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Abstract

Developable surfaces have many desired properties in
manufacturing process. Since most existing CAD systems
utilize parametric surfaces as the design primitive, there is
a great demand in industry to convert a parametric surface
within a prescribed global error bound into developable
patches. In this work we propose a simple and efficient so-
lution to approximate a general parametric surface with a
minimum set of C°-joint developable strips. The key con-
tribution of the proposed algorithm is that, several global
optimization problems are elegantly solved in a sequence
that offers a controllable global error bound on the de-
velopable surface approximation. Experimental results are
presented to demonstrate the effectiveness and stability of
the proposed algorithm.

1. Introduction

Developable surfaces, which can be unfolded into plane
without stretch, are widely used in engineering. While
developable surfaces can be directly used to model some
simple shapes such as cones and cylinders, most exist-
ing CAD/CAM systems use general parametric surfaces
(e.g. NURBS) as primitives to model complicated free-
form shapes. Therefore, there is a great demand in indus-
tries to convert a general parametric surface within a pre-
scribed global error bound into a minimum set of devel-
opable pieces. These pieces are afterwards cut from planar
material, bent back without stretch and distortion into their
final positions and stitched together to form the final prod-
uct.

If sufficient differentiability is assumed, developable sur-
faces can only be part of plane, cone, cylinder, tangent
surface of a curve or a composition of them. Surface ap-
proximation using conical and cylindrical patches are stud-
ied in [8, 11, 14, 17]. Tangent surfaces of B-spline curves

in dual space based on projective geometry are studied in
[1, 2, 7, 13, 15]. Cone spline surfaces that can be used
as transition of smooth joining developables are studied in
[9]. For nearly developable surfaces, a spherical curve seg-
mentation and fitting technique is presented in [3]. If the
given surface is far from developables, Elber [4] proposes
an approximation method that trims the surface using iso-
lines and interpolates each trimmed piece by ruled patches.
This method is extended by Subag and Elber [18] where a
piecewise developable surface approximation is built, how-
ever, at the cost of involving complicated and possibly un-
stable numerical process.

Recent advances in computer-aided design have revealed
that the developable surfaces can be in effect approximated
by triangle strips [4, 5, 6, 8, 10, 19]. In this paper, we fol-
low the direction and use triangle strips to simulate the real
rolling processing in exactly the same C° way. We will
also show that carefully constructing the triangle strips can
lead to developable patches with the bending energy of the
rolling process minimized. Our work is also related to the
strip-based approximation algorithm in [12]; however, they
are different in that graphical models are significantly dif-
ferent from CAD ones.

An optimal algorithm is proposed in this paper that
achieves developable strip approximation by trimming an
arbitrary parametric surface into a minimum set of strips;
each strip consists of a chain of triangles that is clearly de-
velopable. The novelty of the presented algorithm is that
we introduce a controllable global error bound into the trim-
ming process such that the resulting piecewise strip approx-
imation of the general parametric surface is globally opti-
mal.

2. Algorithm overview

The basic idea of the presented algorithm is simple.
Given a rectangular parametric surface with boundaries
e1, e, e3, 4 in counter clockwise order, from two pairs of



opposite edges (e1, e3) and (eq, e4), an optimal pair is iden-
tified. Without loss of generality, assume the optimal pair is
(e1,e3). The curves e, e are discretized by polylines with
a prescribed tolerance: the number of vertices on each poly-
line is maintained to be the same. Then the corresponding
vertices between two polylines are connected by geodesics
on the parametric surface. These geodesics trim the surface
into pieces which afterwards are optimally approximated by
developable triangle strips. The overall algorithm, called
DevAppr, is summarized below:

1. (Section 3) Optimally discretize curves (e1,e3) into
two polylines (pi,ps) with the same number n of
vertices; the discretization error satisfies max{||e; —
p1l, lles —psl|} < e, where € is a prescribed tolerance.

2. (Section 4) Construct the geodesics by connecting the

corresponding vertices (v}, v3), i = 2,---,n — 1,
in the polylines p1 = {v},vd,---,ovl} and p3 =
{v$,v3,--+ ,v3}. Together with the boundary curves,

these geodesic curves partition the parametric surface
into strips {S1, 52, ,Sn_1}-

3. Discretize curves es, e4 and each geodesic g; into poly-
lines po, p4 and [;, with the minimum number of ver-
tices, respectively, such that |le; — p;|| < e, = 2,4
and ||g; — [;]| < e.

4. (Section 5) For every pair (I;,1;+1) of adjacent poly-
lines in the set {l; = po,l2, -+ ,ln—1,ln = ps}, con-
struct an optimal strip of triangles 7; that minimizes an
elaborately designed energy functional.

5. Given a trimmed strip S; and its associated counter-
part of triangles T;, if the error ||.S; — T;|| > &, then
subdivide the strip .S; into two and repeat the process.

6. Develop all triangle strips into the same plane.

3. Polygonal approximation of parametric
curves

The steps 1 and 3 in the Algorithm DevAppr require the
solutions to two optimization problems: Min-# and Min-<.

Given a parametric curve c, approximate it by a polyline
p, the approximation error (denoted as F(c,p)) is defined
in a particular metric L;; [ = 2 and [ = oo are commonly
used.

3.1 Solution to Min-# problem

Min-# problem approximates a given parametric curve
c by a polyline p, with the minimum number of segments,
such that the approximation error E(c, p) does not exceed a
given tolerance ¢. The solution to this problem is as follows.

We start from one end of the curve and greedily add samples
one by one, till we reach the other end of the curve. To add
a new sample, we put a cylindrical surface with radius ¢/2
centered at the current position, and oriented along with the
tangent direction of the curve at the position. The nearest
intersection point of the curve with the cylindrical surface is
considered as the next sample. This simple greedy scheme
is easily seen to be nearly optimal in worst case when the
L error measure is used.

3.2 Solution to Min-¢ problem

Min-¢ problem approximates a given parametric curve
c by a polyline p with a given number of line segments
n, such that the approximation error E(c, p) is minimized.
This can be achieved by optimizing a n — 2 vector U =
(ug, -+, un,l)T in the optimization function defined by

Opt(U) _ Z;L:—ll Wit1 ||C(U) (i —u)e(ui)H(u—ui)e(uitr) Hgdu

Usj Uit1—Uj
ey
where ¢(u;), ¢ = 1,--- ,n are n optimal positions of sam-
ples with u; = 0,u,, = length(c). Minimization of func-
tion Opt(U) is a typical multi-dimensional optimization
problem which can be solved by the classical gradient or
simplex methods.

Given the solutions to the above two problems, the step
1 in Algorithm DevAppr is performed first by optimally
discretizing e; and e3 with a given tolerance ¢; that solves a
Min-# problem. Denote the resulting numbers of vertices on
p1 and p3 by n; and ng, respectively. Without loss of gen-
erality, let n; < mg. To maintain the same vertex number
on p; and ps, we need to re-sample e; with a given number
of line segments n3, that solves a Min-¢ problem. The solu-
tion to Min-# problem also uses in step 3. Unless otherwise
specified, all the parametric curves are parameterized by the
arc-length.

The optimal pair determined from the boundary curves
e1, e, es, e4 of the parametric surface is used to locate the
endpoints of geodesics for trimming the surface. Two strate-
gies are used to find the optimal pair, either the pair with the
minimum common samples or the one interactively speci-
fied by the user.

4. Compute geodesics on parametric surface

In our scenario, we need to find a solution to the follow-
ing problem: given two points P, Q on surface, compute the
exact geodesic passing P and Q. Denote the given para-
metric surface as S = {z(u,v),y(u,v),z(u,v)}. Let the
prescribed source points P, Q be specified by parameters
(up,vp), (uq, vq) and, let any curve on surface connecting
them be specified by function v = v(u) with v, = v(uy)



and v, = v(ug). The length of curve specified by v(u) is

I= / VE(u,v) + 2F (u, v)v" + G(u, v)v2du

where v/ = dv/du and E, F, G are the first fundamental
forms. Due to the nature of geodesics, our problem is to find
the function v(w) that minimizes the above functional. By
calculus of variations, the solution must satisfy the Euler-
Lagrange equation:
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wheref = \/E + 2Fv + Gv'2.

With the boundary conditions v, = v(u,) and v, = v(ug),
we need to solve for v(u) a two point boundary value prob-
lem. Relaxation method [16] is applied here; leading to a
set of finite difference equations (FDEs) which can then be
solved by the multi-dimensional Newton’s method. The
produced set of samples are then interpolated with a B-
spline curve to obtain continous, parametric representation
of geodesics.

5. Triangle strip generation

The computed geodesics trim the parametric surface into
strips (1,52, ,Sp—1). Each strip S; is bounded by
two parametric curves c;, ¢;+1 (either geodesics or bound-
ary curves es,eq) and two approximate polylines P =
{pl, o apn} and Q = {Q17 e 7qm} (Wlthln the giVGIl tol-
erance ¢). Inspired by the recent work [5, 19], the minimal
bending energy on all bridge edges (refer to as MinBend)
can be used as an objective function for optimization. The
bending energy related to p;q; is calculated by the dihedral
between two triangles adjacent to p;q;; here we denote it by
Bendgy (i, q;), where o denotes the sample which forms
the preceding triangle with p;, ¢; and y forms the succeed-
ing one.

Initial triangulation. A greedy approach is proposed in
[19] to find a locally optimal solution. On the contrary, we
propose a dynamic-programming-based approach that guar-
antees output a globally optimal solution with the same con-
straints as in [19], producing improved and more stable re-
sults. Assume that MinBend, (p;, ¢;) is the minimal bend-
ing energy for sequences p1,--- ,p; and g1, ..., g, with the
last triangle having two samples on z side (xz = p or q). The
rule to compute a particular MinBend is given as:

MinBend,(pi,q;) =
min{MinBend,(p;—1,q;) + Bend,,(pi—1,4;),
MinBendy(pi—1,q;) + Bendgpy(pi-1, ;) }

Figure 1. Triangulation of the Ex1 model with
¢ = 1.0cm (left) and ¢ = 0.5¢m (right).

MinBendy(p;, q;) =
min{MinBendy,(p;,qj—1) + Bendyq(pi, ¢j—1),
MinBend,(p;,qj—1) + Bendgyq(pi, ¢j—1)}

The global minimum solution is then derived from
min{MinBendy,(pn, gm), MinBendy(pn, gm) } with
back tracing.

Adaptive triangle strip refinement. Based on our mo-
tivation, generated triangle strip 7; needs to further satisfy a
prescribed tolerance € when compared to the original strip
S;. This is achieved by adaptive triangle strip refinement.
The overall L, error is computed for the initial triangula-
tion. If it is above €, the strip with the largest L., error
is picked out and subdivided by a new added geodesic con-
necting two points located at the midpoints of two boundary
line segments. The two subdivided strips are then triangu-
lated and checked again for the approximation error. The
process repeats until the error is within the given tolerance
E.

Triangle strip flattening. Given the triangle strips, flat-
tening them is straightforward. For each strip, the first tri-
angle is flattened at some place in the X — Y plane. Adja-
cent triangles are then flattened one by one along the bridge
edges, as long as the flattened triangles do not overlap each
other in the plane.

6 Experimental results

The first example Ex1 is shown in Fig. 1. The largest ex-
tent of this model is 130cm. Two error bounds € = 1.0cm
and € = 0.5¢m in Lo metric are tested. The strip triangu-
lation results are given in Fig. 1 and The flattened triangu-
lation with € = 1.0cm is shown in Fig. 2. Another exam-
ple Ex2 is a swung surface which has iso-parameter curves
closed in one direction (see Fig. 3). The largest extent from
top to bottom is 63.9cm. The surface is first cut by a short-
est iso-curve from top to bottom, and then the Algorithm
DevAppr is applied. Two results are produced, with error
bounds ¢ = 1.0cm and € = 0.5cm, respectively, both in
L, metric (see Fig. 3). Performance data of output triangle
strips in the two models is summarized in Table 1. The ex-
perimental data shows that triangle strips within the given
error bounds can be produced appropriately.
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Figure 2. Triangulation flattening of the Ex1 result in Fig. 1 (left).

example € final error  #. strips  #. triangles
Ex1 1.0cm  0.801cm 29 681
Ex1 0.5cm  0.477cm 42 1410
Ex2 1.0ecm  0.823cm 14 1575
Ex2 0.5ecm  0.381em 20 3251

Table 1. Performance data of experiments
with different error bounds.

7 Conclusions

In this paper, a simple and efficient algorithm is proposed
to approximate a general parametric surface using a mini-
mum set of C°-joint triangle strips. The approximation er-
ror to the given parametric surface can be well controlled
by a user specified error bound ¢; this property is often de-
sirable in manufacturing process. Finally we conclude that
previous solutions proposed in [4, 8] can be viewed as two
special cases of our general solution: in [4] isolines are used
for trimming while we use the more general geodesics; in
[8] only surfaces of revolution are considered while we han-
dle the general parametric surfaces.
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