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Abstract. We propose a novel image retouching method by modeling
the retouching process as performing a sequence of newly introduced
trainable neural color operators. The neural color operator mimics the
behavior of traditional color operators and learns pixelwise color trans-
formation while its strength is controlled by a scalar. To reflect the ho-
momorphism property of color operators, we employ equivariant map-
ping and adopt an encoder-decoder structure which maps the non-linear
color transformation to a much simpler transformation (i.e., translation)
in a high dimensional space. The scalar strength of each neural color
operator is predicted using CNN based strength predictors by analyzing
global image statistics. Overall, our method is rather lightweight and
offers flexible controls. Experiments and user studies on public datasets
show that our method consistently achieves the best results compared
with SOTA methods in both quantitative measures and visual qualities.
Code is available at https://github.com/amberwangyili/neurop.

Keywords: image retouching, image enhancement, color operator, neu-
ral color operator

1 Introduction

In the digital eras, images are indispensable components for information sharing
and daily communication, which makes improving the perceptual quality of im-
ages quite demanding in many scenarios. While professional retouching software
such as Adobe Photoshop and Lightroom provide various retouching operations,
the effectiveness and proficiency of using them still require expertise on the part
of the users. Automation of such tedious editing works is highly desirable and
has been extensively studied for decades.

Recently, deep learning has exhibited stunning success in many computer
vision and image processing tasks [34,20], which generally uses networks to learn
sophisticated mappings from paired data. In the pioneering work by Bychkovsky
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et al. [6], a large scale of input and expert-retouched image pairs have been
collected: the constructed MIT-Adobe FiveK dataset has enabled high-quality
supervised learning and drives the mainstream towards data-driven methods.

Among these methods, sequential image retouching [39,16,38,45] is rather
attractive. Following human’s step-by-step workflow, they model the image re-
touching process as a sequence of standard color operators (i.e., brightness or
contrast adjustments), each of which is controlled by a scalar parameter. Besides
generating a retouched image, they also produce a semantically meaningful his-
tory of retouching operators. With the retouching history on hand, the process is
more interpretable, offers convenient controls for re-editing, and could be used in
applications like photo manipulation tutorial generation [12] and image revision
control [8]. However, due to the limited expressiveness of standard color opera-
tors, these methods require a relatively large number of operators to reproduce
the complex retouching effects, which makes it less robust to accurately pre-
dict the operator parameters and hard to achieve high-fidelity retouched results
(i.e., high PSNR scores) compared to other state-of-the-art retouching meth-
ods [49,14,33,50].

To address this issue, we introduce a novel trainable color operator, named
neural color operator. It is designed to mimic the behavior of traditional color
operators, which maps a 3D RGB color to a modified color according to a scalar
indicating the operator’s strength. Instead of using a fixed function as in standard
color operators, we allow the parameters of a neural color operator to be learned
in order to model more general and complex color transformations. To reflect
the homomorphism property of color operators (i.e., adjusting exposure by +2,
followed a second +3 adjustment, is approximately equivalent to a single operator
that adjusts exposure by +5), we employ equivariant mapping and adopt an
encoder-decoder structure, which maps the color transformation in 3D RGB
space to a much simpler transformation (i.e., translation) in a high dimensional
feature space where the scalar strength controls the amount of translation.

We further propose an automatic, lightweight yet effective sequential image
retouching method. We model the retouching process as applying a sequence
of pixel-wise neural color operators to the input image. The strength of each
neural color operator is automatically determined by the output of a CNN
based strength predictor using global statistics of deep image features computed
from downsampled intermediate adjusted images. The neural color operators and
strength predictors are jointly trained in an end-to-end manner, with a carefully
designed initialization scheme.

Contributions. Our contributions are summarized as follows: First, we intro-
duce neural color operator — a novel, trainable yet interpretable color operator.
It mimics the behavior of color operators whose strength is controlled by a scalar,
and could effectively model sophisticated global color transformations. Second,
based on neural color operators, we propose a lightweight and efficient method
with only 28k parameters for sequential image retouching. Without any bells
and whistles, experiments and user studies show that our method consistently
achieves the best performance on two public datasets, including MIT-Adobe
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FiveK [6] and PPR10K [30], compared with state-of-the-art methods from both
qualitative measures and visual qualities. Furthermore, our method inherits the
nice properties of sequential image retouching, which allows flexible controls
and convenient re-editing on results by intuitively adjusting the predicted scalar
strengths using three sliders in real-time.

2 Related works

Computational methods for automatic image retouching have kept evolving over
the years — from traditional heuristics such as spatial filters [4], to histogram-
based methods [3,26,28,40,44], and recent learning-based approaches. Here we
give a general review on this most recent branch of researches.

Image-to-Image Translation based Methods. These methods generally
consider image retouching as a special case of image-to-image translation and
use neural networks to directly generate the enhanced images from input im-
ages [18,19,24,9,37,21,48,50]. While these methods can produce visually pleasing
results, they have some common limitations: they usually employ large networks
and consume too much computational resources when applied to high-resolution
images; besides, the use of downsampled convolutional layers may easily lead
to artifacts in high frequency textures. Some methods have been proposed to
alleviate these issues by decomposition of reflectance and illumination [47,42],
representative color transform [25], or Laplacian pyramid decomposition [1,31].

Sequential Image Retouching. This category of methods [39,16,38,45] follow
the step-by-step retouching workflow of human experts, which models the pro-
cess as a sequence of several color operators where the strength of each operator
is controlled by a scalar. This modeling paradigm is quite challenging because
it requires more supervision of editing sequences. Some researchers [16,38] re-
sort to deep reinforcement learning algorithms which are known to be highly
sensitive to their numerous hyper-parameters [15]. Shi et al. [39] propose an
operation-planning algorithm to generate pseudo ground-truth sequences, hence
making the network easier to train. However, it needs extra input text as guid-
ance. Overall, these methods provide an understandable editing process, and
allow convenient further controls on results through intuitive adjustments of the
color operators. However, due to the limited expressiveness of standard color
operators, they require a sequence with a relatively large number of operators
to reproduce complex retouching effects, which is harder to learn and leads to
less satisfactory performance (i.e., lower PSNR scores).

Color Transformation based Methods. These methods usually use a low-
resolution image to extract features and predict the parameters of some prede-
fined global or local color transformation, and later apply the predicted color
transformation to the original high-resolution image. Different color transforma-
tions have been used in existing works, including quadratic transforms [46,7,32,41],
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local affine transforms [11], curve based transforms [6,13,29,23,36], filters [10,35],
lookup tables [49,43], and customized transforms [5]. Compared with image-to-
image translation based methods, these methods usually use smaller models and
are more efficient. However, their capabilities are constrained by the predefined
color transformation and might be inadequate to approximate highly non-linear
color mappings between low and high quality images.

Recently, He et al. [14,33] proposed Conditional Sequential Retouching Net-
work (CSRNet), which models the global color transformation using a 3-layer
multi-layer perceptron (MLP). The MLP is influenced through global feature
modulation via a 32D conditional vector extracted from the input image through
a conditional network. Their method is lightweight and achieves nice perfor-
mance. However, the 32D condition vector is hard to interpret and control. While
CSRNet is named with ‘sequential’, we prefer to regard it as a color transfor-
mation based method instead of a sequential image retouching method. This is
because it does not explicitly model retouching operators or generate a mean-
ingful retouching sequence, nor does it produce intermediate adjusted images,
all of which are important features of sequential image retouching.

Our motivation. We are motivated by the seemingly intractable dilemma in
the context of previous retouching methods: while “black-boxing” the standard
operators [14,33] can improve model expressiveness such non-interpretable pa-
rameterization leads to the lack of controllability; though good interpretability
can be achieved by using sequential methods with standard post-processing oper-
ators [39,16,38,45], these methods require a relatively large number of operators
to reproduce the complex retouching effects but also make it less robust to ac-
curately predict the parameters and fail to achieve satisfactory results.

Specifically, we seek to resolve this dilemma by disentangling the complex
nonlinear retouching process into a series of easier transformations modeled by
our trainable neural color operators with interpretable controls, while still main-
taining high efficacy and lightweight structures.

3 Neural Color Operator

Definition. A neural color operator (short as neural operator or neurOp) mim-
ics the behavior of traditional global color operators. It is defined to learn a
pixel-wise global color mapping R from an input 3D RGB color p, with a 1D
scalar v indicating the operator’s strength, to an output 3D RGB color p′:

p′ = R(p, v). (1)

For simplicity, we restrict the scalar strength v to be normalized in [−1, 1].

Color Operator Properties. By carefully studying standard global color op-
erators, such as exposure, black clipping, vibrance in Lightroom, and contrast,
brightness in Snapseed, and general hue, saturation and gamma adjustments,
we find those operators usually satisfy the following properties:
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– 1. The effect of a color operator is controlled in a continuous way by adjusting
the scalar strength.

– 2. The color value should keep unchanged if strength is zero, i.e., p = R(p, 0).
– 3. The larger the strength is, the larger the color changes. For example,

adjusting brightness by +2 should incur more changes than +1 adjustment.
– 4. From a mathematical aspect, the operator should approximately satisfy

the homomorphism property, i.e., R(p, v1 + v2) ≈ R(R(p, v1), v2). For ex-
ample, adjusting exposure by +3, followed by a second operator that adjusts
exposure by +2, is approximately equivalent to a single operator that adjusts
exposure by +5.

Recall that our goal is to mimic the behavior of traditional color operators.
Hence, The above color operator properties should be considered in the design of
our neural color operators. Our main observation is: since the translation func-
tion naturally satisfies those properties, i.e., for f(x, v) = x + v we easily have
f(x, v1+ v2) = f(f(x, v1), v2)), if we could map the non-linear color transforma-
tion in the 3D RGB space to a simple translation function in a high-dimensional
feature space, the neural color operators would also satisfy those properties.

Network Structure. Based on the observation, we employ equivariant map-
ping, which has been widely used in other applications like geometric deep learn-
ing [22,27], for the purpose. Specifically, we adopt an encoder-decoder structure,
as shown in Figure 1 (top right). The encoder E transforms the input 3D RGB
color p to a high-dimensional (i.e., 64D) feature vector z, then we perform a
simple translation in the feature space z′ = z+ v · i, where the translation direc-
tion i is simply set as an all-one vector in the feature space and v controls the
distance of translation. Finally, the decoder D transforms the feature vector z′

back to the 3D RGB space to obtain the output color p′. In general, we define
the mapping of a neural color operator R as:

p′ = R(p, v) = D(E(p) + v · i)). (2)

To maintain a lightweight structure, the encoder contains only one fully con-
nected (FC) layer (without any hidden layers), and the decoder contains two FC
layers where the first layer uses ReLU activations. Different from traditional en-
coders which usually map data to a lower dimensional latent space, our encoder
maps colors to a higher dimensional feature space. We provide visualization of
the 64D feature vectors in the supplemental document.

Note that our neural color operator can only approximately (but not strictly)
satisfy the above color operator properties, since the decoder is not theoretically
guaranteed to be the exact inverse of the encoder, i.e., D(E(p)) ≈ p.

4 Automatic Sequential Image Retouching

In this section, we present how to develop an automatic, lightweight yet effective
sequential image retouching method based on our proposed neurOps.
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Fig. 1. Pipeline of our approach and network structures. Top left: structure of
a strength predictor. Parameters of two convolutional layers are shared among all
strength predictors (k7s2p1 denotes a kernel size 7× 7, a stride of 2 and a padding of
1). Top right: network structure of a neural color operator. Parameters are not shared
among different neural color operators. Bottom: the overall pipeline of our method.

4.1 Problem Setup

Given an input image I ∈ RH×W×C with an arbitrary resolution, our goal is to
generate a retouched image IR ∈ RH×W×C by sequentially applying K pixel-
wise color transformations modeled by neurOps:

Ik = Rk(Ik−1, vk), 1 ≤ k ≤ K, (3)

where I0 = I is the input image, Ik (1 ≤ k ≤ K − 1) are intermediate images,
and IR = IK is the output image. Rk is the k-th neurOp, and vk is a scalar that
controls its strength. A neurOp maps each pixel’s input color to an output color
in a pixel-wise manner. In our experiments, we use K = 3 neurOps for the best
trade-off between model size and efficacy. H,W and C denote the height, width,
and channel size of the image, respectively.

To make the retouching process automatic, we predict the strength of each
neurOp by strength predictors:

vk = Pk(I
↓
k−1), 1 ≤ k ≤ K, (4)

where Pk is the k-th strength predictor, and I↓k−1 is the bilinearly downsampled
image from intermediate image Ik−1 by shortening the longer image edge to 256.
We use intermediate images instead of always using the original input image I
to infer the strength parameter. This is motivated by human’s editing workflow:
an artist also needs intermediate visual feedbacks to decide the next editing
step [16]. Figure 1 (bottom) illustrates the overall pipeline of our approach.
Note that we do not share parameters between the 3 neurOps.
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4.2 Strength Predictor

A strength predictor is used to predict the scalar strength used in a neurOp.
Global image information is required for such prediction, i.e., an exposure ad-
justment needs the average intensity of the image. Hence, we use a downsampled
intermediate edited image from the previous editing step as the input to the
strength predictor.

The strength predictor contains 4 layers: two convolutional layers, a global
pooling layer, and a FC layer. First, we use the first two convolutional layers
to extract 32-channel feature maps. Then, we apply global pooling to obtain a
96D vector. Specifically, we employ three different pooling functions to compute
channel-wise maximum, average, and standard deviation, respectively, and con-
catenate the three 32D vectors together. Finally, the FC layer, which acts as a
predicting head, maps the 96D vector to a scalar strength in [−1, 1]. The top
left of Figure 1 shows the network structure of a strength predictor.

To reduce the overall size of our network, we force the parameters of the two
convolutional layers to be shared among all 3 strength predictors. The parame-
ters of the predicting head (i.e., the last FC layer) are not shared.

Our strength predictor is inspired by the conditional network in CSRNet [33,14]
in order to maintain a lightweight structure. It is improved in several ways. First,
we take intermediate images instead of the original image as input to better
reflect human’s editing workflow. Second, their conditional network outputs a
32D vector while our strength predictor generates a scalar. Third, we use three
pooling functions instead of only one average pooling function which are demon-
strated to be more helpful.

4.3 Loss Function and Training

We jointly train our neurOps and strength predictors by optimizing a prede-
fined loss function in an end-to-end fashion. In practice, we find that a carefully
designed initialization for the neurOps is also rather helpful.

Loss Function. For a single training image I, denoting its ground truth re-
touched image as IGT and the predicted retouched image as IR, respectively,
the loss L is defined as the weighted sum of a reconstruction loss Lr, a total
variation (TV) loss Ltv, and a color loss Lc:

L = Lr + λ1Ltv + λ2Lc, (5)

where λ1 and λ2 are two balancing weights empirically set as λ1 = λ2 = 0.1.
The reconstruction loss measures L1 difference between the predicted image and
the ground truth:

Lr =
1

CHW
∥IR − IGT ∥1. (6)

A TV loss [2] is included to encourage spatially coherent predicted images:

Ltv =
1

CHW
∥∇IR∥2, (7)
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where∇(·) denotes the gradient operator. Besides, we include a color loss [32,42],
which regards RGB colors as 3D vectors and measures their angular differences.
Specifically, the color loss is defined as:

Lc = 1− 1

HW
∠(IR, IGT ), (8)

where ∠(·) is an operator that computes the pixel-wise average of the cosine
of the angular differences. The overall loss is computed as the sum of losses
(Equation 5) over all training images.

Initialization Scheme for Neural Color Operators. Instead of initializing
the neurOps from scratch, we find that initializing them with standard color
operators is a better choice. By analyzing the retouching histories in the MIT-
Adobe FiveK dataset [6], we picked up the 3 most commonly used standard
operators in the dataset, which are black clipping, exposure, and vibrance in
Lightroom. For initialization, we intend to let our 3 neurOps reproduce the above
3 standard operators, respectively.

Since the formulas of those Lightroom operators are not publicly available, we
have selected a small number of images (i.e., 500 images) from the training set of
MIT-Adobe FiveK, and manually retouched those images using those standard
operators. Specifically, for each standard operator, for each input image I, we
manually generate M (i.e., M = 40) retouched images (i.e., {Im}, 1 ≤ m ≤
M) with uniformly distributed levels of strengths. The strength used for each
retouched image Im is denoted as vm.

Then, we enforce each neurOpR to reproduce the manually retouched images
from each standard operator as much as possible. To do so, we optimize each
neurOp by minimizing the sum of a unary loss and a pairwise loss over all
selected images. The unary loss L1 enforces that the color keeps unchanged
when the strength is zero:

L1 =
1

M

∑
m

∥R(Im, 0)− Im∥1. (9)

The pairwise loss L2 enforces that the neurOp behaves the same as the given
standard operator for specific strength values:

L2 =
1

M(M − 1)

∑
m̸=n

∥R(Im, vn − vm)− In∥1. (10)

For optimization, we use the Adam optimizer with an initial learning rate of
5e−5 , β1 = 0.9, β2 = 0.99, and a mini-batch size of 1, and run 100,000 iterations.

Joint Training. After initializing neurOps using the scheme described above,
and initializing the strength predictors with random parameters, we jointly train
our neurOps and strength predictors in an end-to-end fashion towards minimiz-
ing the overall loss function (Equation 5). We also use the Adam optimizer with
the same configurations as in the initialization scheme, and run 600,000 itera-
tions. For data augmentation, we randomly crop images and then rotate them
by multiples of 90 degrees.
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5 Experiments

Datasets. The MIT-Adobe FiveK dataset [6] has been widely used for global
image retouching and enhancement tasks. It consists of 5000 images in RAW
format and an Adobe Lightroom Catalog that contains the adjusted rendition
setting by five experts. We follow the common practice and use rendition version
created by expert C as the ground truth. There are two public variations in terms
of input rendition setting. The first variation is provided by Hu et al. [16], which
choose the input with Daylight WhiteBalance minus 1.5 and export them to 16
bits ProPhotoRGB TIFF images. We refer to it as MIT-Adobe-5K-Dark. The
second variation is provided by Hwang et al. [17] which adopt the input As

Shot Zeroed and export them to 8 bits sRGB JPEG images. We refer to it as
MIT-Adobe-5K-Lite.

PPR10K [30] is a recently released image retouching dataset. It contains more
than 11,000 high-quality portrait images. For each image, a human region mask
is given and three retouched images by three experts are provided as ground
truth. We refer to the three retouched variations as PPR10K-a, PPR10K-b, and
PPR10K-c, respectively.

We train and evaluate our method on all 5 variations of both datasets. We
follow the same split of training and testing sets as in previous works. For the
MIT-Adobe FiveK dataset, all images are resized by shortening the longer edge
to 500. For the PPR10K dataset, we use image resolution of 360p. All the ex-
periments are performed on a PC with an NVIDIA RTX2080 Ti GPU. It takes
about 2 hours for initialization, and takes about 9 and 15 hours for training on
MIT-Adobe FiveK and PPR10K, respectively.

5.1 Comparison and Results

Comparison. We compare our method with a series of state-of-the-art meth-
ods, includingWhite-Box [16], Distort-and-Recover [38], HDRNet [11], DUPE [42],
MIRNet [48], Pix2Pix [20], 3D-LUT [49], CSRNet [14,33] on MIT-Adobe-5K-
Dark, and DeepLPF [35], IRN [50] on MIT-Adobe-5K-Lite, and CSRNet, 3D-
LUT, 3D-LUT+HRP [30] on PPR10K.

For the PPR10K dataset, since each image is associated with a human region
mask, we also provide a variant of our method that additionally considers human
region priority (HRP) [30] in training, which we refer to as NeurOp+HRP. This
is done by slightly modifying the L1 loss in Equation 6 to be a weighted one,
i.e., pixels inside human region have larger weights (e.g., 5) while other pixels
have smaller weights (e.g., 1).

As shown in Table 1, our method consistently achieves the best performance
on all dataset variations, demonstrating the robustness of our method. In con-
trast, while CSRNet performs relatively well on MIT-Adobe-5K-Dark, it per-
forms less satisfactory on PPR10K, i.e., their PSNR is lower than ours by 2db
on PPR10K-a, which is consistent with the benchmark carried out in [30]. Fur-
thermore, our method is the most lightweight one (i.e., only 28k parameters).
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Table 1. Quantitative comparison with state-of-the-art methods. The best results are
boldface and the second best ones are underlined.

Dataset Method PSNR↑ SSIM↑ ∆E∗
ab↓ #params

MIT
-Adobe
-5K-Dark

White-Box [16] 18.59 0.797 17.42 8,561,762

Dis.& Rec. [38] 19.54 0.800 15.44 259,263,320

HDRNet [11] 22.65 0.880 11.83 482,080

DUPE [42] 20.22 0.829 16.63 998,816

MIRNet [48] 19.37 0.806 16.51 31,787,419

Pix2Pix [20] 21.41 0.749 13.26 11,383,427

3D-LUT [49] 23.12 0.874 11.26 593,516

CSRNet [14,33] 23.86 0.897 10.57 36,489

NeurOp (ours) 24.32 0.907 10.10 28,108

MIT-
Adobe
-5K-Lite

DeepLPF [35] 23.63 0.875 10.55 1,769,347

IRN [50] 24.27 0.900 10.16 11,650,752

NeurOp (ours) 25.09 0.911 9.93 28,108

Dataset Method PSNR↑ SSIM↑ ∆E∗
ab↓

PPR
10K-a

CSRNet [14,33] 24.24 0.937 9.75
3D-LUT [49] 25.64 - -
3D-LUT+HRP [30] 25.99 0.952 8.95
NeurOp (ours) 26.32 0.953 8.81
NeurOp+HRP (ours) 26.46 0.955 8.80

PPR
10K-b

CSRNet [14,33] 23.93 0.938 9.83
3D-LUT [49] 24.70 - -
3D-LUT+HRP [30] 25.06 0.945 9.36
NeurOp (ours) 25.45 0.946 9.21
NeurOp+HRP (ours) 25.82 0.951 8.97

PPR
10K-c

CSRNet [14,33] 24.35 0.929 9.92
3D-LUT [49] 25.18 - -
3D-LUT+HRP [30] 25.46 0.939 9.43
NeurOp (ours) 26.02 0.946 8.94
NeurOp+HRP (ours) 26.23 0.947 8.86

Figure 2 shows visual comparisons. 3D-LUT sometimes generates color band-
ing artifacts due to the use of color space interpolation. Other methods easily
lead to color shifting problems especially when the input image has a very low ex-
posure or has a very different temperature. Generally, the results of our method
have fewer artifacts and are closer to the ground truth. More visual comparisons
are given in the supplemental document.

User Study. We have conducted a user study to evaluate the subjective vi-
sual quality of our method on both dataset variations of MIT-Adobe-5K. For
MIT-Adobe-5K-Dark, we compare with CSRNet [14,33], while for MIT-Adobe-
5K-Lite, we choose IRN [50] for comparison, since the two methods achieve the
second best performance on the two variations, respectively. For each dataset
variation, we randomly select 50 images from the testing set and invite 10 par-
ticipants (totally 20 participants are invited). For each selected image, for each
participant, three retouched images are displayed: the ground truth image, and
the two images generated by our method and the competing method (the latter
two are displayed in random order). The participant is asked to vote which one
of the latter two is visually more pleasing and more similar to the ground truth.
Figure 3 (a) shows the results of user study, which suggest that our retouched
images are visually more appreciated than those of competing approaches.

Controllability. While our method could generate the retouched images in a
fully automatically way, we still allow users to intuitively adjust the results by
changing the predicted scalar strengths using three sliders in real-time. Figure 3
(b) shows some examples. We find that adjusting the strengths could result
in meaningful edits. For example, increasing the strength of the first neurOp
amplifies the shadow and adds more contrast. Increasing the second tends to
give more brightness to the middle tone while preserving the highlight proportion
unchanged. Adjusting the third makes the image look cooler or warmer. More
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Dataset: MIT-Adobe-5K-Dark

Input 3D-LUT [49] HDRNet [11] CSRNet [14,33] NeurOp (ours) GT

Dataset: MIT-Adobe-5K-Lite

Input DeepLPF [35] IRN [50] NeurOp (ours) GT

Dataset: PPR10K-a

Input CSRNet 3D-LUT+HRP NeurOp NeurOp+HRP GT

Fig. 2. Visual comparison with state-of-the-art methods.

examples of controllability as well as the intermediate images are provided in
the supplemental document.

Existing methods such as CSRNet [14,33] achieve controlling through a linear
interpolation between the retouched image and the original image by adjusting
the interpolation weight. However, such controllability is rather limited. First,
linear interpolation cannot faithfully reproduce sophisticated and highly non-
linear color transformations. Second, only one degree of freedom is usually not
enough for detailed color adjustments.

Timing and Memory Consumption. Our method runs in real-time. It takes
4 ms for a 500 × 333 image or 19 ms for an image with 1M pixels, which is slightly
slower than CSRNet and 3D-LUT. However, it is worthy since our method has
smaller model size (i.e., only 28k parameters), achieves better performance (i.e.,
higher PSNR scores), and inherits advantages of sequential image retouching
which they do not possess.
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Fig. 3. User study and controllability. (a) Results of user study. (b) Examples of
controllability. The middle column shows our automatically retouched images. The left
and right columns show the results by further adjusting strengths of specific neurOps.

Table 2. Ablation study for neural color operators. (a) Different initialization schemes.

(b) Initialization with different ordering of standard operators.
−−→
vbe denotes using the

order of vibrance, black clipping, and exposure for initialization. (c) Different num-
ber of neurOps. (d) Our method (final model).

Configs
(a) Initialization (b) Order (c) Number (d) Ours

random standard fix
−−→
vbe

−→
veb

−→
evb

−→
ebv

−→
bve K=1 K=2 K=4 finetune,

−−→
bev, K=3

PSNR↑ 22.61 23.78 23.93 24.17 24.11 24.12 24.23 21.97 23.5 24.17 24.32

For memory consumption, our strength predictor takes less than 5M, our
neroOp takes less than 1K per pixel. Overall, by processing pixels in batches
(i.e., 4096 pixels a batch), our method takes less than 10M memory for input
images with arbitrary resolutions (storage for input/output images not included).

Benefits of Our Method. Due to the nice properties of neural color operators,
the advantages of our method are multi-fold. First, it is rather lightweight and
runs in real-time, hence, it could be easily deployed in mobile devices. Second,
it inherits the advantages of sequential image retouching methods: providing
an understandable editing history and offering convenient and flexible controls.
Last but not least, besides the above advantages, our method still consistently
achieves the best performance compared to state-of-the-art methods on two pub-
lic datasets in both quantitative measures and visual qualities, as demonstrated
by experiments and user studies.
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Table 3. Ablation study for strength predictors and loss function. (a) Different pooling
configurations in strength predictors. (b) Other design components in strength predic-
tors. (c) Different configurations for the loss function. (d) Our method (final model).

Configs
(a) Pooling Layer (b) Strength Predictor (c) Loss Function

(d) Ours
aver aver+max aver+std ori-img-input non-share-layer Lr Lr + Lc Lr + Ltv

PSNR↑ 23.96 24.27 24.11 23.91 24.35 24.22 24.30 24.26 24.32
#Params 27,916 28,012 28,012 28,108 56,076 28,108 28,108 28,108 28,108

5.2 Ablation Study

We conduct a series of ablation studies to justify our training strategy as well
as the design choices of our neurOps and strength predictors. Except for the
ablated parts, we retrain the ablated models adopting the same setting as our
final models. We make quantitative comparisons using average PSNR achieved
on the testing images of MIT-Adobe-5K-Dark as it is generally more challenging.

Neural Color Operators. We first verify the effectiveness of the initialization
strategy for neurOps. Recall that we first initialize all neurOps with standard
operators and then finetune their parameters in a later joint training step. We
compare our choice with two alternatives: random initialization from scratch,
initialization with standard operators without allowing further finetuning (i.e.,
in later steps, only strength predictors are trained while neurOps keep fixed). The
performance is given in Table 2 (a) and (d). The results verify that initialization
using standard operators is clearly superior to random initialization (PSNR:
24.32db vs 22.61db). Besides, using trainable neurOps is also shown to be a
better choice than using fixed functional standard operators (PSNR: 23.78db),
due to better model expressiveness.

Recall that we choose the three most commonly used standard operators to
initialize our neurOps. We then test whether the order of standard operators
matters. As shown in Table 2 (b) and (d), we test all 6 permutations of different
ordering, and find that initializing the first, second and third neural operators
with black clipping, exposure and vibrance, respectively, is the best choice.

We further conduct experiments to find out how many neurOps are suitable.
We test four choices: K = 1, 2, 3 and 4. For K = 1, we use black clipping for
initialization. For K = 2, we use black clipping and exposure for initialization.
For K = 4, we use another standard operator highlight recovery to initialize
the 4th neurOp. We could find that K = 3 achieves the best performance, as
shown in Table 2 (c-d). This is possibly due to that fewer neural operators (i.e.,
K = 1 or 2) lead to insufficient expressiveness while a larger number of neural
operators (i.e., K = 4) result in harder training of strength predictors due to
longer sequence. Overall, K = 3 is the best choice.

Strength Predictors. In the global pooling layer of a strength predictor, recall
that we have combined three pooling functions that compute average, maximum,
and standard deviation, respectively. We test cases when a part of or all pooling
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functions are used, as shown in Table 3 (a) and (d). Notice that each pooling
function is useful, and combining all of them achieves the best performance.

We also verify other design choices of strength predictors in Table 3 (b).
Recall that we feed intermediate images from previous editing steps as the input
to strength predictors. An alternative choice would be always feeding the original
input image, however, that would result in a drop in performance, i.e., PSNR:
24.32db→23.91db. It verifies that following human’s editing workflow to use
intermediate visual feedbacks is a better choice. Besides, recall that we force all
strength predictors to share parameters for convolutional layers. We also test the
case when parameters are not forced sharing. Unsurprisingly, the performance
slightly gains, i.e., increasing PSNR by 0.03db. However, it doubles the network
size (28k → 56k). Sharing parameters for all strength predictors leads to a good
trade-off between maintaining high performance and lightweight structures.

Loss Function. Our loss function (Equation 5) includes a reconstruction loss
term, a TV loss term, and a color loss term. In Table 3 (c), we evaluate the
choice of terms in the loss function. The results verify that combining all terms
produces the best performance.

6 Conclusion and Limitations

In this paper, we have proposed a lightweight sequential image retouching method.
The core of our method is the newly introduced neural color operator. It mimics
the behavior of traditional color operators and learns complex pixel-wise color
transformation whose strength is controlled by a scalar. We have also designed
CNN based strength predictors to automatically infer the scalar strengths . The
neural color operators and strength predictors are trained in an end-to-end man-
ner together with a carefully designed initialization scheme.

Extensive experiments show that our model achieve the state-of-the-art per-
formance on public datasets with only 28k parameters and provide more conve-
nient parametric controls compared with previous competitive works.

Limitations. Our method has several limitations and could be further improved
in the future. First, our method is limited to global color retouching. A possible
way to handle local effects is extending strength predictors to infer strength maps
instead of scalar strengths. Second, we only support pixel-wise color editing. It
would be an interesting topic to extend neural color operators to handle spatial
filtering. Third, from a theoretical aspect, our encoder-decoder structure for
neural color operators cannot guarantee accurate homomorphism properties. It
is worthwhile to investigate other network structures with better theoretical
properties, such as invertible networks. As for future works, we are also interested
in applying the idea of neural color operators to other related applications such
as image editing.

Acknowledgements. This work is supported by the National Natural Science
Foundation of China (Project Number: 61932003).
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