
Efficient Affinity-based Edit Propagation using K-D Tree
Kun Xu1 Yong Li1 Tao Ju2 Shi-Min Hu1 Tian-Qiang Liu1

1 Tsinghua National Laboratory for Information Science and Technology
and Department of Computer Science and Technology, Tsinghua University

2 Washington University in St. Louis

Figure 1: Affinity-based edit propagation methods such as [An and Pellacini 2008] allow one to change the appearance of an image or video
(e.g., the color of the bird here) using only a few strokes, yet consuming prohibitive amount of time and memory for large data (e.g., 48
minutes and 23GB for this video containing 61M pixels). Our approximation scheme drastically reduces the cost of edit propagation methods
(to 8 seconds and 22MB in this example) by exploring adaptive clustering in the affinity space. Video courtesy of BBCMotion Gallery (UK).

Abstract

Image/video editing by strokes has become increasingly popular
due to the ease of interaction. Propagating the user inputs to the rest
of the image/video, however, is often time and memory consuming
especially for large data. We propose here an efficient scheme that
allows affinity-based edit propagation to be computed on data con-
taining tens of millions of pixels at interactive rate (in matter of sec-
onds). The key in our scheme is a novel means for approximately
solving the optimization problem involved in edit propagation, us-
ing adaptive clustering in a high-dimensional, affinity space. Our
approximation significantly reduces the cost of existing affinity-
based propagation methods while maintaining visual fidelity, and
enables interactive stroke-based editing even on high resolution im-
ages and long video sequences using commodity computers.

1 Introduction

The need to edit the appearances of images and videos, such as their
color, brightness and contrast, continues to rise. While traditional
image editing environment, such as Photoshop, requires the user to
first select the region of interest then apply the edit to that region,
selection of intricate patterns is a laborious process, especially in
videos where the region extends a sequence of frames (e.g., the
bird in Figure 1) . Alternatively, recent methods [Lischinski et al.
2006; Pellacini and Lawrence 2007; An and Pellacini 2008] have
allowed for a much simpler mode of interaction where the user only
needs to supply edits to a sparse set of image locations (e.g., such as
the strokes in Figure 1 far left). These methods then propagate the
user edits automatically to the rest of the image without the need
for accurate region selection, guided by the principle that image
pixels with high affinities (e.g., similar appearances and/or at close
proximity) should receive similar edits.

While propagation offers an intuitive editing mode, existing prop-
agation methods often require prohibitive amount of memory and
long time to process large inputs. As an example, edit propagation
on the 400-frames video in Figure 1 using the method of [An and
Pellacini 2008] requires 23GB of memory space, which would not
fit in a commodity computer, whereas an out-of-core implementa-
tion requires 48 minutes of processing time. This high cost arises
from the need, which is common in edit propagation, to solve an

optimization problem whose size is proportional to the number of
pixels in the data. The storage requirement and long user-waiting
time significantly limit the practical use of edit propagation for high
resolution images and long video sequences, which have become
increasingly popular.

In this paper, we propose a novel, efficient paradigm for solving
the optimization problem in edit propagation. Our key observation
is that, since propagation yields similar edits at pixels with high
affinity, the propagated edits form a smooth function, not in the im-
age/video space, but in a higher-dimensional affinity space. As a
result, we approximate this function by piece-wise linear segments
in the affinity space, each represented by a cluster of nearby pixels.
To satisfy the user-specified edits, the size of the clusters is adapted
to their distances to the user-edited pixels. Instead of solving the op-
timization directly on individual pixels, as done in previous meth-
ods, we solve on the clusters, which is of a much smaller number
(typically hundreds to thousands of times smaller) than the number
of pixels. We have observed that our approximation preserves the
visual fidelity of the original propagation method while using only
an extremely small fraction of resources. For example, edit propa-
gation in Figure 1 is done using our approximation scheme, which
now takes only 8 seconds and uses 22MB of memory.

Contribution In the context of previous work on propagation-
based image editing, we see our paper making two notable con-
tributions, both in algorithm development and in practice:

• We propose an efficient approximation scheme for affinity-
based propagation methods by exploring adaptive clustering
in the affinity space, which reduces both memory usage and
time significantly without sacrificing visual fidelity.

• Our approximation scheme significantly increases the practi-
cality of edit propagation to handle large data, making it pos-
sible for average users to edit high resolution images and long
video sequences on a commodity computer interactively.

2 Related works

Image/Video appearance editing: With the advance of appear-
ance acquisition techniques, editing captured digital contents re-
ceives growing attention in recent years. Yatziv et. al. [2006]
proposed an efficient colorization method for images and videos



using fast chrominance blending. To enhance the edit result in
the presence of strong image edges, edge-aware methods [Chen
et al. 2007; Li et al. 2008; Fattal 2009; Fattal et al. 2009] have
been proposed for various editing tasks. In a different approach,
optimization-based methods have been particularly successful in
propagating rough, sparse user-edits to large, complex, and pos-
sibly spatially disconnected regions in images or videos. Example
of such methods include colorization [Levin et al. 2004], tone ad-
justment [Lischinski et al. 2006] and material editing [Pellacini and
Lawrence 2007; An and Pellacini 2008].

Hierarchical and clustering: Hierarchical and clustering tech-
niques have been widely used in computer graphics. Well-known
applications include radiosity [Hanrahan et al. 1991], the lightcuts
rendering framework [Walter et al. 2005; Walter et al. 2006], light-
ing/material design [Cheslack-Postava et al. 2008] and image seg-
mentation [Shi and Malik 2000]. Recently, [Agarwala 2007] pro-
posed an efficient gradient-domain image compositing method us-
ing quadtrees, which largely reduces the dimension of the linear
system to solve. Differently, we build k-d tree in a high dimensional
space instead of in image space. For a different purpose, [Adams
et al. 2009] proposed Gaussian k-d trees to accelerate a broad class
of non-linear filters. Using a non-hierarchical approach, joint bi-
lateral upsampling [Kopf et al. 2007] speeds up edge aware image
adjustment by upsampling a solution at a low resolution.

3 Affinity-based edit propagation

Stroke-based image and video editing has become popular in recent
years [Lischinski et al. 2006; Pellacini and Lawrence 2007; An and
Pellacini 2008]. This type of editing only requires the user to draw
a set of sparse strokes indicating the desired changes in appearance
(e.g., color, brightness, contrast, etc.), such as the two strokes in
Figure 2 (a), and automatically propagates these initial edits to the
rest of the image or video. Typically, the propagation is guided by
two principles. First, pixels that are “similar” (e.g., located closed-
by, having similar colors, etc.) should receive similar edits. Second,
pixels covered by the initial strokes need to meet the user specified
edits.

To formulate edit propagation, a key is to define a similarity mea-
sure, or affinity, between pixels. While the exact definition varies
among different propagation methods, pixel affinity is typically a
function of both spatial locality and appearance. For example, in
[An and Pellacini 2008], the affinity zij between two pixels i, j in
an image is expressed as:

zij = exp(−‖fi − fj‖2) (1)

where fi = (ci/σc,pi/σp) is a feature vector at pixel i com-
prising of its appearance ci (e.g., color in Lab space) and po-
sition pi (e.g., in x and y coordinates) weighted by parameters
σc, σp. For video, we can expand the feature vector to include the
frame index ti of pixel i, and introduce a new parameter σt so that
fi = (ci/σc,pi/σp, ti/σt). In the subsequent parts of our paper,
we report the values of σp and σt normalized to image resolution
and video length, respectively.

Affinity-based edit propagation can be formulated as an energy
minimization problem. Given user specified edits (e.g., amount of
change in color, contrast, etc.) at some pixels, the goal is to com-
pute the edits at all pixels so as to minimize the difference in edits
between pixels with high affinity on one hand, and the deviation
to user-provided edits on the other hand. While the exact formu-
lations of propagation minimization vary in literature [Lischin-
ski et al. 2006; Pellacini and Lawrence 2007; An and Pellacini
2008], the minimization is typically performed on a per-pixel basis,

(a) (b)

Figure 2: Adaptive clustering in affinity space. (a) An image with
two user strokes. (b) Pixel clusters colored by their distances to
the closest user-edited pixel in the affinity space. Note that clusters
further away from the strokes, which are dimmer, have larger sizes.

which makes the computational cost prohibitive for large images or
videos.

To reduce the complexity of solving propagation minimization, we
replace individual pixels by clusters of pixels as variables in the
minimization. Specifically, we group pixels into clusters in which
the propagated edits can be approximated by simple (e.g., linear)
functions. We then solve for the coefficients of these functions,
instead of the edits at individual pixels, by re-formulating the pixel-
based propagation energy. We observed that, using a hierarchical
clustering technique in the affinity space, the propagated edits at all
pixels can be well approximated using much fewer clusters (e.g.,
shown in Figure 2 (b)), hence resulting in dramatic improvement in
the computational cost.

We will first present our clustering method for images and videos
(Section 4). The clustering is guided by the general principles of
affinity-based propagation, and therefore independent of and ap-
plicable to specific energy formulations used in the minimization.
We will then demonstrate the use of clusters in minimizing a re-
cently proposed, all-pixel-pairs propagation energy [An and Pel-
lacini 2008] by tailoring the energy formulation to consider clusters
instead of pixels (Section 5).

4 Affinity space clustering

To motivate our clustering method, we start with a different inter-
pretation of the principles used in affinity-based edit propagation.
Consider a higher-dimensional space where pixels in an image are
represented as points in this space, so that two points represent-
ing pixels with a high affinity are located closed-by. We call this
space an affinity space. According to the first propagation princi-
ple, the propagated edits in the image space would form a smooth
function in the affinity space. This is because nearby points in the
affinity space represent highly “similar” pixels and therefore should
receive similar edits. Based on the second principle, the smooth edit
function is constrained by user-given edits at a collection of points
representing the stroke pixels.

To efficiently compute this edit function, we draw our inspiration
from the approach of Agarwala [2007] for solving gradient domain
composition problems. Like edit propagation, image composition
also looks for a function (e.g., color increments at each pixel) that
is smooth across neighboring pixels while satisfying constraints at
certain locations (e.g., the composition seams). Agarwala showed
that such function can be well approximated using linear pieces that
are smaller near the constrained regions and larger elsewhere.

Likewise, we will approximate the edit function in the affinity space
by linear pieces, each composted of a cluster of pixels, that are
smaller near the stroke pixels and larger elsewhere. While a quad-
tree partitioning scheme is used in [Agarwala 2007] to obtain the



Figure 3: (a) A 2D k-d tree with T-junctions (red). (b-d) Illustra-
tion of a recursive algorithm for computing interpolated values at
T-junctions in the bracketed part of (a).

clusters and to represent the linear function within each cluster, we
extend the scheme to a k-d tree since the affinity space is high-
dimensional.

Affinity space The definition of the affinity space depends on the
choice of affinity measures. In our implementation, we adopt the
affinity measure in Equation 1. As a result, the affinity space is
defined simply by representing a pixel i using its feature vector fi,
since pixels with higher affinity have smaller Euclidean distances
between their feature vectors. Note that the discussion in the rest of
the section can be applied generally to any affinity space definitions.

K-d tree partitioning To construct the pixel clusters, we divide up
the affinity space using a k-d tree that is more finely subdivided in
regions closer to the user-edited points. We build the tree in a top-
down fashion. Starting from a root cell, the tightest bounding cube
of points representing all pixels in the image, we recursively split
a cell to two child cells midway along an axis that is alternated at
successive tree levels. The splitting stops if the cell contains no data
point, or if the diagonal of the cell minus the distance from the cell
center to the nearest user-edited point is smaller than a user-given
threshold η. All pixels represented by points in a leaf cell of the
k-d tree are then considered as a cluster. The stopping criteria en-
sures that the size of cells linearly increases with the distance from
the user-edited points (see Figure 2 (b)), whereas the parameter η
effectively controls the size of the smallest cell.

Building piece-wise linear functions The k-d tree partitions the
affinity space into disjoint cells, in which the edit function can be
approximated linearly. Specifically, the corners of the non-empty
leaf cells will be used instead of the actual pixels in performing the
propagation computation (see Section 5). Afterwards, the edits at
individual pixels within a leaf cell are simply obtained by multi-
linear interpolation from those at the cell corners.

Care must be taken to ensure the continuity of these linear functions
across neighboring cells with different sizes. In the 2D example in
Figure 3 (a), linear interpolation within each shaded cell using the
computed edits at their four corners will not match along the high-
lighted edge if the value at corner B is not the average of those at
A and C. Agarwala [2007] resolves the problem on a quad-tree by
using a restricted quad-tree (i.e., no two cells that share an edge
may differ in tree depth by more than one) and enforcing the value
at a “T-junction” (e.g., corner B) to be the average of the values at
the two ends of the edge (e.g., A and C). We generalize this idea to
unrestricted k-d trees in arbitrary dimensions, and give a simple re-
cursive algorithm for determining values at T-junctions that ensures
the continuity of the resulting piece-wise linear function.

We explain the algorithm using the 2D k-d tree example in Figure

3 (a). Given a k-d tree in a d-dimensional space, we define a “T-
junction” as a cell corner that is contained in fewer than 2d leaf
cells. If the corner lies on the boundary of the root cell (e.g., A in
Figure 3 (a)), we change d to be the dimensionality of facet that
the corner lies on (e.g., d = 1 for A as it is on an edge). These
T-junctions (colored red in Figure 3 (a)) can be tagged in a single
traversal of the k-d tree. To compute the enforced value at each
T-junction, we perform a second top-down walk from the root cell
as illustrated in Figure 3 (b-d). At a cell (e.g., the one in (b)), we
consider the corners intersected by its splitting plane and the cell
edges (e.g., the two points in the middle column of (c)). For each
corner that is a T-junction, we assign it the average of the values at
the two end corners of the underlying cell edge (indicated by arrows
in (c)). The process is repeated in each of its child cells (as in (d)).

4.1 Analysis

Tree complexity As observed in Figure 2 (b), large areas of the im-
age are grouped into common clusters, indicating that much fewer
clusters are used than the number of actual pixels. The number of
clusters depends on several factors including the number of user-
edited pixels, the distribution of the pixels in the affinity space, and
the depth of the k-d tree. In general, more clusters are constructed
if the number of user-edited pixels increases or the pixels are more
uniformly distributed in the affinity space. If both the image and
the user-strokes are fixed, the cluster number grows with the depth
of the k-d tree, which is effectively governed by the size of the
smallest leaf cell (η) and the size of the root cell that represents the
bounding box of all pixels. Using the affinity definition in Equation
1, the bounding box size is inversely proportional to the parameters
σc, σp, σt. As a result, the number of clusters decreases as any one
of the parameters η, σc, σp, σt increases.

To more precisely quantify the system complexity, we consider the
number of corners of non-empty leaf cells on the k-d tree, which
are the actual variables that will be used in computing edit propa-
gation. Figure 4 plots the cell corner number as a function of η and
σp for the image and video example shown in Figure 6. Observe
that, even at extremely small values of η (corresponding to high
approximation accuracy) and σp (corresponding to highly localized
editing effects), the number of cell corners is still much smaller than
the number of pixels. Also note that the cell corner number is not
strongly affected by the increase in the number of pixels in the data.
Although the video data has 300 times more pixels than the image,
the number of cell corners grows only by 2 times. This is because
video data contains strong coherence between pixels, and hence the
pixels tend to exhibit much less uniform distribution in the affinity
space than those in an image.

Space and time complexity Both the tree-building and interpola-
tion stages take O(dn) time for an image or video with n pixels,

0

50000

100000

150000

200000

250000

300000

350000

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Video σp=0.1

Image σp=0.1

C
el

l C
or

ne
r 

N
um

be
r

η

C
el

l C
or

ne
r 

N
um

be
r

0

50000

100000

150000

200000

250000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Video η=0.5

Image η=0.5

σp 

(a) (b)

Figure 4: The number of leaf cell corners on the k-d tree as a func-
tion of minimum cell size η (a) and affinity parameter σp (b), for
the bird video (containing 61M pixels) and the fog tree image (con-
taining 0.2M pixels) in Figure 6.



where d is the average depth of leaf cells on the k-d tree for all pix-
els, because both involve identifying the leaf cell to which a pixel
belongs. The storage for the whole tree isO(c) where c is the num-
ber of cell corners of non-empty leaf cells.

5 Efficient edit propagation

Here we show how the cluster-based approximation is applied to
edit propagation. A number of energy formulations for propagation
have been proposed before [Lischinski et al. 2006; Pellacini and
Lawrence 2007; An and Pellacini 2008]. Here we consider the re-
cent formulation of [An and Pellacini 2008], which is designed to
better support sparse edits to propagate over spatially discontinu-
ous regions. Specifically, given user specified edits gi with strength
wi ∈ [0, 1] (0 indicating no user constraints) at each pixel, it com-
putes the edits ei at all pixels by minimizing the energy form:

∑
i,j

wjzij(ei − gj)
2 + λ

∑
i,j

zij(ei − ej)
2 (2)

where the affinity zij is defined as in Equation 1 and i, j enumerates
over all pixel pairs. The two minimization terms in the sum respec-
tively express the two guiding principles we mentioned earlier, the
satisfaction of user constraints and the similarity of edits in similar
pixels. λ is set to

∑
i
wi/n to make the relative contributions of

the two terms similar, where n is the number of pixels. Propagation
to spatially discontinuous regions is realized by minimizing over all
pairs of pixels weighted by their affinity.

One way to utilize our k-d tree clustering in this formulation is to
express the variables ei in Equation 2 as linear combinations of cell
corners in the tree, which would subsequently result in a linear sys-
tem with much fewer variables to solve. However, constructing the
coefficients in the linear system would still be rather time consum-
ing due to the enumeration of all pair-wise terms.

Alternatively, we consider replacing the variables ei, which are un-
known edits at individual pixels, directly by new variables ēj that
are edits at cell corners in the k-d tree. In this way, the enumeration
in Equation 2 would be over all pairs of cell corners, which is dras-
tically fewer than all pairs of pixels. In a sense, we are now solving
the propagation problem on a different set of samples in the affin-
ity space rather than the original pixels. Since the density of these
samples adapts to the variation of the edit function (e.g., denser in
regions closer to the user-edited points), solving the edit function
directly on these samples would yield a reasonable approximation,
which we have confirmed in our experiments.

Specifically, the modified formulation has the form:
∑

i,j
w̄jμiμjzij(ēi − ḡj)

2 + λ
∑

i,j
μiμjzij(ēi − ēj)

2 (3)

where i, j now enumerates over all pairs of cell corners on the k-d
tree. Here, ḡi, w̄i are user edit and edit strength at cell corner i, and
are computed as weighted sums of user edits and strengths at pixels
in the neighboring cells. Specifically, w̄i =

∑
k

sikwk/
∑

k
sik

and ḡi =
∑

k
sikgkwk/

∑
k

sikwk where sik is the multi-linear
barycentric coordinate of pixel k in a neighboring cell of corner i
with respect to corner i. Note that

∑
k
enumerates over all pixels

in any adjacent cell of corner i. Finally, the term μi compensates
for the multiplicity of pixels in the neighboring cells of corner i,
computed as μi =

∑
k

sik.

Minimization and analysis The modified energy in Equation 3 is
minimized in the same way as Equation 2 is minimized in [An and
Pellacini 2008], which involves solving a linear system of equa-
tions with n variables, where n is the number of pixels. Using an
efficient stochastic column sampling approach, the time and space

(a) original image and user strokes

(b) edited image
Figure 5: Editing a tree image of resolution 3720×1140. The top
image indicates the original image and user input strokes. The bot-
tom image is the edited result. The parameters used are σc = 0.2,
σp = 0.2.
complexity of the solver in [An and Pellacini 2008] are respectively
O(m2n) and O(mn), wherem is the number of sampled columns.
Minimizing our modified energy in Equation 3, which involves only
c variables where c is the number of k-d tree cell corners, using the
same procedure would yield a reduction on the order of n/c in both
space and time. We have observed that this ratio n/c ranges from
tens to thousands in our test data, and particularly large for video.

6 Comparisons and examples

We show a number of comparisons and examples to demonstrate
the effectiveness of our cluster-based approximation. To be able to
compare with the original formulation in [An and Pellacini 2008]
on large data, we implemented an out-of-core version of their al-
gorithm. Note that our approximated propagation is completely in-
core. Our tests were performed on a PC with Intel I7 920 processor
(2.66GHz, 4cores) and 4GB memory.

ComparisonWe first compare in Figure 6 our approximation with
the propagation results obtained by the original formulation in [An
and Pellacini 2008]. We experimented with increasing value of η,
which is the only parameter used to control our approximation. Ob-
serve that higher values of η incur greater approximation errors,
even at user-provided strokes, as pixels are approximated by cor-
ners of larger k-d tree cells (here the error percentage is the RMS
difference in absolute pixel intensities). On the other hand, low
values of η (e.g., ≤ 1.0) produce results that are visually indistin-
guishable from the original method of [An and Pellacini 2008], yet
yielding a substantial reduction in time and storage cost, as reported
in Table 1 for η = 0.5.

In this test, we used sampling column number m = 100 in solv-
ing the linear systems, which achieves a good sampling accuracy
for both large (σp = 1.0) and small (σp = 0.1) values of σp.
A significantly large m needs to be used for very small values of
σp (e.g., less than 0.01), as the rank of the matrix in solving the
linear system increases. However, we did not consider these val-
ues in our comparisons as the propagation formulation in [An and
Pellacini 2008] is designed primarily for achieving global editing
effects where sparse edits are expected to propagate thorough spa-
tially discontinuous regions.

More examples With the greatly improved efficiency, our method
can be applied for interactive editing of high-resolution images
(Figure 5) and long (hundreds of frames) video sequences (Fig-
ure 1 and Figure 7). These examples demonstrate color, saturation



Figure 6: Comparison between our approximation and AppProp [An and Pellacini 2008]. We show edited results of our approximation and
the difference images(multiplied by 4 times) to the results of AppProp, using different η on the fog tree image (top 2 rows) and the bird video
(bottom 2 rows). The parameters used are σc = 0.2 and σp = 0.1 (the fog tree image), and σc = 0.2, σp = 1.0 and σt = 1.0 (the bird
video).

Figure 7: Adjusting the color of the lakebed video (top row, with parameters σc = 0.2, σp = 1.0 and σt = 1.0), adjusting the brightness of
the fog video (middle row, with parameters σc = 0.2, σp = 1.0 and σt = 1.0) and adjusting the tone of the horse video (bottom row, with
parameters σc = 0.3, σp = 0.4 and σt = 1.0), showing user strokes, two selected frames before (a,b) and after (c,d) editing.



Data tree bird horse fog lakebed
Type. image video video video video
Res. 4M 61M 36M 47M 55M
with k-d tree
Corner No. 48k 30k 28k 15k 10k
Time.Build. 0.3s 2s 1s 2s 2s
Time.Prop. 0.4s 0.3s 0.3s 0.1s 0.1s
Time.Interp. 0.4s 6s 4s 5s 5s
Time.Total. 1s 8s 5s 7s 7s
Memory 36M 22M 21M 11M 8M
RMS Error 1.9% 0.5% 0.8% 1.1% 1.2%
AppProp (without k-d tree)
Time 29s 48min 29min 37min 44min
Memory 1.6G 23G 14G 18G 21G

Table 1: Performance comparison of an out-of-core implementa-
tion of [An and Pellacini 2008] (without k-d tree) and our in-core
approximation (with k-d tree). For our approximation, it shows the
number of cell corners, execution time for the three stages of the
algorithm (e.g., tree-building, edit propagation using cell corners,
interpolation to pixels), total execution time, memory cost, and the
RMS error.

and tone adjustment to user desired regions on images and videos
containing complex textures and fog scenes. In all our examples,
we use sampling column number m = 100 and minimum cell size
η = 0.5. Note that videos are treated in the same way as images in
our method, except for the additional dimension (frames) and the
additional parameter (σt) in the affinity definition (Equation 1). No
tracking or explicit correspondence finding is used in these exam-
ples. The computations in these examples range from 1 second on
images and 8 seconds on videos, and never take more than 150MB
of memory. The detailed running time and memory consumption
are reported in Table 1. Observe that our cluster-based approxi-
mation yields hundreds of times improvement to the out-of-core
implementation of [An and Pellacini 2008]. Note that the interpo-
lation time in video editing can be substantially improved for fast
previewing, where the user desires to see the propagated result just
for a single frame of the video, and only the edits of the pixels on
that frame need to be interpolated from those on the k-d tree cell
corners.

7 Conclusion
We present a novel paradigm for solving energy minimization prob-
lems in affinity-based edit propagation. We reduce the size of the
problem by considering a set of sparse samples in the affinity space
instead of individual pixels in the input image or video. The sam-
ples are placed at corners of a k-d tree that is adaptively subdivided
in the affinity space to capture the variation in the desired edit func-
tion. With our approximation scheme, we have observed that edit
propagation takes substantially less time and memory without sac-
rificing visual fidelity. Our new paradigm for solving edit propaga-
tion dramatically extends the practical capabilities of existing pixel-
by-pixel propagation approaches to handle high-resolution images
and long video sequences directly in-core at an interactive speed.

There are a number of limitations in our current method that we
wish to address in future works. For example, the complexity of
our method increases with more user strokes, and hence is not
suited for performing “dense” edits. Also, the increase of com-
plexity in achieving more local editing effects can be undesirable
for fine-tuning the results. Other research venues include exploring
ways to edit streaming contents, and to investigate other areas of
image/video processing where this clustering technique would be
useful.

Acknowledgement: We would like to thank the anonymous re-
viewers for their valuable comments and insightful suggestions.
This work was supported by the National Basic Research Project
of China (Project Number 2006CB303106), the National High

Technology Research and Development Program of China (Project
Number 2009AA01Z327), and FDCT, Macau (Project Number
008/2008/A1). Kun Xu was also supported by Microsoft Fellow-
ship.

References

ADAMS, A., GELFAND, N., DOLSON, J., AND LEVOY, M. 2009.
Gaussian kd-trees for fast high-dimensional filtering. ACM
Trans. Graph. 28, 3, 21.

AGARWALA, A. 2007. Efficient gradient-domain compositing us-
ing quadtrees. ACM Trans. Graph. 26, 3, 94.

AN, X., AND PELLACINI, F. 2008. Appprop: all-pairs appearance-
space edit propagation. ACM Trans. Graph. 27, 3, 40.

CHEN, J., SYLVAIN, P., AND FRÉDO, D. 2007. Real-time edge-
aware image processing with the bilateral grid. ACM Trans.
Graph. 26, 3, 103.

CHESLACK-POSTAVA, E., WANG, R., AKERLUND, O., AND
PELLACINI, F. 2008. Fast, realistic lighting and material de-
sign using nonlinear cut approximation. ACM Trans. Graph. 27,
5, 128.

FATTAL, R., CARROLL, R., AND AGRAWALA, M. 2009. Edge-
based image coarsening. to appear in ACM Trans. Graph..

FATTAL, R. 2009. Edge-avoiding wavelets and their applications.
ACM Trans. Graph. 28, 3, 22.

HANRAHAN, P., SALZMAN, D., AND AUPPERLE, L. 1991. A
rapid hierarchical radiosity algorithm. SIGGRAPH Comput.
Graph. 25, 4, 197–206.

KOPF, J., COHEN, M. F., LISCHINSKI, D., AND UYTTENDAELE,
M. 2007. Joint bilateral upsampling. ACM Trans. Graph. 26, 3,
96.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2004. Colorization
using optimization. ACM Trans. Graph. 23, 3, 689–694.

LI, Y., H., A. E., AND ASEEM, A. 2008. Scribbleboost: Adding
classification to edge-aware interpolation of local image and
video adjustments. Computer Graphics Forum 27, 4 (June),
1255–1264.

LISCHINSKI, D., FARBMAN, Z., UYTTENDAELE, M., AND
SZELISKI, R. 2006. Interactive local adjustment of tonal val-
ues. ACM Trans. Graph. 25, 3, 646–653.

PELLACINI, F., AND LAWRENCE, J. 2007. Appwand: editing
measured materials using appearance-driven optimization. ACM
Trans. Graph. 26, 3, 54.

SHI, J., AND MALIK, J. 2000. Normalized cuts and image seg-
mentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 22, 8, 888–905.

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA, K.,
DONIKIAN, M., AND GREENBERG, D. P. 2005. Lightcuts:
a scalable approach to illumination. ACM Trans. Graph. 24, 3,
1098–1107.

WALTER, B., ARBREE, A., BALA, K., AND GREENBERG, D. P.
2006. Multidimensional lightcuts. ACM Trans. Graph. 25, 3,
1081–1088.

YATZIV, L., AND SAPIRO, G. 2006. Fast image and video col-
orization using chrominance blending. IEEE Transactions on
Image Processing 15, 5, 1120–1129.


