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Fig. 1. Visual comparisons between our differentiable photon mapping method with several state-of-the-art physics-based differentiable rendering methods.

The scene contains a ring behind a magnifying glass within the Cornell box. The optimizing parameters include the color of the diamond on the ring and

the thickness of the glass. Initially, the magnifying glass is very thin and the goal of optimization is to thicken the magnifying glass and to modify the

color of the diamond to match the magnified view of the ring in the target image. The comparison baseline methods include attached PT (a reimplemented

simplified version of attached path replay backpropagation [Vicini et al. 2021]), ptracer [Nimier-David et al. 2019], Plateau-reduced Differentiable Path Tracing

(PRDPT) [Fischer and Ritschel 2022], and the original extended path space manifolds based method (ori. EPSM) [Xing et al. 2023]. For better display quality,

the displayed visual results of each method shown in the figure are re-rendered with 8192 spps using that method, except that path tracing is used for

re-rendering the displayed visual results of ptracer (marked as ‘PT rerendered’) since ptracer is not able to sample the refraction paths in this scene.

Photon mapping is a fundamental and practical Monte Carlo rendering

technique for efficiently simulating global illumination effects, especially

for caustics and specular-diffuse-specular (SDS) paths. In this paper, we

present the first differentiable rendering method for photon mapping. The

core of our method is a newly introduced concept named generalized path
gradients. Based on the extended path space manifolds (EPSMs) [Xing et al.

2023], the generalized path gradients define the derivatives of the vertex

positions and color contributions of a path with respect to scene parameters

under given geometric constraints. By formalizing photon mapping as a

path sampling technique through vertex merging [Georgiev et al. 2012]

and incorporating a smooth differentiable density estimation kernel, we

enable the differentiation of the photon mapping algorithms based on the

theoretical results of generalized path gradients.

Experiments demonstrate that our method is more effective than state-of-

the-art physics-based differentiable rendering methods in inverse rendering

applications involving difficult illumination paths, especially SDS paths.
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1 INTRODUCTION

Photorealistic rendering has been a central research field in com-

puter graphics for decades, aiming to simulate physical light trans-

port in complex scenes and faithfully reproduce realistic images. To

solve the rendering equation [Kajiya 1986], various Monte Carlo

global illumination algorithms have been proposed, such as path

tracing, bidirectional path tracing, and photon mapping [Jensen

1996]. Unlike path tracing, photon mapping is known to be partic-

ularly effective at complex light transport effects such as caustics

and specular-diffuse-specular (SDS) paths [Hachisuka et al. 2008].

In recent years, physics-based differentiable rendering has emerged

as a powerful tool and attracted more attention in the graphics re-

search community, enabling the optimization of scene parameters

(geometry, materials, lighting) by differentiating the rendering pro-

cess. This capability is crucial for inverse rendering applications,
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where the goal is to reconstruct 3D scene properties from 2D images.

Differentiable rendering has been successfully applied to various al-

gorithms, such as differentiable path tracing [Li et al. 2018], enabling

high-quality reconstruction of scene attributes.

However, existing differentiable rendering methods primarily

focus on path tracing and its variants. While effective for many sce-

narios, these methods struggle with complex light transport effects

that the photon mapping technique handles efficiently, such as the

aforementioned caustics and SDS paths. The absence of a differen-

tiable photon mapping algorithm has prevented this technique from

being applied in scenes where these complex lighting effects are

important (e.g., computational caustics design).

Motivated by this gap, we propose a newly introduced concept,

generalized path gradients, which builds on recent work extended

path space manifolds (EPSMs) [Xing et al. 2023]. This concept de-

fines the derivatives of the vertex positions and color contributions

of a path with respect to scene parameters under certain geometric

constraints (e.g., half-vector). By formalizing photon mapping as

a path sampling technique [Georgiev et al. 2012; Hachisuka et al.

2012] and incorporating a smooth differentiable density estimation

kernel, we enable the differentiation of the photon mapping algo-

rithms based on the theoretical results of generalized path gradients.

Our approach bridges the gap between differentiable rendering and

photon mapping, allowing for the efficient and accurate handling

of complex illumination paths. Our experiments demonstrate that

our method outperforms the state-of-the-art physics-based differen-

tiable rendering methods in various scenarios, especially the ones

with SDS paths.

Concretely, our contributions include:

• We propose generalized path gradients, a novel concept that
defines both contribution derivatives and geometric deriva-

tives of a path under given geometric constraints. We also

show that our generalized path gradients offer a unified theo-

retical framework that many existing gradient formulations

can be viewed as specialized cases of our formulation;

• We develop a differentiable photon mapping algorithm based

on the theoretical results of generalized path gradients, which

are demonstrated to be effective and robust in inverse ren-

dering tasks involving complex illumination effects through

experiments.

The code of our method is available at https://www.github.com/

jkxing/DPMG.

2 RELATED WORK

2.1 Photon Mapping

Photon mapping (PM) [Jensen 1996] is a two-pass rendering algo-

rithm that has emerged as a fundamental and practical technique

in computer graphics for efficiently simulating the global illumina-

tion effects, especially caustics and specular-diffuse-specular (SDS)

paths [Hachisuka et al. 2008]. In the first pass, a photon map is

built by tracing a number of photon paths as they interact with

surfaces in a scene, and the second pass traces camera rays and

queries the photon map to render the final image through kernel

density estimation.

Progressive photon mapping (PPM) [Hachisuka et al. 2008] pro-

vides a memory-friendly improvement over photon mapping by

switching to a progressive refinement of photon statistics using

multiple photon tracing passes, which combines the result from

several photon maps that ensure consistent convergence to the cor-

rect radiance value (i.e., bias goes to zero in the limit). Stochastic

progressive photon mapping (SPPM) [Hachisuka and Jensen 2009]

further extends the PPM algorithm and generates new gathering

points by the distributed ray tracing pass to render effects such as

glossy reflections, depth of field, or motion blur. Most recently, more

advanced estimators in photon density estimation framework were

developed such as photon beams [Jarosz et al. 2011, 2008], planes

and volumes [Bitterli and Jarosz 2017; Deng et al. 2019], offering ef-

ficient algorithms for simulating complex lighting transport effects.

Besides forward rendering, there is work discussing the derivatives

of photon mapping [Hachisuka et al. 2010], which is focused on

the error estimation framework. In contrast, we differentiate the

photon mapping algorithm to enable computing gradients of ren-

dering output with respect to arbitrary scene parameters and use it

for inverse rendering tasks.

Vertex connection and merging (VCM) [Georgiev et al. 2012] and

unified path sampling (UPS) [Hachisuka et al. 2012] concurrently

proposed a novel reformulation of photon mapping that is com-

patible with the path integral formulation [Veach 1997] of light

transport. Specifically, VCM reconsiders photon mapping as a vertex
merging technique, extending the standard PM sample to be a condi-

tionally accepted regular path, while UPS unified Monte Carlo path

integration and photon density estimation into a general formula-

tion. In this work, we also employ their formulation, facilitating the

differentiation of photon mapping in the path space formulation.

2.2 Differentiable Rendering

Recent advancements in physics-based differentiable rendering have

focused on enhancing the capabilities of path tracers to handle global

illumination effects through light transport simulation [Bangaru

et al. 2020; Li et al. 2018; Loubet et al. 2019; Vicini et al. 2021, 2022;

Zeltner et al. 2021; Zhang et al. 2020, 2021]. The differentiation

process mainly involves estimating two main components: interior

integrals derived from differentiating the integrands associated with

forward-rendering models, and boundary integrals determined over

the discontinuities present in those integrands. Reparameterization

techniques have been explored to avoid computing boundary inte-

grals [Bangaru et al. 2020; Loubet et al. 2019; Xu et al. 2023], and

recent studies have investigated the influence of different sampling

strategies on Monte Carlo estimations [Vicini et al. 2021; Zeltner

et al. 2021].

Contemporary differentiable rendering methods often face lim-

itations in inverse rendering tasks, particularly in aiding global

and long-range optimization. While some techniques, such as those

by Xing et al. [2022], have explored screen-space derivatives for

assessing pixel color and position changes with scene parameters,

they may not handle complex global illumination effects effectively.

Fischer and Ritschel [2022] proposed a method that convolves the
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Fig. 2. An example of EPSM. When we perturb scene parameters 𝜋 , path

geometry will change under the constraint of the EPSM. Note that the

perturbation of parameters should actually be infinitesimal since we can

only ensure the geometric derivatives of path exist in its neighborhood.

rendering function with a kernel to capture long-range relation-

ships, but its effectiveness diminishes with an increasing number of

scene parameters.

Recently, Xing et al. [2023] introduced extended path space man-

ifolds (EPSMs), defined in the combined space of path vertices and

scene parameters. By enforcing geometric constraints, EPSMs enable

tracking specific illumination effects and corresponding paths after

perturbations in scene parameters. This approach provides path

geometric derivatives that measure how path vertices change with

respect to scene parameters under constraints. The effectiveness

and robustness of this method have been demonstrated in inverse

rendering applications involving complex illumination effects, such

as specular reflections and caustics. However, they do not support

derivatives of path contribution and cannot be used to optimize

color related scene parameters like albedo map.

2.3 Path Similarity in Forward Rendering

Efficient sampling of paths is a broadly invested topic in forward

rendering. An important problem in the field is to find a path simi-

lar to an existing path. Shift mapping [Kettunen et al. 2015] links

two paths originating from adjacent pixels for variance reduction

in gradient domain path tracing or ReSTIR-based methods [Lin*

et al. 2022]. Besides, for efficient path sampling, path space mani-

folds [Jakob and Marschner 2012] are proposed to sample specular

chain light paths when endpoints are perturbed. Given an existing

path, they build mathematical constraints to compute the derivatives

of middle path vertexes with respect to the positions of endpoints,

and the derivatives are then used to adjust the paths. Note that

these methods use shift mapping or derivatives only for forward

rendering.

3 BACKGROUND

3.1 Extended Path Space Manifolds

Extended path space manifolds (EPSMs) [Xing et al. 2023] are in-

troduced to handle difficult light paths especially specular paths in

differentiable path tracing. They can be used to define how path

geometry will change when we infinitesimally perturb scene pa-

rameters. An illustration of one EPSM is given in Fig. 2. Next, we

will briefly review the definition of EPSMs, the derivation of the

geometric derivatives, and how to construct EPSMs.

Definition. Considering a path with 𝑘 vertices x = [x1, x2, . . . , x𝑘 ]
starting from the eye position x1 and ending at a point x𝑘 on the light
source, and scene parameters of interest 𝜋 = [𝜋1, 𝜋2, . . . , 𝜋𝑚], the
EPSM is defined as an implicit mapping from the scene parameters

𝜋 to the paths x by introducing a stack of 2D valued constraint

functions:

C(x, 𝜋) = [c1 (x, 𝜋), · · · , c𝑘 (x, 𝜋)] = 0. (1)

Geometric derivatives. The Implicit Function Theorem ensures that

there exists a function x = x(𝜋) within the neighborhood of an ex-

isting path if the Jacobian matrix of C with respect to x is invertible.

The derivatives of x with respect to scene parameters 𝜋 could be

computed through implicit partial differentiation of the constraint

functions:

𝜕x
𝜕𝜋

= −
(
𝜕C
𝜕x

)−1
· 𝜕C
𝜕𝜋
. (2)

We refer to the above derivatives as geometric derivatives.

Types of EPSMs and constraint functions. In theory, we could de-

fine an EPSM and compute the derivatives as long as the Jacobian

matrix 𝜕C/𝜕x in Eq 2 is invertible, which requires us to carefully

design the constraint functions and set the number of constraint

functions equal to the number of path vertices (𝑘). Xing et al. [2023]

have introduced 3 types of EPSMs for effectively handling difficult

light paths, including general EPSMs for reflection, refraction, and

highlights, caustics EPSMs for caustics effects, and shadow EPSMs

for shadows in direct illumination, respectively. Each type of EPSM

uses a combination of differentiable constraint functions, including:

(1) the half-vector constraint enforces the half direction of incom-

ing and outgoing ray directions of a specific vertex x𝑖 to be

unchanged in the local frame (see the blue dot in Fig. 2):

𝑇𝜋

(
ℎ(−−−−−→x𝑖x𝑖−1,−−−−→x𝑖x𝑖+1, 𝜋)

)
= const, (3)

where ℎ(·) is the unit half-vector and 𝑇𝜋 (·) transforms the

vector from global frame to local frame;

(2) the fixed position constraint enforces a vertex position x𝑖 to
be locally fixed (see the red dot in Fig. 2):

w (x𝑖 , 𝜋) = const, (4)

where w(·) computes the local coordinates of vertex on the

surface, i.e., barycentric coordinates of x𝑖 to its belonging

triangle in mesh-based representation;

(3) the fixed direction constraint enforces a ray direction
−−−−→x𝑖x𝑖+1

to be locally unchanged (see the orange line in Fig. 2):

𝑇𝜋

(−−−−→x𝑖x𝑖+1
)
= const. (5)

(4) the colinear constraint enforces two ray directions to be al-

ways colinear.

The first 3 constraints are used in our method while the last is not.

More details can be found in the original paper [Xing et al. 2023].

3.2 EPSM for Inverse Rendering

One limitation of using differentiable rendering method in solving

inverse rendering tasks is it requires a good initialization. To address

this problem, Xing et al. [2022] proposed a novel loss function by

employing approximated optimal transport [Cuturi 2013; Feydy
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et al. 2019] to find a one-on-one dense matching between pixels

in the rendered image and the target image. It further proposed a

method to compute derivatives of screen space pixel position with

respect to scene parameters, but it could be only used for computing

derivatives of simple light paths in differentiable rasterization.

To extend the method to handle complex light paths, Xing et al.

[2023] proposed geometric derivatives and a path-pixel matching

based loss function. In path tracing framework, the 2D screen space

intersection point p between the eye ray
−−−→x1x2 and the image plane

is recorded:

p = 𝑃 (x, 𝜋) = 𝑃 (−−−→x1x2, 𝜋), (6)

where 𝑃 denotes the function of ray-plane intersection. Its deriva-

tives can be directly computed from the geometric derivatives through

the chain rule:

𝜕p
𝜕𝜋

=
𝜕𝑃

𝜕x
· 𝜕x
𝜕𝜋

+ 𝜕𝑃

𝜕𝜋
. (7)

We refer to it as the screen-space positional derivatives.
For loss function, Xing et al. [2023] proposed a path-pixel match-

ing adapted from the pixel-pixel matching method from Xing et al.

[2022]. The matching provides a target pixel position for each inter-

section point p. Then, the loss function is defined as the L2 distance

between the screen space intersection point p and the position of

the matched pixel in the target image ptarget and its derivatives are:

𝐿(𝜋) = (p − ptarget)2,
𝜕𝐿

𝜕𝜋
= 2(p − ptarget) ·

𝜕p
𝜕𝜋
. (8)

Thus, the scene parameters 𝜋 can be optimized through iterative

backpropagation by minimizing the above loss function.

Though EPSM can handle complex illumination effects, it has

some limitations. First, it only considers geometric changes of path,

ignoring derivatives of the path contribution. Second, the paths used

for computing derivatives are sampled from a normal path tracing

framework, some complex light paths like SDS paths are hard to

sample in such a framework.

Next, we will enhance EPSMs by introducing contribution deriva-

tives and generalized path gradients in Sec. 4, and use them to handle

differentiation of photon mapping in Sec. 5.

4 GENERALIZED PATH GRADIENTS

Xing et al. [2023] provided geometric derivatives for EPSMs, i.e.,

telling how path geometry changes with respect to infinitesimally

perturbed scene parameters. However, they did not derive how the

contribution of the path change with respect to scene parameters.

Such contribution derivatives are also important and useful. On the

one hand, without contribution derivatives, it will be impossible to

optimize parameters like albedo map. On the other hand, includ-

ing contribution derivatives could lead to a more comprehensive

theory of EPSMs. So we enhance EPSMs by further deriving the

contribution derivatives in its framework, and refer the results as

generalized path gradients.
Since the path contribution is a product of multiple terms, before

deriving the contribution derivatives, we first look at a more general

case on deriving derivatives of a general product function.

4.1 Derivatives of a Product Function

4.1.1 Formulation. Given a path x = [x1, x2, . . . , x𝑘 ] and scene pa-

rameters of interest 𝜋 = [𝜋1, 𝜋2, . . . , 𝜋𝑚] under the constraints of an
EPSM C(x, 𝜋) = 0, suppose we have a function 𝐹 (x, 𝜋) which could

be written as the product of multiple separate functions 𝐹𝑖 (x, 𝜋)
(1 ≤ 𝑖 ≤ 𝑛):

𝐹 (x, 𝜋) =
𝑛∏
𝑖=1

𝐹𝑖 (x, 𝜋). (9)

Within the manifold space of EPSM, the path x can be uniquely

determined from scene parameters 𝜋 in its neighborhood. In other

words, the path itself is also a function of scene parameters: x = x(𝜋).
Hence, the above product function could also be written as:

𝐹𝑐 (𝜋) = 𝐹 (x(𝜋), 𝜋) =
𝑛∏
𝑖=1

𝐹𝑐𝑖 (𝜋), (10)

where each separate function is:

𝐹𝑐𝑖 (𝜋) = 𝐹𝑖 (x(𝜋), 𝜋) = 𝐹𝑖 (x, 𝜋). (11)

Note that, to avoid denotation confusion, throughout the entire

paper, we will add a superscript (·)𝑐 to a function when we represent
the function as a function of only scene parameters 𝜋 .

4.1.2 Computation of the derivatives. The derivatives of the product
function with respect to scene parameters 𝜕𝐹𝑐/𝜕𝜋 can be computed

by differentiating Eq. 10 using the product rule 1
:

𝜕𝐹𝑐

𝜕𝜋
=

𝑛∑︁
𝑖=1

©«
𝜕𝐹𝑐

𝑖

𝜕𝜋
·
∏
𝑗≠𝑖

𝐹𝑐𝑗 (𝜋)
ª®¬ = 𝐹𝑐 (𝜋) ·

𝑛∑︁
𝑖=1

(
𝜕𝐹𝑐

𝑖
/𝜕𝜋

𝐹𝑐
𝑖
(𝜋)

)
, (12)

where the derivatives of each separate function can be computed

by applying the chain rule to Eq. 11:

𝜕𝐹𝑐
𝑖

𝜕𝜋
=
𝜕𝐹𝑖 (x(𝜋), 𝜋)

𝜕𝜋
=
𝜕𝐹𝑖

𝜕𝜋
+ 𝜕𝐹𝑖

𝜕x
· 𝜕x
𝜕𝜋
, (13)

where the geometric derivatives 𝜕x/𝜕𝜋 are computed using Eq. 2

through implicit partial differentiation of the constraint functions

of the EPSM.

The correctness of applying the product rule in Eq. 12 requires

that 𝐹𝑐
𝑖
is smooth over the space of scene parameters 𝜋 , i.e., 𝜕𝐹𝑐

𝑖
/𝜕𝜋

exists. The correctness of applying the chain rule in Eq. 13 requires

that 𝐹𝑖 is smooth over the full combined space of paths x and scene

parameters 𝜋 , i.e., both of 𝜕𝐹𝑖/𝜕x and 𝜕𝐹𝑖/𝜕𝜋 exist. Next, we will

demonstrate how to derive the contribution derivatives in rendering

and ensure their correctness based on the theoretical results above.

4.2 Contribution Derivatives and Generalized Path

Gradients

4.2.1 Formulation of the contribution. the contribution function (or

called throughput) of a path x = [x1, x2, . . . , x𝑘 ] could be written

as:

𝐼 (x, 𝜋) = 𝐿𝑒 (x, 𝜋)
𝑘−1∏
𝑖=1

𝐺𝑖 (x, 𝜋)
𝑘−1∏
𝑖=2

𝜌𝑖 (x, 𝜋), (14)

where 𝐿𝑒 (x, 𝜋) = 𝐿𝑒 (x1, 𝜋) is the radiance emitted from the light

source,𝐺𝑖 (x, 𝜋) = 𝐺 (x𝑖 , x𝑖+1, 𝜋) = | cos𝜃𝑖,𝑖+1 cos𝜃𝑖+1,𝑖 |/| |x𝑖 − x𝑖+1 | |2

1 (𝑎𝑏𝑐 ) ′ = (𝑎) ′𝑏𝑐 + (𝑏 ) ′𝑎𝑐 + (𝑐 ) ′𝑎𝑏 = 𝑎𝑏𝑐 ·
(
𝑎′
𝑎

+ 𝑏′
𝑏

+ 𝑐′
𝑐

)
ACM Trans. Graph., Vol. 43, No. 6, Article 257. Publication date: December 2024.
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denotes the geometry factor term, and 𝜌𝑖 (x, 𝜋) = 𝜌 (x𝑖−1, x𝑖 , x𝑖+1, 𝜋)
denotes the BSDF term.

Our goal is to compute the contribution derivatives 𝜕𝐼𝑐/𝜕𝜋 , i.e.,
tracking how the contribution of the path changes with scene pa-

rameters. Please recall that we add a superscript (·)𝑐 to a func-

tion when representing it as a function of only scene parameters

(𝐼𝑐 (𝜋) = 𝐼 (x(𝜋), 𝜋) = 𝐼 (x, 𝜋)).
Notice that the contribution function 𝐼 is perfectly in the form

of a product function. Hence, once the derivatives of each separate

function is obtained, we can use the product rule in Eq. 12 to compute

the contribution derivatives 𝜕𝐼𝑐/𝜕𝜋 . For the light radiance function
𝐿𝑒 , geometry factor term functions 𝐺𝑖 , and low-frequency BSDFs

(i.e., Lambertian BRDFs or low glossy BRDFs), they are smooth

functions so that their derivatives can be computed using the chain

rule in Eq. 13. For pure specular (or highly specular BSDFs), they

are discontinuous functions (or functions with very large gradients)

in the full path space so that the chain rule cannot be applied. We

present a decomposition scheme to address this problem.

4.2.2 BSDF decomposition. Let’s first look at the chain rule again:

𝜕𝜌𝑐

𝜕𝜋
=
𝜕𝜌

𝜕𝜋
+ 𝜕𝜌

𝜕x
· 𝜕x
𝜕𝜋
, (15)

However, it is not always achievable for BSDFs. This is because

the BSDF function 𝜌 might be discontinuous (and hence undiffer-

entiable) or differentiating it would be numerically unstable when

pure specular or near specular materials are used. Imagine a mirror

reflection case, the BSDF value could suddenly drop to zero when

keeping the incident ray direction fixed while slightly changing

the reflected ray direction. In such cases, 𝜕𝜌/𝜕x does not exist or is

numerically unstable to compute.

We observe that although contribution function 𝜌 might be dis-

continuous in the full space of paths, 𝜌𝑐 could be continuous (and

differentiable) in some low dimensional manifold space (i.e., the

space satisfying the constraints of EPSM C(x, 𝜋) = 0). Taking the

example of mirror reflection again, when the reflected ray direction

is changed, the half-vector constraint in the EPSM would always

ensure the half-vector is fixed, hence leading to a continuous and

smooth change of BSDF values.

The observation motivates us to seek an approach to perform

differentiation that takes advantage of the constraint functions.

Specifically, we perform the following decomposition to BSDF func-

tions:

𝜌𝑐 (𝜋) = 𝜌 (x, 𝜋) = 𝑔0 (x, 𝜋) +
𝑛∑︁
𝑗=1

𝑔 𝑗 (x, 𝜋)ℎ 𝑗 (x, 𝜋), (16)

where each 𝑔 𝑗 (x, 𝜋) (0 ≤ 𝑗 ≤ 𝑛) is a smooth function in the full path

space, while each ℎ 𝑗 (x, 𝜋) (1 ≤ 𝑗 ≤ 𝑛) could be a discontinuous

function in the full path space but it is required to be a constant-
valued function in the manifold space we construct. The value of 𝑛

depends on the complexity of BSDFs and usually 𝑛 = 1 is enough.

Details on how to construct 𝑔 𝑗 and ℎ 𝑗 will be explained later.

Since ℎ 𝑗 (·) is constant within the manifold space, the BSDF func-

tion in Eq. 16 could be simplified to:

𝜌𝑐 (𝜋) = 𝜌 (x, 𝜋) = 𝑔0 (x, 𝜋) +
𝑛∑︁
𝑗=1

𝑔 𝑗 (x, 𝜋)ℎ 𝑗 , (17)

where ℎ 𝑗 denotes the constant value of the function ℎ 𝑗 (·). After
that, the derivatives of the BSDF function could be computed by

differentiating Eq. 17:

𝜕𝜌𝑐

𝜕𝜋
=

(
𝜕𝑔0

𝜕𝜋
+ 𝜕𝑔0

𝜕x
· 𝜕x
𝜕𝜋

)
+

𝑛∑︁
𝑗=1

(
𝜕𝑔 𝑗

𝜕𝜋
+
𝜕𝑔 𝑗

𝜕x
· 𝜕x
𝜕𝜋

)
· ℎ 𝑗 , (18)

where the derivatives (𝜕𝑔 𝑗/𝜕𝜋 and 𝜕𝑔 𝑗/𝜕x) can be easily computed

since each 𝑔 𝑗 (·) is required to be a smooth function.

4.2.3 An example for BSDF decomposition. We show how to de-

compose a typical highly specular microfacet BRDF model [Cook

and Torrance 1982]. It could be represented by:

𝜌 (i, o) = 𝑘𝑑 + 𝑘𝑠𝑀 (i, o)𝐷 (h), (19)

where h is the half vector, 𝐷 is the normal distribution function,

and𝑀 is a smooth function that combines shadowing and Fresnel

terms.

The above BRDF could be decomposed as 𝜌 (·) = 𝑔0 (·) +𝑔1 (·)ℎ1 (·)
where 𝑔0 (·) = 𝑘𝑑 , 𝑔1 (·) = 𝑀 (i, o), and ℎ1 (·) = 𝐷 (h). Notice that the
half vector constraint in the EPSM will enforce the half vector h
fixed within the manifold space hence leading to a constant valued

function 𝐷 (h).

4.2.4 Generalized path gradients. We define the generalized path

gradients as the combination of the contribution derivatives, geo-

metric derivatives, and the screen space positional derivatives:[
𝜕𝐼𝑐

𝜕𝜋
,
𝜕x
𝜕𝜋
,
𝜕p
𝜕𝜋

]
. (20)

Note that the screen space positional derivatives 𝜕p/𝜕𝜋 are directly

computed from the geometric derivatives (Eq. 7). We include the

screen space positional derivatives within the generalized path gra-

dients since they are directly used in optimization. We call our

gradient formulation to be ‘generalized’ since previous gradient

formulations can be viewed as specialized cases of our formulation.

We will explain it in the next subsection.

4.3 Relationship to Previous Gradient Formulations

Recall that an EPSM is valid as long as the Jacobian matrix Eq. 2

is invertible. Hence, users can freely design their own EPSM by

introducing their own constraint functions. Some of the existing

gradient formulations can be also viewed as specialized cases of

our generalized path gradients by designing specialized EPSMs, as

illustrated in Fig. 3.

4.3.1 Detached Path Replay Backpropagation (PRB). Detached
PRB [Vicini et al. 2021] uses the same pseudorandom numbers to re-

play the path and keeps each ray direction unchanged in the world

space when scene parameters perturb. As illustrated in Fig. 3(a),

it can be viewed as using a specialized EPSM with the following

constraints:

(1) enforce the fixed position constraint to the eye position x1;
(2) for each consequent ray direction

−−−−→x𝑖x𝑖+1 (1 ≤ 𝑖 ≤ 𝑘 − 1),

enforce it to be unchanged in the world space. Note that it

is slightly different from the fixed direction constraint which
enforces a ray direction to be unchanged in the local frame.
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Fig. 3. Existing differentiable rendering methods viewed as specialized EPSMs. (a) detached Path Replay Backpropagation (detached PRB) [Vicini et al. 2021];

(b) attached Path Replay Backpropagation (attached PRB) [Vicini et al. 2021; Zeltner et al. 2021]; (c) ptracer [Nimier-David et al. 2019]; (d) material form [Xu

et al. 2023; Zhang et al. 2020].

4.3.2 Attached Path Replay Backpropagation. The attached

PRB [Vicini et al. 2021; Zeltner et al. 2021] is introduced to address

the problem of handling pure specular materials in the detached

PRB method. Attached PRB also replays the paths using the same

pseudorandom numbers, as done in the detached mode. However, it

samples paths in a lower dimensional primary path space, which

essentially ensures specular reflections/refractions are correctly

handled. As illustrated in Fig. 3(b), it is equivalent to the following

specialized EPSM:

(1) enforce the fixed position constraint to the eye position x1;
(2) enforce the fixed direction constraint to the view ray

−−−→x1x2;
(3) for each middle vertex x𝑖 : if x𝑖 is specular, enforce the half-

vector constraint to it; otherwise, for vertex x𝑖 ,
• if 𝑖 = 𝑘 − 1 and the connection to light source is through

next event estimation, enforce the fixed position constraint
to light source x𝑘 ;

• otherwise, enforce the fixed direction constraint to ray

−−−−→x𝑖x𝑖+1.

4.3.3 Ptracer. The ptracer [Nimier-David et al. 2019] is generally

similar to the attached PRB except that it uses light tracing instead

of path tracing. As illustrated in Fig. 3(c), it can be viewed as the

following specialized EPSM:

(1) enforce the fixed position constraint to the light source end-

point x𝑘 ;
(2) enforce the fixed direction constraint to the light ray

−−−−−−→x𝑘x𝑘−1;
(3) for each middle vertex x𝑖 : if x𝑖 is specular, enforce the half-

vector constraint to it; otherwise, for vertex x𝑖 ,
• if 𝑖 = 2 and the connection to eye point is through next

event estimation, enforce the fixed position constraint to
eye point x1;

• otherwise, enforce the fixed direction constraint to ray

−−−−−→x𝑖x𝑖−1.

4.3.4 Material Form. The material form [Xu et al. 2023; Zhang et al.

2020] parameterizes paths in a material space. It simply corresponds

to an EPSM where all path vertices are enforced by a fixed position
constraint. Fig. 3(d) gives an illustration.

4.3.5 Summary. As analyzed, the above previous gradient formu-

lations can all be viewed as specialized cases of our formulation

by designing specialized EPSMs. These formulations can correctly
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Fig. 4. Illustration of a photon mapping path. The path is composed of a

view sub-path [𝑥1, 𝑥2, 𝑥3 ] and a light sub-path [𝑥5, 𝑥4, 𝑥∗
3
]. Vertex merging

happens between 𝑥3 and 𝑥∗
3
. The screen-space intersection point of the

camera ray and the image plane is noted as 𝑝 .

compute derivatives in many scenes but still have some limitations.

For example, detached PRB and material form are not able to handle

contribution derivatives of pure specular paths because they do

not employ the half-vector constraint. On the other hand, attached-

based methods like attached PRB and ptracer do not ensure the light

paths always link camera point and light source, so they may strug-

gle with handling high-frequency effects caused by light transport

like caustics. Besides, the above gradient formulations only pro-

vide contribution derivatives, while the original EPSM paper [Xing

et al. 2023] only provides geometric derivatives. In contrast, our

generalized path gradients provide both geometric and contribution

derivatives, offering a more unified theoretical framework.

5 DIFFERENTIABLE PHOTON MAPPING

Photon mapping is a two-pass algorithm. In the first pass, a photon

map is built by tracing photons from the light sources to interact

with the scene which stop at diffuse surfaces. From a path tracing

aspect, photons can be viewed as light sub-paths sampled from the

light source [Georgiev et al. 2012; Hachisuka et al. 2012]. In the

second pass, view sub-paths are traced from the eye and query the

photon map through kernel-based density estimation. Variants of

photon mapping such as SPPM [Hachisuka and Jensen 2009] may

reverse the order of the two passes.

As illustrated in Fig. 4, we follow previous works [Georgiev et al.

2012; Hachisuka et al. 2012] to view photon mapping as a path

sampling technique, where density estimation between the photon

and density estimation location can be intuitively viewed as vertex
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merging. Formally, considering a photon x∗𝑠 and its tracing history

as a light sub-path [x𝑘 , x𝑘−1, . . . , x𝑠+1, x∗𝑠 ], and a density estimation

location x𝑠 and the corresponding view sub-path [x1, x2, . . . , x𝑠 ]
traced from the eye, the photonmapping path is defined as [Georgiev

et al. 2012; Hachisuka et al. 2012]:

x = [x1, x2, . . . , x𝑠 , x∗𝑠 , x𝑠+1, . . . , x𝑘 ], (21)

which contains 𝑘 + 1 vertices. The relationship between density

estimation position x𝑠 and photon position x∗𝑠 is vertex merging.

An EPSM can be naturally extended for a photon mapping path.

Since one more vertex is included for vertex merging, we need to

add an additional constraint function. Below, we first explain how

to compute the contribution derivatives for photon mapping paths

under the constraints of EPSMs in Sec. 5.1. Then, we explain how

to construct EPSMs for photon mapping paths in Sec. 5.2.

5.1 Contribution Derivatives for Photon Mapping Paths

5.1.1 Differentiable density estimation kernel. In order to make

the whole process of photon mapping differentiable, we require a

smooth and differentiable density estimation kernel. For this pur-

pose, we use the following kernel function [Hachisuka et al. 2010]:

𝐾𝑟 (𝑑) =
{

7

2𝜋

(
1 − 6𝑑5𝑟 + 15𝑑4𝑟 − 10𝑑3𝑟

)
if 𝑑𝑟 ≤ 1,

0 otherwise.

(22)

where 𝑑𝑟 = 𝑑/𝑟 is the relative distance.

5.1.2 Contribution function of photon mapping. Considering a pho-
ton mapping path x = [x1, x2, . . . , x𝑠 , x∗𝑠 , x𝑠+1, . . . , x𝑘 ] and scene

parameters of interest 𝜋 under the constraints of an EPSM, its con-

tribution to the final rendered image can be computed by:

𝐼 (x, 𝜋) = 𝐿𝑒 (x, 𝜋)
(
𝑘−1∏
𝑖=1

𝐺𝑖 (x, 𝜋)
)
·
(
𝑘−1∏
𝑖=2

𝜌𝑖 (x, 𝜋)
)
· 𝐾𝑟 (x, 𝜋), (23)

where 𝐿𝑒 is the radiance emitted from the light source,𝐺𝑖 is the geo-

metric factor, 𝜌𝑖 is the BSDF function, and 𝐾𝑟 (x, 𝜋) = 𝐾𝑟
(
|x𝑠 − x∗𝑠 |

)
is the smooth density estimation function. The geometric factors

and BSDF functions are defined in the same way as in Eq. 14,

but care must be taken for vertices near x𝑠 and x∗𝑠 , such as:

𝐺𝑠 (x, 𝜋) = 𝐺 (x∗𝑠 , x𝑠+1, 𝜋), 𝜌𝑠 (x, 𝜋) = 𝜌 (−−−−−→x𝑠x𝑠−1,
−−−−−→
x∗𝑠x𝑠+1, 𝜋), and

𝜌𝑠+1 (x, 𝜋) = 𝜌 (
−−−−−→
x𝑠+1x∗𝑠 ,

−−−−−−−→x𝑠+1x𝑠+2, 𝜋).
Since the above contribution function is a product function, its

derivatives with respect to scene parameters can be computed in the

same way as in Sec. 4.1 and Sec. 4.2. Note that BSDF decomposition

is still required for specular BSDFs.

5.2 EPSMs for Differentiable Photon Mapping

To adapt EPSMs with photon mapping paths, as we mentioned

before, 𝑘 + 1 constraints are required. Specifically, we have de-

signed three new EPSMs for differentiable photon mapping to han-

dle different inverse rendering tasks, as illustrated in Fig. 5. All the

three EPSMs employ the same constraints on the light sub-path

[x𝑘 , . . . , x𝑠+1, x∗𝑠 ]:
(1) enforce the fixed position constraint to the light source vertex

x𝑘 ;
(2) enforce the fixed direction constraint to the light ray

−−−−−−→x𝑘x𝑘−1;
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Fig. 5. The three EPSMs designed for differentiable photon mapping.

(3) for each middle vertex x𝑖 (𝑠 + 1 ≤ 𝑖 ≤ 𝑘 − 1): if it is specular,

enforce the half vector constraint to it; otherwise, enforce the

fixed direction constraint to ray
−−−−−→x𝑖x𝑖−1.

The 3 newly introduced EPSMs differ in how to set constraints on

the view sub-path [x1, . . . , x𝑠 ]. According to the algorithm of photon

mapping, the middle vertices of the view sub-path x𝑖 (2 ≤ 𝑖 ≤ 𝑠 − 1)

are all specular and the density estimation vertex x𝑠 is diffuse.

5.2.1 EPSMs without screen-space positional derivatives (short as
DPM-C). For this EPSM, the constraints of view sub-paths are de-

signed as:

(1) enforce the fixed position constraint to the eye position x1;
(2) enforce the fixed direction constraint to the eye ray

−−−→x1x2;
(3) enforce the half-vector constraint to all middle vertices x𝑖

(2 ≤ 𝑖 ≤ 𝑠 − 1). Note that all these vertices are specular.

Since this EPSM enforces the eye ray
−−−→x1x2 to be fixed, leading to fixed

screen space intersection location (p) and zero-valued screen-space

positional derivatives (𝜕p/𝜕𝜋 ≡ 0). This makes the optimization

process rely solely on the contribution derivatives (see Eq. 25). Note

that the geometric derivatives are still very useful in the intermediate

derivation process to obtain the correct contribution derivatives.

This EPSM will be suitable for inverse rendering tasks where

screen-space derivatives are not so useful, such as cases when the

initial and target object locations are relatively close orwhen optimal

transport based matching between initial and target images is not so

accurate. We refer to this EPSM (and our different photon mapping

method based on it) as DPM-C for short.

5.2.2 EPSMs with full generalized path gradients (short as DPM-G).
To deal with inverse rendering tasks when the initial and target

locations of illumination effects of interest are far away in the screen

space, the screen-space derivatives are useful and should be included.

We further introduced two EPSMs which do not fix the eye ray for
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this purpose. These two EPSMs allow changeable eye ray
−−−→x1x2 and

could make use of both screen-space and contribution derivatives in

optimization. Specifically, one of them is designed by additionally

including the following constraints of view sub-paths:

(1) enforce the fixed position constraint to the eye position x1 and
to the density estimation vertex x𝑠 ;

(2) enforce the half-vector constraint to all middle vertices x𝑖
(2 ≤ 𝑖 ≤ 𝑠 − 1).

The main feature of this EPSM is it enforces the density estimation

vertex x𝑠 to be locally fixed. We refer to it as fixed density EPSM.

The other EPSM is designed with the following additional con-

straints:

(1) enforce the fixed position constraint to the eye position x1;
(2) enforce the half-vector constraint to all middle vertices x𝑖

(2 ≤ 𝑖 ≤ 𝑠 − 1);

(3) enforce the photon position x∗𝑠 to be unchanged in the local

frame of the density estimation location x𝑠 :

𝑇x𝑠 (x∗𝑠 ) = const, (24)

where 𝑇x𝑠 (·) transforms a position from world space to the

local frame of x𝑠 . We refer to this newly introduced constraint

as vertex merging constraint.

The vertex merging constraint intuitively keeps the relative distance

between photon x∗𝑠 and density estimation location x𝑠 . Hence, it
helps to directly propagate geometric gradients from the view sub-

path to the light sub-path, and is rather suitable for optimizing

location of caustics. We refer to this EPSM as vertex merging EPSM.

To avoid manually choosing a specific strategy, we further pro-

pose a hybrid strategy: for each path, we build two EPSMs and use

the averaged contribution and screen-space positional derivatives

computed from the two EPSMs for optimization. We refer to this

strategy (and our different photon mapping method based on it) as

DPM-G for short.

5.2.3 Which one to use? Generally speaking, DPM-C (Sec. 5.2.1),

which provides zero-valued screen-space positional derivatives, is

more suitable for such inverse rendering tasks:

(1) only contribution-related scene parameters like albedo map

are being optimized;

(2) the initial and target locations of the objects (or rendering

effects) being optimized are already close to each other so

that pixel-to-pixel matching is not needed;

(3) while an accurate pixel-to-pixel matching cannot be obtained.

For example, when the goal is to optimize for caustic effects

with a desired shape on a wall while initially the wall has a

constant color.

In contrast, DPM-G (Sec. 5.2.2) is more suitable for tasks when the

initial and target locations of the objects (or rendering effects) are

distant from each other and we can find an accurate pixel-to-pixel

matching between them.

5.3 Optimization

Given a scene with initial scene parameters and a target image, a

typical inverse rendering task is to optimize the scene parameters

in order to minimize the difference between the rendered image and

the target image.

For DPM-C, since its screen-space positional derivatives are zero-

valued by definition, only contribution derivatives can be used in

optimization. Hence, we choose commonly used L2 loss for opti-

mization.

For DPM-G, i.e., the EPSMs with full generalized path gradients,

we follow Xing et al. [2023] to find a dense path-to-pixel matching

using approximated optimal transport. But we add a color difference

term to the original loss function (Eq. 8) in order to make use of our

contribution derivatives:

𝐿(𝜋) = 𝜆1 (p − ptarget)2 + 𝜆2
(
𝐼𝑐 (𝜋) − 𝐼target

)
2

,

𝜕𝐿

𝜕𝜋
= 2𝜆1 (p − ptarget) ·

𝜕p
𝜕𝜋

+ 2𝜆2
(
𝐼𝑐 (𝜋) − 𝐼target

)
· 𝜕𝐼

𝑐

𝜕𝜋
,

(25)

where 𝐼target is the color value of the matched pixel. The weights

are empirically set as 𝜆1 = 𝜆2 = 0.5 following previous work [Xing

et al. 2022]. Notice that the loss derivatives can be directly computed

from our generalized path gradients.

6 IMPLEMENTATION

We demonstrate our differentiable framework on SPPM [Hachisuka

and Jensen 2009; Pharr et al. 2016]. We choose SPPM due to its ease

of implementation and its constant memory usage.

At each optimization iteration, we run SPPM for 16 passes. In

each pass, for forward rendering, we sample 1 eye sub-path on

each pixel (i.e., 1 spp) and sample 16× photons (or light sub-paths)

compared to the number of eye sub-paths. For backward rendering

and differentiable computations, an ideal case is to obtain all photon

mapping paths by merging eye sub-paths with nearby light sub-

paths and constructing one EPSM for each photonmapping path. For

better efficiency, we do not use all photon mapping paths, instead,

we only construct EPSMs from a few of the paths. Specifically, we

randomly sample 1/16 pixels, and sample one photon mapping path

from each sampled pixel.

We implement our entire method on GPU based on the open

source code provided by the original EPSM paper [Xing et al.

2023], with mixed-use of Mitsuba 3 [Jakob et al. 2022b,a], Py-

Torch [Paszke et al. 2019] and LuisaRender [Zheng et al. 2022].

Typically, forward rendering and path related computations are

implemented usingMitsuba 3. Optimal transport, solving the lin-

ear system for the geometric derivatives (Eq. 2) are implemented

using PyTorch. We implement a hash grid for efficiently query

nearby density estimation points for each photon on LuisaRender,

due to the flexibility of LuisaRender in supporting user-written

customized GPU kernels, while writing such data structures on

Mitsuba 3 or PyTorch seems difficult. Data transmission between

different frameworks is efficient because the underlying data in GPU

memory does not need to be moved or duplicated.

7 EXPERIMENTS

All experiments are performed on a PC with an NVIDIA RTX 3090

GPU (24G memory). By default, we set the rendering resolution as

512 × 512, and the number of optimization iterations as 1000. We

use the Adam optimizer [Kingma and Ba 2015] for backpropagation.
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One iteration of optimization typically takes about 2.2-5.4 seconds

for DPM-C, and takes about 3.0 - 8.0 seconds for DPM-G. The time

includes both forward rendering and backpropagation.

7.1 Analysis and Evaluation

7.1.1 Visualization of the gradients. As shown in Fig. 6, to ver-

ify the correctness of our gradient formulation, we visualize the

contribution derivatives computed from our DPM-C method and

compare them to the ground truth derivatives computed from finite

differences. We use DPM-C since it ensures zero-valued screen-

space positional derivatives so that its contribution derivatives are

comparable to those of existing gradient formulations. The tested

scene is composed of a small area light, a floor, and a curved mirror-

like reflector with low roughness. The contribution derivatives are

computed with respect to the rotation angle of the reflector along

the Y-axis. Notice the reflection highlights on the reflector and the

caustics on the floor.

From the results, we could find that our gradients match well with

the ground truth using 256 spps (1 spp/pass × 256 passes), while the

gradients of detached PRB [Vicini et al. 2021] and ptracer [Nimier-

David et al. 2019] still exhibit large differences with the ground

truth. Also, notice that ptracer converges relatively faster on the

caustics but slower on the reflector, while detached PRB converges

faster on the reflector but slower on the caustics. In contrast, our

method converges well in both areas.

7.1.2 Variants of differentiable photon mappings. As mentioned

in Sec. 5.2, we have offered two variants of differentiable photon

mapping methods DPM-C and DPM-G. In DPM-G, we use a hybrid

of two EPSMs fixed density and vertex merging. We evaluate DPM-C,

DPM-G and using DPM-G with only fixed density (short as DPM-G

(fd-only)) or vertex merging (short as DPM-G (vm-only)) on three

scenes to find the scope of each variant. Visual results are given in

Fig. 7.

In the scene fishbowl (Fig. 7 (a)), the goal is to optimize the

geometry (i.e., a height field) of the water surface from the caustic

pattern on the background. The camera is outside the fishbowl so

that the caustics paths are in the form of ESDSL. Notice that DPM-C

is able to basically recover the caustic pattern while a few noises still

exhibit. In contrast, the three other method variants (DPM-G, DPM-

G (fd-only) and DPM-G (vm-only)) cannot achieve a good recovery.

Because the background in the initial image is generally clear, we

can only get a relatively poor matching with optimal transport,

making the screen-space positional derivatives in these methods

less useful.

However, DPM-C is less successful in scenes egg (Fig. 7 (b)) and

GlassBox (Fig. 7 (c)). Both scenes exhibit long-range relationships

between the initial and target images, e.g., the caustics in scene

egg and the objects in scene GlassBox. Since DPM-C does not use

screen-space positional derivatives in optimization, it is not able to

deal with such long-range relationships.

In contrast, such long-range relationships can be captured well

with screen-space positional derivatives and matching based loss

function. In particular, DPM-G (vm-only) captures the long-range

relationships between caustics (Fig. 7 (b)) well due to the inclusion

of the vertex merging constraint and DPM-G (fd-only) captures long-

range relationships between objects (Fig. 7 (c)) well since it enforces

the density estimation point to be fixed, while their combination

DPM-G is able to handle both cases well.

7.2 Comparisons and Results

7.2.1 Scene configurations. We have collected 7 scene configura-

tions for testing and comparisons. All these scenes contain complex

illumination effects, such as reflections, refractions, caustics, etc.

Scene Ring (Fig. 1) contains a ring object behind a magnifying

glass within the Cornell box. The optimizing parameters include

the color of the diamond on the ring and the thickness of the glass.

Initially, the magnifying glass is very thin and the goal is to thicken

the magnifying glass and to modify the color of the diamond to

match the magnified view of the ring.

ScenesWineUp andWineLow (Fig. 8 (a) and (b)) use the same

geometry and lighting, and optimize for the same scene parameters.

They differ in the camera location. In each scene, there are two

glasses of liquid and a point light, and the optimizing parameter is

the color of the liquid. In scene WineUp, the camera faces towards

the liquid with refraction effects. In scene WineLow, the camera

faces toward the bottom of the wineglass with caustic effects.

Scene Image (Fig. 8(c)) is adapted from Mitsuba’s documenta-

tion [mit [n. d.]] with one modification. From left to right, there are

directional lights with a Bayer pattern, a camera viewing towards

right, a glass slab, and a receiving plane. The goal is to optimize the

geometry (height field) of the glass slab to match a desired caustic

pattern. Note that originally the camera is between the glass slab

and the receiving plane in Mitsuba’s documentation, but we move

the camera to the location between the lights and the glass slab to

increase the difficulty of recovery, i.e., the light paths are changed

from EDS+L to ES+DS+L.
In scene Egg (Fig. 9(a)), the goal is to recover the height of the

light source through the caustics on the table. Scene GlassBox

(Fig. 9(b)) contains multiple objects within a glass box, and the goal

is to optimize the 2D positions and the colors of objects through

refractions. Scene Mixed (Fig. 9(c)) is composed of a textured Ar-

madillo, a glass sphere, and a glass egg. The optimizing parameters

include the position of the sphere, the roughness of the egg, and the

albedo map of the Armadillo.

7.2.2 Visual Comparisons. We compare our method with several

state-of-the-art physically based differentiable rendering methods

on the 7 collected scenes. The baseline methods include: attached

path tracing (attached PT), ptracer [Nimier-David et al. 2019],

Plateau-reduced Differentiable Path Tracing (PRDPT) [Fischer and

Ritschel 2022], and the original EPSM method (ori. EPSM) [Xing

et al. 2023]. Since the code of attached path replay backpropagation

(attached PRB) [Vicini et al. 2021] is not provided by the authors,

we implement a simplified version of attached PRB named attached
path tracing (attached PT) and compare our method with this sim-

plified version. Attached PT is desired to produce the same results

as attached PRB but requires more memories. For all scenes and

for all methods being compared, in the optimization process, the

rendering uses a resolution of 512 × 512 and a sampling rate of 16

spps.
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256 spps 16 spps 256 spps 16 spps 256 spps 16 spps

render image GT gradients ours (DPM-C) ptracer detached PRB

Fig. 6. Visualization of gradients.

target DPM-C DPM-G

initial DPM-G (fd-only) DPM-G (vm-only)

(a) scene Fishbowl

target initial DPM-C DPM-G DPM-G (fd-only) DPM-G (vm-only)

(b) scene Egg

(c) scene GlassBox

Fig. 7. Evaluations on variants of differentiable photon mapping methods.

According to the guidelines in Sec. 5.2.3, we use DPM-C for scenes

WineUp,WineLow and Image, and use DPM-G for the other scenes

(Ring, Egg,Mixed, and GlassBox).

Fig. 8 shows visual comparisons between our DPM-C method

with the baseline approaches. As shown in Fig. 8 (a) and (b), attached

PT is able to recover the refractions in scene WineUp while failing

to recover the caustics in scene WineUp. Interestingly, ptracer in

the reverse case: it is able to basically recover the caustics while

failing to recover the the refractions. This is because attached PT

utilizes a path tracing style integrator so that it is hard to sample

caustics paths (ES*DS+L) while ptracer uses a light tracing style

integrator so that it is hard to sample refraction paths (ES+L).
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Fig. 8. Visual comparisons between our method (DPM-C) and the baseline methods, including attached PT, ptracer [Nimier-David et al. 2019], Plateau-reduced

Differentiable Path Tracing (PRDPT) [Fischer and Ritschel 2022], the original EPSM method (ori. EPSM) [Xing et al. 2023]. For better display quality, in scene

Image, photon mapping is used for re-rendering the displayed visual results for attached PT, ptracer, and ori. EPSM, respectively, since those methods are not

able to sample SDS paths (marked as ‘PM rerendered’); in other cases, the displayed visual results of each method shown in the figure are re-rendered with

8192 spps using that method.

Scene Image in Fig. 8(c) is a very difficult task since it involves

SDS paths (ES+DS+L). All baseline approaches cannot successfully
reconstruct the height map of the glass slab to match the desired

caustic pattern. It is simply because the baseline approaches are

all based on path tracing or light tracing and cannot successfully

sample the SDS paths in forward rendering. Notice that the light

sources are directional lights but not area lights. In contrast, our

method is able to recover the caustic pattern to some extent.

Fig. 1 and Fig. 9 show the visual comparison between our DPM-

G method with the baselines. Notice that the baseline approaches

cannot recover the scene parameters of interest in most cases.

The failures of baseline approaches in recovering the scene pa-

rameters are due to the following reasons. First, since attached PT

and ptracer only rely on contribution derivatives for optimization

and no geometric derivatives are involved, it would be difficult for

them to handle long-range relationships between the initial and

target images. For example, the movement of caustics in scene Egg

(Fig. 9 (a)), the movement of refracted objects in scene GlassBox

(Fig. 9 (b)), and the magnification effect of the ring in scene Ring

(Fig. 1). Second, while the original EPSM method is able to capture

long-range relationships, it lacks contribution derivatives so that

it fails to recover color changes, such as the liquid color in scene

WineUp (Fig. 8 (a)), and Armadillo’s albedo map in scene Mixed

(Fig. 9 (c)). Third, since existing approaches use path tracing or light

tracing as their forward renderer, they cannot handle certain types

of paths, such as SDS paths, as demonstrated by scene Image in

Fig. 8(c). Finally, while PRDPT is able to handle refractions (scene

WineUp in Fig. 8(a)) and capture long-range relationships to some

extent, we notice that its optimization process is rather unstable

(see scenes Egg and GlassBox); furthermore, due to the increased

sampling variance in a higher dimensional space, it cannot handle

optimization tasks with a relatively large number of optimizing

parameters, such as the height map of the glass slab in scene Image,

and Armadillo’s albedo map in sceneMixed.

In contrast, due to the effectiveness of our generalized path gra-

dients and the ability of photon mapping in handling difficult paths

such as SDS paths, our method is able to successfully recover the

scene parameters for all these inverse rendering tasks.

Table 1 provides a comprehensive summary of the abilities of

baseline approaches in handling the tested scenes. Fig. 10 shows the

error curves of the optimization process. Notice that our method

converges quickly on all tested scenes. The animation of the opti-

mization process can be found in the supplemental video.
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target initial attached PT ptracer PRDPT ori. EPSM ours (DPM-G)

(a) scene Egg

target initial attached PT

ptracer

(PT rerendered)

PRDPT ori. EPSM ours (DPM-G)

(b) scene GlassBox

target target detail initial detail attached PT ptracer ori. EPSM ours (DPM-G)

initial

(c) sceneMixed

Fig. 9. Visual comparisons between our method (DPM-G) and the baseline methods, including attached PT, ptracer [Nimier-David et al. 2019], Plateau-reduced

Differentiable Path Tracing (PRDPT) [Fischer and Ritschel 2022], and the original EPSM method (ori. EPSM) [Xing et al. 2023]. For better display quality, in

scene GlassBox, path tracing with 8192 spps is used for re-rendering the displayed visual results for ptracer (marked as ‘PT rerendered’); in other cases, the

displayed visual results of each method shown in the figure is re-rendered with 8192 spps using that method.

7.2.3 Additional comparisons with detached PRB. We additionally

conducted experiments using the detached path replay backpropa-

gation method (detached PRB) [Zhang et al. 2023]. To enhance its

ability in handling long-range relationships, we follow the compari-

son settings in Xing et al. [2023] to employ a multi-scale scheme to

detached PRB. The results are given in Fig. 11. The results generated

using our DPM-G method variant are also provided for comparison.

Notice that detached PRB cannot handle such inverse rendering

tasks with long-range relationships, even equipped with a multi-

scale scheme.

8 CONCLUSION

In this paper, we have introduced the concept and mathematical

derivations of the generalized path gradients for the extended path

space manifolds (EPSMs) [Xing et al. 2023]. This concept defines

both contribution derivatives and geometric derivatives of a path

with respect to scene parameters under the geometric constraints

of EPSMs. We also show that many existing gradient formulations

can be viewed as specialized cases of ours. Then, by formalizing

photon mapping as a path sampling technique through vertex merg-

ing [Georgiev et al. 2012; Hachisuka et al. 2012], we further propose

a differentiable photon mapping method based on the theoretical

results of generalized path gradients. Experiments and comparisons

show that our method is more effective and robust than existing

physics-based differentiable rendering methods in inverse rendering

tasks with complex illumination effects.

While our method has shown promising results in many inverse

rendering tasks involving complex illumination effects, there is still

room for improvement. First, geometry discontinuity (i.e., visibility

change) is not considered in our method. Researchers have provided
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Table 1. A comprehensive summary of the abilities of baseline approaches in handling the tested scenes.

scene

optimizing

parameters

(dimension)

attached PT ptracer PRDPT ori. EPSM ours

WineUp

Fig. 8 (a)

color (3) ✓
unable to sample

ES+L paths

✓
not support

color derivatives

✓ (DPM-C)

WineLow

Fig. 8 (b)

color (3)

unable to sample

ES*DS+L paths

✓
unable to sample

ES*DS+L paths

unable to sample

ES*DS+L paths

✓ (DPM-C)

Image

Fig. 8 (c)

heightmap

(128x128)

unable to sample

ES+DS+L paths

unable to sample

ES+DS+L paths

too many

parameters

unable to sample

ES+DS+L paths

✓ (DPM-C)

Egg

Fig. 9 (a)

translation (1)

unable to perform long

range optimization

unable to perform long

range optimization

unstable

optimization

✓ ✓ (DPM-G)

GlassBox

Fig. 9 (b)

translation (2)

color (3)

unable to perform long

range optimization

unable to sample

ESDSL paths

too many

parameters

not support

color derivatives

✓ (DPM-G)

Mixed

Fig. 9 (c)

translation (1)

material (1)
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(256x256)

unable to perform long

range optimization

unable to perform long

range optimization
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parameters

not support

color derivatives

✓ (DPM-G)

Ring

Fig. 1

scale (1)

color (3)

unable to perform long

range optimization

unable to perform long

range optimization

unstable

optimization
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color derivatives

✓ (DPM-G)
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Fig. 10. Error curves. We show how the errors change during the optimization process in both equal iteration comparison and equal time comparison. We

provide the MSE between optimized and target scene parameters of interest.

several effective solutions [Bangaru et al. 2020; Li et al. 2018; Xu et al.

2023] for this problem, and our method could be probably combined

with those works in the future. Second, the success of our method

relies on an accurate pixel-to-pixel matching with optimal transport.

A sophisticated matching algorithm that could be more accurate

and more efficient deserves future work. Finally, we currently offer

multiple candidates of EPSMs and require users to manually select

the best one (i.e., DPM-C or DPM-G) for their tasks. It is worthwhile

to develop new types of EPSMs that can be adapted to all inverse

rendering tasks, or automatic strategies to select the most suitable

EPSMs from candidates.
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target initial detached PRB ours (DPM-G)

(a) scene Egg

(b) scene GlassBox

Fig. 11. Comparison with detached PRB [Zhang et al. 2023]. The parameters

for handling geometry discontinuity are all set by its default configuration.

The multi-scale scheme used for it is the same as the one used in Xing et al.

[2023].
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