 15K, 20K, 30K
and 40K triangles with our method and an implementation of [Lai
et al. 2006] is presented in Table 1; 6 seeds were used in each of
these experiments, which were carried out on an Intel Core2Duo
2GHz laptop with 2GB RAM. Note that the computational time
for k-means clustering based methods [Katz and Tal 2003; Lai
et al. 2006; Liu and Zhang 2004] is dominated by pair-wise dis-
tance computations, and leading to a complexity of O(m2 log m)
time and O(m2) memory, where m is the number of faces. The
method in [Katz et al. 2005] utilizes non-linear multidimensional
scaling, which is even slower. The computations in our current
method are dominated by solving the sparse linear system. We used



Table 1: Timing comparison of a k-means clustering based method and our current method.
Number of triangles Clustering method [Lai et al. 2006], seconds Current method, seconds Current method, seconds/K triangles

10K 129 0.34 0.034
15K 303 0.47 0.031
20K 532 0.64 0.032
30K 1359 1.00 0.033
40K n/a 1.34 0.034

Table 2: Timings for the same 40K-triangle model with differing numbers of seeds.
No. of seeds 6 12 24 48

Timing (seconds) 1.3 2.1 3.4 6.5

MATLAB’s direct solver (“backslash” operator) throughout the pa-
per, though sparse linear solver libraries like TAUCS [Toledo et al.
2003] could also be used. Experimental results in Table 1 show that
the times used per triangle are almost constant as the number of
triangles varies. Time also increases more or less linearly with an
increasing number of seeds, as shown by the example in Table 2.
Clearly, such a linear bound is expected, as the linear system for
each seed can be solved independently. (The practical timings show
that the performance is actually faster than linear). In summary, the
overall complexity with respect to the number of faces m and the
number of seeds n is bounded by O(mn).

Note that models with 40K triangles or more cannot be pro-
cessed by the method in [Lai et al. 2006] without simplification or
remeshing, due to memory limitations. Our method only requires
O(m + n) memory to store the sparse linear equations and thus
does not have such memory limitations. For relatively small mod-
els with 10K triangles, the current method is more than 300 times
faster, while for models as large as 30K triangles, it is more than
1, 000 times faster. For models of moderate size, the segmentation
can be carried out in interactive time, suitable for interactive appli-
cations that require immediate feedback.

6 Conclusions

In this paper, we have presented both an interactive and an au-
tomatic method of mesh segmentation based on random walks.
We have demonstrated the effectiveness of this method, with both
‘natural’ graphical model meshes and engineering object model
meshes. The results are pleasing, and the method is sufficiently
efficient to be useful in interactive applications, and in applications
that require segmentation of large models, or a large collection of
models. In future, we intend to explore extension of our method to
hierarchical segmentation of models.
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