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Abstract: This paper presents a survey of image synthesis and editing with generative adversarial networks (GANs).
GANs consist of two deep networks, a generator and a discriminator, which are trained in a competitive way. Due
to the power of deep networks and the competitive training manner, GANs are capable of producing reasonable
and realistic images, and have shown great capability in many image synthesis and editing applications. This
paper surveys recent GAN papers regarding topics including, but not limited, to texture synthesis, image inpainting,
image-to-image translation, and image editing.
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1 Introduction

With the rapid development of Internet and digital
capturing devices, huge volumes of images have
become readily available. There are now widespread
demands for tasks requiring synthesizing and editing
images, such as: removing unwanted objects in
wedding photographs; adjusting the colors of landscape
images; and turning photographs into artwork –
or vice-versa. These and other problems have
attracted significant attention within both the computer
graphics and computer vision communities. A variety
of methods have been proposed for image/video
editing and synthesis, including texture synthesis

[1–3]
,

image inpainting
[4–6]

, image stylization
[7, 8]

, image
deformation

[9, 10]
, and so on. Although many methods

have been proposed, intelligent image synthesis and
editing remains a challenging problem. This is
because these traditional methods are mostly based
on pixels

[1, 4, 11]
, patches

[8, 10, 12, 13]
and low-level image

features
[3, 14]

, lacking high-level semantic information.
In recent years, deep learning techniques have
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made a breakthrough in computer vision. Trained
using large-scale data, deep neural networks
substantially outperform previous techniques with
regard to the semantic understanding of images. They
claim state of the art in various tasks, including
image classification

[15–17]
, object detection

[18, 19]
, image

segmentation
[20, 21]

, etc.
Deep learning has also shown great ability in content

generation. In 2014 Goodfellow et al. proposed
a generative model, called generative adversarial
networks (GANs)

[22]
, GANs contain two networks,

a generator and a discriminator. The discriminator
tries to distinguish fake images from real ones; the
generator produces fake images but it tries to fool the
discriminator. Both networks are jointly trained in
a competitive way. The resulting generator is able
to synthesise plausible images. GAN variants have
now achieved impressive results in a variety of image
synthesis and editing applications.

In this survey, we cover recent papers that leverage
generative adversarial networks(GANs) for image
synthesis and editing applications. This survey
discusses the ideas, contributions and drawbacks of
these networks. This survey is structured as follows.
Section 2 provides a brief introduction to GANs and
related variants. Section 3 discusses applications in
image synthesis, including texture synthesis, image
impainting, face and human image synthesis. Section 4
discusses applications in constrained image synthesis,



2 Tsinghua Science and Technology, June 20XX, XX(X): 000-000

Z G X’

X

D
Real
or

Fake?

Noise vector

Generator
Generated samples

Real samples

Discriminator

Fig. 1 Structure of GANs.

including general image-to-image translation, text-to-
image, and sketch-to-image. Section 5 discusses
applications in image editing and video generation.
Finally, Section 6 provides a summary discussion
and current challenges and limitations of GAN based
methods.

2 Generative Adversarial Networks

Generative adversarial networks (GANs) were
proposed by Goodfellow et al.

[22]
in 2014. They contain

two networks, a generator G and a discriminator
D. The generator tries to create fake but plausible
images, while the discriminator tries to distinguish
fake images (produced by the generator) from real
images. Formally, the generator G maps a noise vector
z in the latent space to an image: G(z) → x, and
the discriminator is defined as D(x) → [0, 1], which
classifies an image as a real image (i.e., close to 1) or
as a fake image (i.e., close to 1).

To train the networks, the loss function is formulated
as:

min
G

max
D

Ex∈X [logD(x)]+Ez∈Z [log(1−D(G(z)))],

(1)
where X denotes the set of real images, Z denotes the
latent space. The above loss function (Equation 1) is
referred to as the adversarial loss. The two networks are
trained in a competitive fashion with back propagation.
The structure of GANs is illustrated as Fig. 1.

Compared with other generative models such as
variational autoencoders (VAEs)

[23]
, images generated

by GANs are usually less blurred and more realistic.
It is also theoretically proven that optimal GANs exist,
that is the generator perfectly produces images which
match the distributions of real images well, and the
discriminator always produces 1/2

[22]
. However, in

practice, training GANs is difficult because of several
reasons: firstly, networks converge is difficult to achieve
[24]

; secondly, GANs often get into ’mode collapse’,
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Fig. 2 Structure of cGANs.

in which the generator produces the same or similar
images for different noise vectors z. Various extensions
of GANs have been proposed to improve training
stability

[24–28]
.

cGANs. Mirza et al.
[29]

introduced conditional
generative adversarial networks (cGANs), which
extends GANs into a conditional model. In cGANs, the
generator G and the discriminator D are conditioned
on some extra information c. This is done by putting
c as additional inputs to both G and D. The extra
information could be class labels, text, or sketches.
cGANs provide additional controls on which kind of
data are being generated, while the original GANs do
not have such controls. It makes cGANs popular for
image synthesis and image editing applications. The
structure of cGANs is illustrated as Fig. 2.

DCGANs. Radford and Metz presented deep
convolutional generative adversarial networks
(DCGANs)

[24]
. They propose a class of architecturally

constrained convolution networks for both generator
and discriminator. The architectural constraints include:
1) replacing all pooling layers with strided convolutions
and fractional-strided convolutions; 2) using batchnorm
layers; 3) removing fully connected hidden layers; 4)
in the generator, using tanh as the activation function
and using rectified linear units (ReLU) activation for
other layers; 5) in the discriminator, using LeakyReLU
activation in discriminator for all layers. DCGANs
have shown to be more stable in training and are able
to produce higher quality images, hence they have been
widely used in many applications.

LAPGAN. Laplacian generative adversarial
networks (LAPGAN)

[30]
are composed of a cascade of

convolutional GANs with the framework of a Laplacian
pyramid with K levels. At the coarsest level, K,
a GAN is trained which maps a noise vector to an
image with the coarsest resolution. At each level of
the pyramid except the coarsest one (i.e., level k,
0 ≤ k < K), a separate cGAN is trained, which takes
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the output image in the coarser level (i.e., level k + 1)
as a conditional variable to generate the residual image
at this level. Due to such a coarse-to-fine manner,
LAPGANs are able to produce images with higher
resolutions.

Other extensions. Zhao et al. proposed an energy-
based generative adversarial network (EBGAN)

[25]
,

which views the discriminator as an energy function
instead of a probability function. They show
that EBGANs are more stable in training. To
overcome the vanishing gradient problem, Mao et
al. proposed least squares generative adversarial
networks(LSGAN)

[26]
, which replace the log function by

least square function in the adversarial loss. Arjovsky
et al. proposed Wasserstein generative adversarial
networks (WGAN)

[27]
. They first theoretically show

that the Earth-Mover (EM) distance produces better
gradient behaviors in distribution learning compared
to other distance metrics. According, they made
several changes to regular GANs: 1) removing the
sigmoid layer and adding weight clipping in the
discriminator; 2) removing the log function in the
adversarial loss. They demonstrate that WGANs
generate images with comparable quality compared to
well designed DCGANs. Berthelot et al. proposed
boundary equilibrium generative adversarial networks
(BEGAN)

[28]
, trying to maintain an equilibrium which

can be adjusted for the trade-off between diversity and
quality.

Creswell et al.
[31]

provides an overview of GANs.
They mainly focus on GANs themselves, including
architectures, and training strategies of GANs. Our
survey differs because it focuses on image synthesis and
editing applications with GANs.

3 Image Synthesis

This section discusses applications including texture
synthesis, image super-resolution, image inpainting,
face image synthesis and human image synthesis.

3.1 Texture synthesis

Texture synthesis is a classic problem in both computer
graphics and computer vision. Given a sample texture,
the goal is to generate a new texture with identical
second order statistics.

Gatys et al.
[32]

introduced the first CNN-based method
for texture synthesis. To characterize a texture, they
define a Gram-matrix representation. By feeding
the texture into a pre-trained VGG19

[16]
, the Gram

matrices are computed by the correlations of feature
responses in some layers. The target texture is obtained
by minimizing the distance between the Gram-matrix
representation of the target texture and that of the input
texture. The target texture starts from random noise,
and is iteratively optimized through back propagation,
hence, its computational cost is expensive.

MGANs. Li et al.
[33]

proposed a real-time texture
synthesis method. They first introduced Markovian
deconvolutional adversarial networks (MDANs). Given
a content image xc (e.g., a face image) and a texture
image xt (i.e., a texture image of leaves), MDANs
synthesize a target image xs (e.g., a face image textured
by leaves). Feature maps of an image are defined
as feature maps extracted from a pre-trained VGG19
by feeding the image into it

[34]
, and neural patches of

an image are defined as patch samples on the feature
maps

[16]
. A discriminator is trained to distinguish neural

patches from real and fake images. The objective
function includes a texture loss and a feature loss. The
texture loss is computed from the classification scores
of neural patches of xs from the discriminator. The
feature loss considers the distance between the feature
maps of xs and xc. The target image is initialized with
random noise, and is iteratively updated through back
propagation by minimizing the objective function. They
further introduced Markovian generative adversarial
networks (MGANs), which take feature maps of a
content image xc as input to generate a texture image.
MGANs are trained using content and target image
pairs synthesized by MDANs. The objective function
of MGANs is defined similar to MDANs. MGANs are
able to achieve real-time performance for neural texture
synthesis, which is about 500 times faster than previous
methods.

SGAN and PSGAN. Regular GANs map a random
vector to an image. Instead, Jetchev and Bergmann
proposed spatial GANs (SGAN)

[35]
, which extend to

map a spatial tensor to an image. The network
architecture follows DCGANs

[24]
. The architectural

properties of SGAN make it suitable for the task of
texture synthesis. Bergmann et al. further extend
SGAN to periodic spatial GAN (PSGAN)

[36]
. In

PSGAN, the input spatial tensor contains three parts:
a local independent part, a spatially global part, and
a periodic part. PSGAN is able to synthesize diverse,
periodic and high-resolution textures.
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3.2 Image super-resolution

Given a low-resolution image, the goal of super-
resolution is to upsample it to a high-resolution one.
Essentially, this problem is ill-posed because high
frequency information is lacking, especially for large
upscaling factors. Recently, some deep learning based
methods

[37–39]
were proposed to tackle this problem,

results are good for low upsampling factors, but less
satisfactory for larger scales. Below, we discuss GAN-
based super-resolution methods.

SRGAN. Ledig et al.
[40]

proposed super-resolution
generative adversarial network (SRGAN), which takes
a low-resolution image as input, and generates an
upsampled image with 4× resolution. The network
architecture follows the guidelines of DCGAN

[24]
, and

the generator uses very deep convolutional network
with residual blocks. The objective function includes
an adversarial loss and a feature loss. The feature loss
is computed as the distance between the feature maps
of the generated upsampled image and the ground truth
image, where the feature maps are extracted from a
pre-trained VGG19 network. Experiments show that
SRGAN outperforms the state-of-art approaches on
public datasets.

FCGAN. Based on boundary equilibrium generative
adversarial networks (BEGAN)

[28]
, Huang et al.

[41]

proposed face conditional generative adversarial
network (FCGAN), which specializes on facial image
super resolution. Within the network architecture, both
the generator and discriminator use an encoder-decoder
along with skip connections. For training, the objective
function includes a content loss, which is computed
by the L1 pixelwise difference between the generated
upsampled image and the ground truth. FCGAN
generates satisfactory results with 4× scaling factor.

3.3 Image inpainting

The goal of image inpaiting is to fill holes in images.
It has been always a hot topic in computer graphics
and computer vision. Traditional approaches replicate
pixels or patches from the original image

[4, 5, 10]
or from

image library
[6, 8]

to fill the holes. GANs offer a new
way for image inpainting.

Context encoder. Pathak et al.
[42]

presented a
network called context encoder, which is the first image
inpainting method based on GANs. The network is
based on an encoder-decoder architecture. The input
is an 128 × 128 image with holes. The output is a
64 × 64 image content in the hole (when the hole is

input Context Encoder Yang et al. Ground truth

Fig. 3 Comparison between Context Encoder
[42]

and Yang et
al.

[45]
.

central) or the full 128 × 128 inpainted image (when
the hole is arbitrary). The objective function includes an
adversarial loss and a content loss measuring L2 pixel-
wise difference between the generated inpainted image
and the ground truth image. Experiments used the Paris
StreetView dataset

[43]
and the ImageNet dataset

[44]
. It

achieves satisfactory inpainting results for central holes
but less satisfactory results for arbitrary holes.

Multiscale method. Yang et al.
[45]

present a
multiscale synthesis method for high-resolution image
impainting. They first train a context network which
is similar to context encoder

[42]
with minor changes on

some layers. To complete a 512 × 512 image with
a 256 × 256 hole, they first downsample the image
by a factor of 4, then obtain an initial reconstructed
hole image x0 at resolution 64 × 64 through the
trained context network. The final reconstructed hole
image (at resolution 256 × 256) is then obtained in a
coarse-to-fine manner. At each scale, the reconstructed
hole image is iteratively updated by optimizing a
joint objective function, including a content loss, a
texture loss and a total variation (TV) loss. The
content loss measures the L2 difference between the
currently optimized image and the resulting image from
the coarser level. The texture loss is computed by
comparing the neural patches inside the hole and the
neural patches outside the hole. The texture loss
enforces the image content inside and outside the hole
have similar texture details. It shows nice image
inpainting results with 512 × 512 resolution, but is
slow due to the iterative approach. Some results of this
method and Context Encoder are shown in Figure 3.

Consistent completion. Iizuka et al.
[46]

proposed a
GAN-based approach for global and local consistent
image inpainting. The input is an image with an
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additional binary mask to indicate the missing hole.
The output is an inpainted image with the same
resolution. The generator follows the encoder-decoder
architecture and uses dilated convolution layers

[47]

instead of standard convolution layers for larger spatial
support. There are two discriminators, a global
discriminator that takes the entire image as input and
a local discriminator that takes a small region covering
the hole as input. The two discriminators ensure that the
resulting image is consistent at both global and local
scale. This work produces natural image inpainting
results for high-resolution images with arbitrary holes.

Other methods. Yeh et al.
[48]

proposed a GAN-
based iterative method for semantic image inpainting.
It first pre-trained a GAN, whose generator G maps
a latent vector z to an image. Given an image with
missing contents x0, they recover the latent vector
z∗ by minimizing an objective function including an
adversarial loss and a content loss. The content loss
is computed by a weighted L1 pixel-wise distance
between the generated image G(z∗) and x0 on
uncorrupted regions, where pixels near the hole are
given higher weights. The objective function is
iteratively optimized through back propagation. Li
et al.

[49]
proposed a GAN-based specialized approach

for face image impainting. Following the network
architecture of Iizuka et al.

[46]
, it incorporates a global

discriminator and a local discriminator to enforce
image consistency in both global and local scale. It
additionally includes a pre-trained parsing network to
enforce the harmony of the inpainted face image.

3.4 Face image synthesis

Face image synthesis is a specialized but important
topic. Because human vision is sensitive to facial
irregularities and deformations, it is not an easy task to
generate realistic synthesized face images. GANs have
shown a good ability in creating face images of high
perceptual quality and with detailed textures.

Face aging. Face aging methods transform a
facial image to another age, while still keeping
identity. Zhang et al.

[50]
present a conditional adversarial

autoencoder (CAAE) for this problem, which consists
of an encoder E, a generator G, and two discriminators
Dz andDimg. The encoder E maps a face image x to a
vector z indicating personal features. The output vector
z, together with a conditional vector c indicating a new
age, are fed into the generator G to generate a new face
image. Dz takes the vector z as input, and enforces z

to be uniformly distributed. Dimg forces the face image
generated by G to be realistic and to conform with the
given age. Besides the two adversarial losses of the
two discriminators, the objective function also includes
an L2 content loss and a TV (total variation) loss.
The content loss enforces the input face image and the
generated face image to be similar: x ≈ G(E(x), c).
The TV loss is introduced to remove ghosting effects.
All the networks are jointly trained. CAAE is able to
generate map input face images to plausibly appear as a
different age.

Antipov et al.
[51]

proposed an age conditional
generative adversarial network (Age-cGAN) for face
aging. Age-cGAN consists of an encoder and a cGAN.
Like CAAE, the encoder E maps a face image x to a
latent vector z, and the conditional generator G maps
a latent vector z with an age condition c to a new face
image. The cGAN is first trained, and the encoder is
trained using pairs of latent vectors and generated face
images of the cGAN. After training, given an input face
image x0 with age c0, face aging is achieved by: 1)
feeding x0 into the encoder to obtain an initial latent
vector z0; 2) iteratively updating z0 to a new latent
vector z∗ through an identity preserving optimization,
which enforces the reconstructed face image with the
same age to be close to the input image: G(z∗, c0) ≈
x0; 3) feeding the optimized latent vector z∗ and the
target age into the generator to obtain the new face
image.

Face frontalization. Face frontalization aims to
transform a face image from rotated or perspective
views to frontal views. Tran et al.

[52]
proposed

Disentangled Representation learning-GAN (DR-
GAN) for face synthesis with new poses. The generator
G uses an encoder-decoder architecture. It learns a
disentangled representation for face images which are
the output of the encoder and also the input of the
decoder. Specifically, the encoder maps a face image
x to an identity feature f , and the decoder synthesize
a new face image, given an identity feature f , a target
pose, and a noise vector. The discriminator D has two
parts, one for identity classification (i.e., also contains
an additional identity class for fake images), and the
other for pose classification. The goal of D is to predict
both identity and pose correctly for real images and
also to predict identity as fake for fake images. The
goal of G is to fool D to classify fake images to its
input identity and pose. The objective function for
training only contains the newly introduced adversarial
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loss. Experiments show that DR-GAN is superior to
existing methods on pose invariant face recognition.

Yin et al.
[53]

proposed a face frontalization generative
adversarial network (FF-GAN), which incorporates 3D
Morphable Model (3DMM)

[54]
into the GAN structure.

Since 3DMM provides geometry and appearance priors
for face images and the representation of 3DMM
is also compact, FF-GAN has the advantage of fast
convergence, and produces high-quality frontal face
images.

Huang et al.
[55]

proposed two-pathway generative
adversarial network (TP-GAN) for frontal face image
synthesis. The network has a two pathway architecture,
a global generator for generating global structures and
a local generator for generating details around facial
landmarks. The objective function for training consists
of an L1 pixel-wise content loss which measures the
difference between the generated face image x̂ and the
ground truth, a symmetry loss which enforces x̂ to be
horizontally symmetric, an adversarial loss, an identity
preserving loss, and a TV loss.

3.5 Human image synthesis

Human image processing is important in computer
vision. Most existing works focused on problems
such as pose estimation, detection and re-identification,
while generating novel human images attracted few
attention until GANs were presented. For the purpose
of improving person re-identification precision, Zheng
et al.

[56]
utilize GANs to generate human images as extra

training data. Other GANs are designed for human
image synthesis per se.

VariGAN. Variational GAN (VariGAN)
[57]

aims to
generate multi-view human images from a single-
view. It follows a coarse-to-fine manner and consists
of three networks: a coarse image generator, a fine
image generator, and a conditional discriminator. The
coarse image generator Gc uses a conditional VAE
architecture

[58]
. Given an input image x0 and a target

view t, it is separately trained to generate a low-
resolution image with the target view xt

LR. The
fine image generator Gf uses a dual-path U-Net

[21]

architecture. It maps xt
LR to a high-resolution image

xt
HR conditioned on x0. The discriminatorD examines

the high-resolution image xt
HR conditioned on the input

image x0. Gf and D are jointly trained with an
objective function consisting of an adversarial loss and
a content loss measuring L1 difference between xt

HR

and ground truth.

Pose guided generation PG2. Ma et al.
[59]

proposed
a pose guided human image generation method (PG2).
Given an input human image and a target pose, it
generates a new image with the target pose. They also
use a coarse-to-fine two-stage approach. In the first
stage, a generator G1 produces a coarse image xLR

from the input image x0 and the target pose, capturing
the global structure. In the second stage, a generator
G2 generates a high-resolution difference image ∆xHR

from the coarse image xLR and the input image x0.
The final image is obtained by summing up xLR and
∆xHR. A conditioned discriminator is also involved.
Both G1 and G2 uses the U-Net

[21]
architecture. It is

able to produce new 256× 256 images.

4 Constrained Image Synthesis

This section discusses constrained image synthesis,
which is synthesizing a new image with respect to
some specified constraints from users, such as another
image, text description, or sketches. We will discuss
applications on image-to-image translation, text-to-
image, and sketch-to-image.

4.1 Image-to-image translation

Image-to-image translation refers to a constrained
synthesis process which maps an input image to an
output image.

pix2pix. Isola et al.
[60]

proposed a general image-
to-image translation framework pix2pix using cGANs.
Their network architecture follows the guidelines of
DCGANs

[24]
with some additional changes: 1) applying

modules of the form convolution-BatchNorm-ReLU; 2)
adding skip connections between the deep layers and
the shallow layers for the generator. The discriminator
uses PatchGAN

[33]
, which runs faster and penalizes

unreal structure at the patch scale. Since the goal is
not only to produce realistic images (which fool the
discriminator), but also require the generated image to
be close to ground truth; hence, besides the adversarial
loss, they additionally include a content loss in the
objective function. The content loss measures the L1

distance between the output image and the ground truth
image. Pix2pix was demonstrated to be effective for a
variety of image-to-image translation tasks, including
labels to cityscape, labels to façade, edges to photo,
day to night, etc. It produces convincing results at the
256× 256 resolution, as shown in Figure 4.

cycleGAN. Pix2pix
[60]

requires paired images (an
image before translation and the corresponding image
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Labels to Cityscape Labels to Facade Edges to Photo

input

output

Fig. 4 Results produced by pix2pix
[60]

.

apple → orange

orange → apple

horse → zebra

zebra → horse

Fig. 5 Results produced by cycleGAN
[61]

.

after translation) as training data, however, in many
cases, such image pairs do not exist. To address this
issue, Zhu et al.

[61]
proposed an unpaired image-to-

image translation framework, named cycle-consistent
adversarial networks (cycleGAN). CycleGAN consists
of two separate GANs, one translates an image from
one domain to another (e.g. horse to zebra): xtrans =

G(x), the other does the inverse translation (e.g.
zebra to horse): x = Ginv(xtrans). Their network
architecture follows Johnson et al.

[62]
which has

shown to be effective in style transfer. Similar to
pix2pix, the discriminators use PatchGAN

[33]
. The two

GANs are jointly trained. Following LSGAN
[26]

, the
adversarial loss uses least square function instead of
a log function for more stable training. Beside the
two adversarial losses of the two GANs, the objective
function additionally includes an L1 cycle consistency
loss, which enforces that an image translates to itself
after the translation cycle: x ≈ Ginv(G(x)),xtrans ≈
G(Ginv(xtrans)). Their method has been successfully
applied to several translation tasks, including collection
style transfer, season transfer, etc., as shown in Figure 5.

AIGN. The adversarial inverse graphics network

(AIGN)
[63]

also utilizes unpaired training. AIGN
consists of a generator G, a discriminator D, and a
task specific renderer P . Consider image-to-image
translation as example: the generator G maps an input
image x to an output image G(x), and the renderer
maps the output of the generator back to its input. The
objective function for training includes an adversarial
loss and a reconstruction loss enforcing x ≈ P (G(x)).
Beside image-to-image translation, AIGN could be
also used for 3D human pose estimation, face super-
resolution, image inpainting, etc.

4.2 Text-to-image

Text-to-image refers to the process of generating an
image which corresponds to a given text description.
For example, we could imagine an image describing
”a red bird with a black tail” or ”a white flower with a
yellow anther”. This is a difficult problem, but recently,
it is able to generate images depicting simple scenes
with the help of GANs.

GAN-INT-CLS. Reed et al.
[64]

proposed a text-to-
image synthesis method using GANs. The input text
is encoded into a text embedding vector Φ(t) using a
recurrent network. Conditioned on the text embedding
vector Φ(t), the generator maps a noise vector z

to a synthesized image. The discriminator is also
conditioned on Φ(t), and is designed to judge whether
the input image is real or fake, and that it matches the
texture description. The network architecture follows
the guidelines of DCGAN

[24]
. The objective function

only includes an adversarial loss. Note that the noise
vector z could be used to control styles of generated
images.

GAWWN. Reed et al.
[65]

introduced a generative
adversarial what-where network(GAWWN), which
considers location constraints in addition to text
descriptions. A location constraint could be given by
a bounding box, or by keypoints. Specifically, for
bounding box constraints, a bounding-box-conditional
GAN is proposed. The networks (both the generator
and the discriminator) are conditioned on the bounding
box and the text embedding vector which represents text
description. The networks have two pathways, a global
pathway that operates on the full image, and a local
pathway that operates on the region inside the bounding
box. For keypoint constraints, a keypoint-conditional
GAN is also proposed. The keypoint constraints are
represented using binary mask maps.

Other methods. Stacked generative adversarial



8 Tsinghua Science and Technology, June 20XX, XX(X): 000-000

networks (StackGAN)
[66]

are able to generate
high-resolution images conditioned by given text
descriptions. This method has two stages of GANs.
Stage-1 GAN generates a low-resolution (64 × 64)
image from a noise vector conditioned to some text
description. The output 64 × 64 image from Stage-1
and the text descriptions are both fed into another
Stage-2 GAN to generate a high-resolution (256×256)
image. It is the first work to generate images with
256 × 256 resolution from texts. A text conditioned
auxiliary classifier GAN (TAC-GAN)

[67]
is another text-

to-image synthesis method. It is built upon auxiliary
classifier GAN (AC-GAN)

[68]
, but replaces the class

label condition by a text description condition.
Current text-to-image synthesis approaches are

capable of generating plausible images of single object,
such as a bird or a flower. But they are still not well
adapted to complex scenes with multiple objects, which
is an important direction for future works.

4.3 Sketch-to-image

Sketches are a convenient way for users to draw what
they want, but they lack detail, color etc. Therefore,
automatically mapping the input sketches to the user
desired images is an attractive problem for researchers.
Sketch2Photo

[69]
provides a fantastic way to synthesize

images with sketch and text labels by the composition
of Internet images, but text labels are necessary in
their work. Recently, GAN-based methods are able
to generate images from sketches without text labels,
showing better flexibility.

Scribbler. Sangkloy et al.
[70]

proposed GAN-based
synthesis method named Scribbler, which converts
sketch images with color strokes to realistic images.
The generator employs an encoder-decoder architecture
with residual blocks

[17]
, and generates a new image with

the same resolution as the input sketch image. The
objective function consists of a content loss, a feature
loss, an adversarial loss, and a TV loss. The content
loss measures L2 pixel-wise difference between the
generated image x̂ and ground truth xG. Similar to
MDANs

[33]
, the feature loss is defined as the feature

distance between x̂ and xG, where the features are
extracted from a pre-trained VGG19 network. The
TV loss is included to improve the smoothness of the
generated images

[62]
. It is able to generate realistic,

diverse, and controllable images.
TextureGAN. Xian et al.

[71]
proposed TextureGAN,

which converts sketch images to realistic images with

the additional control of object textures. The generator
takes a sketch image, a color image, and a texture image
xt as input to generate a new image x̂. The network
structure follows Scribbler

[70]
. The objective function

consists of a content loss, a feature loss, an adversarial
loss, and a texture loss. The content loss, feature loss
and adversarial loss are defined similar to Scribbler

[70]
.

Following the CNN based texture synthesis method
[32]

,
the texture loss is computed as the distance between
the Gram-matrix representation of patches in x̂ and
xt, enforcing texture appearance of x̂ close to xs.
Segmentation masks are also introduced to enforce
computing texture loss and content loss only in the
foreground region.

Other methods. Magic Pencil
[72]

is another GAN-
based sketch-to-image synthesis method. Beside a
generator and a discriminator, it additionally includes
a classifier to enforce the generated image and the input
sketch are in the same category. With the help of the
newly included classifier, it is able to achieve multi-
category image synthesis. Auto-painter

[73]
converts

sketches to cartoon images based on GANs. It adopts
the network architecture of pix2pix

[60]
and additionally

includes texture loss and TV loss into the objective
function.

Sketch dataset are rare, so researchers often utilize
edge detection algorithm to extract sketches for
training. However, extracted sketches often contain lots
of details and their low level statistics are very different
from hand drawings. That is not the only difference,
there can be changes in geometry and connectedness
too. Additionally, while these methods work on
single sketched object well, GAN-based generation of
complex scenes from sketches is still be a challenging
problem.

5 Image editing and Videos

5.1 Image editing

Image editing is an important topic in computer
graphics, in which users manipulate an image through
color and (or) geometry interactions. A lot of work
has investigated tasks such as image warping

[74–76]
,

colorization
[77–79]

, blending
[80–82]

. These works mainly
work on pixels or patches, and do not necessarily keep
semantic consistency in editing.

iGAN. Zhu et al.
[83]

proposed iGAN, which uses
GAN as a manifold approximation and constrains the
edited images on the manifold. They pre-train a GAN
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Fig. 6 Results produced by iGAN
[83]

.

from a large image collection, which maps a latent
vector z to a natural image. Given an original image,
the method works as follows: 1) They project the
original image x0 to the latent space and obtain a
latent representation vector z0. The projection is done
through a hybrid method combining optimization and
a pre-trained encoder network. 2) After specifying
shape and color edits, they optimize for a new vector
z∗ minimizing an objective function containing a data
loss, a manifold smoothness loss, and an adversarial
loss. The data loss measures differences with user
edit constraints so as to enforce satisfying user edits.
The manifold smoothness loss is defined as the L2

difference between z∗ and z0, so that the image is not
changed too much. 3) By interpolating between z0
and z∗, a sequence of continuous edited images are
generated. 4) Finally, the same amount of edits are
transferred to the original image x0 using optical flow to
obtain the final results. iGAN achieves realistic image
editing, on various edit operators such as coloring,
sketching and geometric warping. Figure 6 shows the
interpolation between generated images of a bag and an
outdoor scene.

IAN. Brock et al.
[84]

proposed an introspective
adversarial network (IAN) for image editing. IAN
consists of a generator G, a discriminator D, and
an encoder E. The network architecture follows
DCGAN

[24]
. The generatorGmaps a noise vector z to a

generated image. The encoder E uses the discriminator
D as a feature vector, and is built on top of the final
convolutional layer of D. The discriminator D inputs
an image and determines whether it is real, fake, or
reconstructed. The networks are jointly trained with
respect to an objective function consisting of a content
loss, a feature loss, the ternary adversarial loss, and the
KL divergence of VAE

[23]
. The content loss measures

L1 pixel-wise difference between reconstructed and
original images. The feature loss measures L2 feature
difference between reconstructed and original images.
Such designs enforce high-quality reconstruction.

Other methods. Cao et al.
[85]

applies GAN for image
colorization. Its high-level network architecture follows
pix2pix

[60]
. It generates diverse colorization results

by feeding different input noise into the generator.
Gaussian-Poisson GAN(GP-GAN)

[86]
applies GAN for

high-resolution image blending. It combines GAN with
traditional gradient based blending techniques. GAN
is used to generate an initial low-resolution blended
image, and the final result is obtained by optimizing the
Gaussian-Poisson equation.

5.2 Video Generation

Inspired by the success of GANs in image synthesis
applications, researchers have also applied GANs to
video generation. Compared to image synthesis, video
generation is more difficult since video has an extra
temporal dimension requiring much larger computation
and memory cost. It is also not trivial to keep temporal
coherence. We will discuss some important works for
such attempts.

VGAN. Vondrick et al.
[87]

proposed a generative
adversarial network for video (VGAN). They assume
the whole video is combined by a static background
image and a moving foreground video. Hence, the
generator has two-streams. The input to both streams
is a noise vector. The background stream generates
the background image with 2D convolutional layers,
and the foreground stream generates the 3D foreground
video cube and the corresponding 3D foreground mask,
with spatial-temporal 3D convolutional layers. The
discriminator takes the whole generated video as input,
and tries to distinguish it from real videos. Since VGAN
treats videos as 3D cubes, it requires large memory
space; it can generate tiny videos of about one second
duration.

TGAN. Saito et al.
[88]

proposed temporal generative
adversarial nets (TGAN) for video generation. TGAN
consists of a temporal generator, an image generator,
and a discriminator. The temporal generator produces
a sequence of latent frame vectors [z11, ..., z

K
1 ] from a

random variable z0, where K is the number of video
frames. The image generator takes z0 and a frame
vector zt1 (1 ≤ t ≤ K) as input, and produces the t−th
video frame. The discriminator takes the whole video
as input and tries to distinguish it from real ones. For
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stable training, they follow WGAN
[27]

, but further apply
singular value clipping instead of the weight clipping to
the discriminator.

MocoGAN. Tulyakov et al. proposed motion and
content decomposed GAN (MoCoGAN)

[89]
for video

generation. The basic idea is to use a motion and
content decomposed representation. Given a sequence
of random variables [ε1, ..., εK ], a recurrent network
maps them to a sequence of motion vectors z1M , ..., z

K
M ,

where K is the number of video frames. A content
vector zC , together with a motion vector ztM (1 ≤
t ≤ K) are fed into the generator to produce the t−th
video frame. There are two discriminators, one for
distinguishing real from fake single frames, while the
other for distinguishing real from fake videos.

Video prediction. Video prediction refers to the
process of predicting one (or a few) future frames
conditioned by a few existing video frames. Various
GAN-based approaches

[90–93]
have been proposed for

this goal. With a multiscale architecture, Mathieu et
al.

[90]
generate future frames by minimizing a MSE

loss, an adversarial loss, and a gradient difference
loss. Zhou et al.

[91]
learn temporal transformations

of specific phenomenon from videos, such as flower
blooming, ice melting, etc. Vondrick and Torralba

[92]

learn pixel transformation and generate future frames
by transforming pixels from existing frames. Liang
et al.

[93]
proposed dual motion GAN, which enforces

predicted future frames to be consistent with predicted
optical flows.

6 Discussion and Conclusions

There have been great advances in image synthesis and
editing applications using GANs in recent years. By
exploring large amounts of images, GANs are able to
generate more reasonable, more semantically consistent
results than classical methods. Besides that, GANs
can produce texture details and realistic content, which
is beneficial to many applications, such as texture
synthesis, super-resolution, image inpainting, etc.

However, GANs are still facing many challenges.
First, it is difficult to generate high-resolution images.
At present, most GAN-based applications are limited
to handle images with resolution not larger than 256 ×
256. When applied to high-resolution images, blurry
artifacts usually occur. Although some approaches use
coarse-to-fine iterative approaches to generate high-
resolution images, but they are not end-to-end and

are usually slow. Recently, Chen et al.
[94]

introduced
cascaded refinement networks for photographic image
synthesis at 2-megapixel resolution, which gives us a
novel perspective for high-resolution image generation.

Secondly, the resolutions of input and output images
are usually required to be fixed. In comparison,
traditional image synthesis approaches are more flexible
and could be adapted to arbitrary resolution. Recently
proposed PixelRNN

[95]
draws images pixel to pixel and

allows arbitrary resolution, which gives a good insight.
Thirdly, as a common issue in deep learning, ground

truth data (for training) are crucial but hard to get. This
is more important in GAN-based image synthesis and
editing applications, because usually it is not easy to
find ground truth of synthesized or edited images (or
they simply do not exist). CycleGAN

[61]
and AIGN

[63]

proposed to use unpaired data for training, which might
be a feasible solution for similar problems but this needs
more attention and exploration.

Finally, although GANs have been applied to video
generation and synthesis of 3D models

[96–99]
, the results

are far from perfect. It is still hard to extract temporal
information from videos or decrease memory costs.
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[42] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell,
and A. Efros, “Context encoders: Feature learning
by inpainting,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[43] C. Doersch, S. Singh, A. Gupta, J. Sivic, and
A. A. Efros, “What makes paris look like paris?”
ACM Transactions on Graphics (Proc. SIGGRAPH),
vol. 31, no. 4, pp. 101:1–101:9, 2012.

[44] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“Imagenet large scale visual recognition challenge,”
International Journal of Computer Vision, vol. 115,
no. 3, pp. 211–252, Dec 2015.

[45] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang,
and H. Li, “High-resolution image inpainting
using multi-scale neural patch synthesis,” in The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

[46] S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Globally
and Locally Consistent Image Completion,” ACM
Transactions on Graphics (Proc. SIGGRAPH),
vol. 36, no. 4, pp. 107:1–107:14, 2017.

[47] F. Yu and V. Koltun, “Multi-scale context
aggregation by dilated convolutions,” in ICLR,
2016.

[48] R. A. Yeh, C. Chen, T. Yian Lim, A. G. Schwing,
M. Hasegawa-Johnson, and M. N. Do, “Semantic
image inpainting with deep generative models,” in
The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.



14 Tsinghua Science and Technology, June 20XX, XX(X): 000-000

[49] Y. Li, S. Liu, J. Yang, and M.-H. Yang, “Generative
face completion,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
July 2017.

[50] Z. Zhang, Y. Song, and H. Qi, “Age
progression/regression by conditional adversarial
autoencoder,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[51] G. Antipov, M. Baccouche, and J.-L. Dugelay,
“Face aging with conditional generative adversarial
networks,” in IEEE International Conference on
Image Processing, 17-20 September, 2017.

[52] L. Tran, X. Yin, and X. Liu, “Disentangled
representation learning GAN for pose-invariant face
recognition,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[53] X. Yin, X. Yu, K. Sohn, X. Liu, and M. Chandraker,
“Towards large-pose face frontalization in the wild,”
in The IEEE International Conference on Computer
Vision (ICCV), Oct 2017.

[54] V. Blanz and T. Vetter, “A morphable model for
the synthesis of 3d faces,” in Proceedings of the
26th Annual Conference on Computer Graphics and
Interactive Techniques, ser. SIGGRAPH ’99, 1999,
pp. 187–194.

[55] R. Huang, S. Zhang, T. Li, and R. He, “Beyond
face rotation: Global and local perception GAN for
photorealistic and identity preserving frontal view
synthesis,” in The IEEE International Conference on
Computer Vision (ICCV), Oct 2017.

[56] Z. Zheng, L. Zheng, and Y. Yang, “Unlabeled
samples generated by GAN improve the person
re-identification baseline in vitro,” in The IEEE
International Conference on Computer Vision
(ICCV), Oct 2017.

[57] B. Zhao, X. Wu, Z.-Q. Cheng, H. Liu, and J. Feng,
“Multi-view image generation from a single-view,”
arXiv preprint arXiv:1704.04886, 2017.

[58] K. Sohn, H. Lee, and X. Yan, “Learning structured
output representation using deep conditional
generative models,” in Advances in Neural
Information Processing Systems 28, 2015, pp.
3483–3491.

[59] L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and
L. Van Gool, “Pose guided person image generation,”
arXiv preprint arXiv:1705.09368, 2017.

[60] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-
to-image translation with conditional adversarial
networks,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[61] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros,
“Unpaired image-to-image translation using cycle-
consistent adversarial networks,” in The IEEE
International Conference on Computer Vision
(ICCV), Oct 2017.

[62] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual
losses for real-time style transfer and super-
resolution,” in European Conference on Computer
Vision (ECCV), 2016.

[63] H.-Y. Fish Tung, A. W. Harley, W. Seto, and
K. Fragkiadaki, “Adversarial inverse graphics
networks: Learning 2d-to-3d lifting and image-to-
image translation from unpaired supervision,” in The
IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

[64] S. Reed, Z. Akata, X. Yan, L. Logeswaran,
B. Schiele, and H. Lee, “Generative adversarial
text-to-image synthesis,” in Proceedings of The
33rd International Conference on Machine Learning,
2016.

[65] S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele,
and H. Lee, “Learning what and where to draw,” in
Advances in Neural Information Processing Systems
29, 2016, pp. 217–225.

[66] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang,
X. Huang, and D. N. Metaxas, “StackGAN: text
to photo-realistic image synthesis with stacked
generative adversarial networks,” in The IEEE
International Conference on Computer Vision
(ICCV), Oct 2017.

[67] A. Dash, J. C. B. Gamboa, S. Ahmed, M. Z.
Afzal, and M. Liwicki, “TAC-GAN-Text conditioned
auxiliary classifier generative adversarial network,”
arXiv preprint arXiv:1703.06412, 2017.

[68] A. Odena, C. Olah, and J. Shlens, “Conditional
image synthesis with auxiliary classifier GANs,” in
Proceedings of the 34th International Conference on
Machine Learning, 2017.

[69] T. Chen, M.-M. Cheng, P. Tan, A. Shamir, and S.-M.
Hu, “Sketch2photo: Internet image montage,” ACM
Transactions on Graphics, vol. 28, no. 5, pp. 124:1–
124:10, Dec. 2009.



Xian Wu et al.: A Survey of Image Synthesis and Editing with Generative Adversarial Networks 15

[70] P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays,
“Scribbler: Controlling deep image synthesis with
sketch and color,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
July 2017.

[71] W. Xian, P. Sangkloy, J. Lu, C. Fang, F. Yu,
and J. Hays, “TextureGAN: controlling deep image
synthesis with texture patches,” arXiv preprint
arXiv:1706.02823, 2017.

[72] H. Zhang and X. Cao, “Magic pencil: Generalized
sketch inversion via generative adversarial nets,” in
SIGGRAPH ASIA Posters, 2016, pp. 42:1–42:2.

[73] Y. Liu, Z. Qin, Z. Luo, and H. Wang, “Auto-
painter: Cartoon image generation from sketch by
using conditional generative adversarial networks,”
arXiv preprint arXiv:1705.01908, 2017.

[74] M. Alexa, D. Cohen-Or, and D. Levin, “As-rigid-as-
possible shape interpolation,” in Proceedings of the
27th Annual Conference on Computer Graphics and
Interactive Techniques, ser. SIGGRAPH ’00, 2000,
pp. 157–164.

[75] S. Avidan and A. Shamir, “Seam carving for
content-aware image resizing,” ACM Transactions on
Graphics, vol. 26, no. 3, July 2007.

[76] Y. Liu, L. Sun, and S. Yang, “A retargeting method
for stereoscopic 3d video,” Computational Visual
Media, vol. 1, no. 2, pp. 119–127, Jun 2015.

[77] A. Levin, D. Lischinski, and Y. Weiss, “Colorization
using optimization,” in ACM SIGGRAPH, 2004, pp.
689–694.

[78] X. Li, H. Zhao, G. Nie, and H. Huang, “Image
recoloring using geodesic distance based color
harmonization,” Computational Visual Media, vol. 1,
no. 2, pp. 143–155, Jun 2015.

[79] S.-P. Lu, G. Dauphin, G. Lafruit, and A. Munteanu,
“Color retargeting: Interactive time-varying color
image composition from time-lapse sequences,”
Computational Visual Media, vol. 1, no. 4, pp. 321–
330, Dec 2015.
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