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Figure 1: This paper presents an image-to-video model for real-time video enhancement, which is trained using only static
images. The learned image-to-video model is able to enhance 4k-resolution videos with inference running in real-time.

ABSTRACT
Recent years have witnessed the increasing popularity of learning-
based methods to enhance the color and tone of images. Although
these methods achieve satisfying performance on static images,
it is non-trivial to extend such image-to-image methods to han-
dle videos. A straight extension would easily lead to computation
inefficiency or distracting flickering effects. In this paper, we pro-
pose a novel image-to-video model enforcing the temporal stabil-
ity for real-time video enhancement, which is trained using only
static images. Specifically, we first propose a lightweight image
enhancer via learnable flexible 2-dimensional lookup tables (F2D
LUTs), which can consider scenario information adaptively. To im-
pose temporal constancy, we further propose to infer the motion
fields via a virtual camera motion engine, which can be utilized
to stabilize the image-to-video model with temporal consistency
loss. Experimental results show that our image-to-video model
not only achieves the state-of-the-art performance on the image
enhancement task, but also performs favorably against baselines
on the video enhancement task. Our source code is available at
https://github.com/shedy-pub/I2VEnhance.
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1 INTRODUCTION
Digital photography has progressed dramatically in recent years
due to the ubiquitous presence of cameras on various devices. It is
becoming more and more popular to record the beautiful lives via
images and videos through online sharing communities, e.g. Flickr
and Instagram. As captured photographs may still lack quality due
to varying factors in various scenes, photo retouching is desirable to
improve the visual quality of photographs. Unfortunately, manual
retouching requires specialized skills and considerable time, espe-
cially for videos, thus is challenging for casual users. The above
practical demands have motivated the research of automatic real-
time photo enhancement.

With promising development in deep learning, the image en-
hancement community has observed significant advances. Numer-
ous learning-based methods [7, 10, 16, 23, 34, 48] achieve satisfying
performance on static images. However, it is non-trivial to extend
such image-to-image methods to handle videos frame by frame due
to two main challenges. First, complex network architecture and
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high computation overheads prevent them from real-time process-
ing. The image-to-image translation methods [4, 7, 46] generate
high-quality enhanced results via encoder-decoder structures. How-
ever, such methods consisting of a deep stack of upsampling and
conv layers are computationally expensive. The lookup table-based
method [40, 48] exhibits significant performance and efficiency
while only considering the image retouching task.

Second, videos pose an additional challenge compared to images.
Not only do the video frames need to satisfy the intended enhance-
ment, they also need to be temporally consistent. Otherwise, the
processed video will exhibit flickering artifacts. Video-to-video
translation techniques are trying to address the problem by directly
incorporating optical flow-based losses [22], or networks that oper-
ate on the time dimension, e.g. 3D convolutional layers or recurrent
layers. However, collecting the human-retouched dataset for video
retouching is too labor-consuming. The blind video consistency
models [2, 8, 26] relax the need for task-specific datasets and losses,
which, however, include an extra post-processing step.

In this paper, we propose a novel image-to-video model enforc-
ing the temporal stability for real-time video enhancement, which
is trained using only static images. Fig. 1 shows the video enhance-
ment results predicted by the proposed model that are trained using
only static images. Specifically, we first propose a lightweight image
enhancer via learnable flexible 2-dimensional lookup tables (F2D
LUTs), which is able to consider scenario information adaptively. To
impose temporal constancy, we further propose to infer the motion
fields via a virtual camera motion engine, which can be utilized to
stabilize the image-to-video model with temporal consistency loss.
Thus, the temporal consistency on video task can be imposed by
enforcing the transform invariant constraint during training.

Our main contributions are summarized as follows:
• We propose a image-to-video framework for real-time video
enhancement. The proposed model achieves nearly 800 FPS
on 4k-resolution videos, which is highly efficient for deploy-
ment in practical applications.

• We propose a Flexible 2D-LUTs architecture by constructing
lookup table under two-dimension setting and introduce a
more efficient interpolation function.

• We propose to incorporate motion field prior from still im-
age via a virtual camera motion engine, which is utilized to
impose the temporal consistency.

• Our extensive experiments on both image benchmark dataset
and the synthetic video dataset validate that our model sig-
nificantly outperforms state of-the-art image enhancement
methods both quantitatively and qualitatively.

2 RELATEDWORK
Image Enhancement andRetouchingRecently, significant progress
has been made by employing neural networks for automatic image
enhancement. In general, these learning-based approaches can be
divided into image-to-image translation based methods and regres-
sion based method.

Image-to-image translation models [7, 17, 18, 20, 24, 33, 47, 52]
consider the process of image enhancement as a problem of image-
to-image translation. They usually work in an end-to-end fashion,
feeding the input image as a whole to specially designed neural

networks and obtain the enhanced image as output. While those
models could generate satisfactory results, they usually suffer from
two limitations. First, large models are usually employed and hence
large memory consumption is required; second, they may generate
visible artifacts in high frequency and flat regions due to the use
of downsampled convolutional layers. Various methods are also
proposed to reduce the artifacts.

In regression based methods, enhancement is achieved by apply-
ing pixel-wise color transformation to the input image. Different
methods employ different models for the predefined color transfor-
mation, including color transformation matrices [5, 10, 30], curve-
based functions [12, 23, 28, 32, 38], sequential functions [14, 16, 34,
37, 45], and 3D lookup tables (LUTs) [40, 48].

As a typical example for transformation matrix based methods,
HDRNet [10] uses 3 × 4 affine transformation matrices, to map
input pixel colors to output colors. The coefficients of color trans-
formation matrices are predicted through low-resolution images
and stored in the bilateral grid, which are then applied to the origi-
nal image guided by a full-resolution single-channel guidance map.
However, the capability of transformation matrix in handling so-
phisticated color transformation is limited. Besides, the employed
FCN network is also expensive for high-resolution inputs.

For curve based methods, they mimic color transformation using
curves, like those color curve adjustment tools in retouching soft-
wares, e.g. Lightroom and Photoshop. Generally, these methods try
to regress a limited number of parameters, e.g. the representative
points of the curve [23, 28, 32, 38], the coefficients of a pre-defined
function [12, 16, 34]. However, such functions mostly ignore the
relationship between different channels, which is insufficient to
approximate complex transformations.

LUTs are widely used in image processing pipelines and commer-
cial softwares for accelerating color adjustment operations such as
hue or tonal adjustments. Zeng et al. [48] proposed image adaptive
3D-LUTs, which combines the deep learning paradigm with tradi-
tional image enhancement paradigm and achives promising results.
Specifically, the color transformation is modeled as a weighted in-
terpolation of multiple 3D-LUTs, where the weights are predicted
through convolutional networks according to the image content.
Moreover, there are somemethods extending LUTs to handle spatial
aware enhancement [40] and single image super resolution [21].
While 3D-LUTs is an attractive transformation function that can
be well integrated with image enhancement tasks, it is not flexible
enough since only the interpolation weights are adaptive to the
input image while the basis 3D-LUTs are always fixed.
Video Enhancement Video enhancement, especially video re-
touching, is still an open and challenging problem. While the prob-
lem of image enhancement and retouching has been well studied,
it is non-trivial to extend image enhancement methods to videos.
Directly applying existing image enhancement methods in a frame-
by-frame way would simply lead to temporal inconsistency, i.e.,
flickering artifacts. One way to alleviate the flickering artifacts
is to employ blind video temporal consistency techniques [3, 26],
which directly operate on the per-frame processed videos as a
post-processing step and are blind to the used image enhancement
algorithm.

Since videos are 3-dimensional (i.e., while images are 2-dimensional),
another solution is to extend 2D networks in image enhancement
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Figure 2: Our proposed framework consists of two steps, i.e., motion field inference, and video enhancement. Given the input
image, we first generate a new virtual view from the still image via a virtual camera motion engine, which can be computed
offline before training. Then, both the input and generated images are enhanced with the proposed image enhancer built with
F2D-LUT. The enhancement results and the obtained optical flow are then used to compute the final loss. During the inference
phase, our model directly takes each video frame as input and predicts the corresponding weights for F2D-LUTs.

models to their 3D counterpart [19, 31]. Specifically, Lv et al. [31]
employ 3D convolution layers to handle image sequences, while
Jiang et al. [19] propose a modified 3D U-Net for low-light video
enhancement. To reduce noises in low light videos, In addition,
Wang et al. [42] propose a low light video enhancing method with a
high sensitivity noise model achieving temporal coherence through
a spatial-temporal LSTM module. Chen et al. [6] train a siamese
network on static raw videos, which enforces temporal consistency
between frames directly. Zhang et al. [51] propose the RT-VENet
for real-time video enhancement. Its color transformation is mod-
eled using curve functions whose parameters are stored in grids. A
temporal feature aggregation module is included and a temporal-
consistency loss is used. All above images require paired videos for
training. However, compared to images, videos, especially paired
videos, are rather difficult to collect.

Since images are much more easily available than videos, it
would be desirable for video enhancement methods if they can
be trained only using images. Eilertsen et al. [9] introduce tempo-
rally stable CNNs, where temporal-aware regularization losses are
additionally included in training. They enable image processing (
but only considering the loss function without network structure
is not sufficient to model the consistency in the time dimension.
Recently, Zhang et al. [50] propose the StableLLVE for low light
video enhancement with image-based model and alleviate flickering
with predicted optical flow. However, the UNet architecture in [50]
makes the method impractical when applying to high-resolution
videos. In addition, they predict the optical flow by combining an
unsupervised motion propagation model [49] with segmentation
results, which is suboptimum for the scenes that do not include

any foreground. In this paper, we propose a highly efficient frame-
work for real-time enhancement application based on the LUTs
method. We also employ a physics-based engine to generate more
stable motion fields, described in Sec. 3.2. Readers could refer to
the survey [27] for more detailed discussions on image and video
enhancement.

3 METHODOLOGY
In this section, we present in detail our proposed image-to-video
model for real-time video enhancement. Fig. 2 gives the pipeline of
our overall algorithm. The image-to-video enhancement model is
based on a LUTs-based image enhancer, which imposes temporal
consistency by utilizing the motion field inferred via the virtual
camera motion engine.

3.1 Image Enhancer
Before introducing the idea of our flexible 2D lookup tables (F2D-
LUTs) , we first briefly review the image adaptive 3D-LUTs (short
as A3D-LUTs) [48] for image enhancement.
Adaptive 3D-LUTs Generally, let’s consider a global color trans-
formation fori : x ↦→ x′ that maps an input 3D RGB color x =

(𝑥𝑟 , 𝑥𝑔, 𝑥𝑏 ) to an output RGB color x′ = (𝑥 ′𝑟 , 𝑥 ′𝑔, 𝑥 ′𝑏 ). For simplicity,
all input and output RGB colors are assumed to be inside the RGB
unit cube, i.e., x, x′ ∈ [0, 1]3.

A 3D-LUT f uses a 3D uniform grid structure with (𝑀−1)3 grids
in the 3D RGB space and stores an output RGB color at each grid
vertex. There are 𝑀3 grid vertices in total. A lookup for an input
RGB color x is computed as a multi-linear interpolation of nearby



MM ’22, October 10–14, 2022, Lisboa, Portugal. Dongyu She and Kun Xu

grid vertices:

f (x) =
8∑︁
𝑖=1

𝑡𝑖 (x)fori (x𝑖 ), (1)

where x𝑖 (1 ≤ 𝑖 ≤ 8) denote the eight vertices of the grid which x
resides in, and 𝑡𝑖 (x) (1 ≤ 𝑖 ≤ 8) are trilinear interpolation weights
which sum up to one:

∑8
𝑖=1 𝑡𝑖 (x) = 1. The color mapping defined by

a 3D-LUT f could be viewed as a piecewise linear approximation
of the original color mapping fori.

In order to make the enhancement process adaptive to image
contents, they use multiple 3D-LUTs and combine them in a linear
way:

f𝑐 (x) =
𝐾∑︁
𝑗=1

𝑤 𝑗 f𝑗 (x), (2)

where f𝑗 (·) is the 𝑗-th 3D-LUT and𝑤 𝑗 denotes its weight (1 ≤ 𝑗 ≤
𝐾 ). the weights𝑤 𝑗 (1 ≤ 𝑗 ≤ 𝐾 ) are image adaptive and are inferred
from a CNN weight predictor by analyzing the low resolution input
image. 𝐾 is the number of 3D-LUTs which is usually set between 3
to 5 [29, 48].
Flexible 2D-LUTs While 3D-LUTs are effective in approximating
sophisticated color transformations, it requires a relatively large
number of parameters. For example, for a typical hyperparameter
𝑀 = 33, one 3D-LUT requires about 108K (3𝑀3) parameters. On the
other hand, while the curved-based methods, which behave like 1D-
LUTs, require fewer parameters, they usually have less capability
in representing complex color transformations. Our observation is
that: 2D-LUT, between 3D and 1D, would strike a good trade-off
between the capability of representation and model size. For this
purpose, we propose flexible 2D-LUTs (short as F2D-LUTs), more
flexible enhancing operators to tackle dramatic variations among
different scenes.

A single 2D-LUT is defined in a similar way as a 3D-LUT in
Eqn. (1) except that: 1) 2D-LUTs use 2D grids instead 3D grids;
2) when performing a lookup, we use bicubic weights instead of
bilinear weights for interpolation as we find bicubic interpolation
can further improve the smoothness of enhanced results.

In order to capture the 3D color transformations in RGB space,
we define our F2D-LUT as a group of three 2D-LUTs where the
operated two color channels vary in a rotating order. Specifically,
a RG-channel (i.e., red and green channels) 2D-LUT defines the
following color mapping f𝑅𝐺 : x ↦→ x′:

(𝑥 ′𝑟 , 𝑥 ′𝑔, 0) = x′ = f𝑅𝐺 (x) = f𝑅𝐺 (𝑥𝑟 , 𝑥𝑔) . (3)

Note that only R and G channels (𝑥𝑟 and 𝑥𝑔) are taken as input and
B channel (𝑥𝑏 ) is not considered. We also only output colors in R
and G channels, while the output value in the B channel is simply
set as zero. The other two 2D-LUTs, including the GB-channel 2D-
LUT (i.e., f𝐺𝐵 ) and the BR-channel 2D-LUT (i.e., f𝐵𝑅 ), are defined
similarly.

A full 3D color transformation could be obtained by linearly
combining multiple F2D-LUTs:

f𝑐 (x,w) =
𝐾∑︁
𝑗=1

w𝑅𝐺𝑗 ◦ f𝑅𝐺𝑗 (x) +w𝐺𝐵𝑗 ◦ f𝐺𝐵𝑗 (x) +w𝐵𝑅𝑗 ◦ f𝐵𝑅𝑗 (x),

(4)

where 𝐾 is the number of F2D-LUTs, f𝑅𝐺
𝑗

, f𝐺𝐵
𝑗

and f𝐵𝑅
𝑗

denote the
RG-channel, GB-channel, and BR channel 2D-LUTs in the 𝑗−th
F2D-LUT, respectively, and w = {w𝑅𝐺

𝑗
,w𝐺𝐵

𝑗
,w𝑅𝐺

𝑗
|1 ≤ 𝑗 ≤ 𝐾} is

the corresponding learnable weight vector. Note that the operator
◦ denotes an element-wise multiplication, for example, for weight
w𝑅𝐺 = (𝑤𝑟 ,𝑤𝑏 , 0) and color f𝑅𝐺 (x) = (𝑥 ′𝑟 , 𝑥 ′𝑔, 0), their element-
wise multiplication results in color (𝑤𝑟𝑥 ′𝑟 ,𝑤𝑏𝑥 ′𝑔, 0).

The model size of our F2D-LUT is much smaller than that of 3D-
LUT. In practice, we also set𝑀 = 33 (i.e., the number of elements
along one color channel), and a F2D-LUT contains only 6K (6𝑀2)
parameters, which is only about 6% of a 3D-LUT’s parameters
(3𝑀3).
Self-adaptive weight predictor Following [48], we employ a sim-
ple weight predictor F(·) with the same CNN backbone to support
image-adaptive F2D-LUTs. As shown in Fig. 2, given the input
image 𝐼 , we predict the weights for F2D-LUTs, denoted as:

w = F(𝐼 ↓;𝜃 ), (5)

where 𝐼 ↓ is the down-sampled input image, and𝜃 denotes the param-
eters of the CNN-based weight predictor. During inference phase,
after the weights are predicted using Eqn. (5), the final enhanced
image 𝐼 ′ can be obtained by performing lookups and interpolations
as in Eqn. (4) in a pixelwise manner, written as:

𝐼 ′ = f𝑐 (𝐼 ,w) . (6)

3.2 Image-to-Video Enhancement Model
In this subsection, we opt to impart our image enhancer described
in Sec. 3.1 with temporal stability for the video enhancement task.
The key idea is to mimic the motion between adjacent frames
and implicitly model the temporal consistency in an end-to-end
trainable network. As shown in Fig. 2, given a still image, we first
predict a new view of the input mimicking the adjacent frame.
Then, the corresponding optical flow can be computed, which can
represent both global and local motions for mimicking the motions
of dynamic scenes. Finally, with the help of the inferred motion field,
our model can be stabilized by optimizing the proposed temporal
consistency constraint. Below, we explain in detail.
Motion Field InferenceWe first infer the motion field from the
still images via a virtual camera motion engine module inspired
by [1]. Given the input image 𝐼 , we first estimate the depth map D
via an off-the-shelf network. The estimated D is then employed to
project pixels in 𝐼 to 3D space according to inverse intrinsics matrix
M−1. Assuming that 𝐼 is framed by the camera at 3D location 𝑐0,
an arbitrary virtual motion is applied on the camera moving it to
a new position 𝑐1. Specifically, we generate a rotation 𝑅1 and a
translation 𝑡1 by sampling a random triplet of Euler angles and a
random 3D vector, respectively. The transformation matrix is then
defined as 𝑇0→1 = (𝑅1 | 𝑡1). For each pixel 𝑝 in 𝐼 , the coordinates 𝑝
of its corresponding pixel in 𝐼 acquired from new viewpoint 𝑐1 can
be obtained by:

𝑝 ∼ M𝑇0→1D (𝑝) M−1𝑝. (7)

The optical flow can then be distilled using Depthstillation [1]. Fig. 3
shows the generated images and obtained optical flows. As can be
seen, such physical-based engine is able to generate meaningful
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Input Image 𝐼 Depth Map D Obtained Image 𝐼 Optical Flow Field

Figure 3: The example results of virtual camera motion en-
gine. From left to right: a) Input, b) Estimated depth map, c)
The generated image under a new virtual view, and d) Optical
flow field consequence of virtual camera motion.

results for both cases with and without obvious foreground objects.

Imposing temporal consistencyMotivated by that temporally
stable model should be transform-invariant [9], during training,
we enforce the model to get outputs of transformed inputs with
the same transformations as if the operations are applied to results
directly. Consequently, we generate a motion with the estimated
optical flow to mimic actual video sequences and train our image-
based model in a Siamese way. As shown in Fig. 2, the input image
𝐼 is first feed into the weight predictor of our image enhancer to
obtain image adaptive weights w in Eqn. (5). The image under
new view 𝐼 as well as the optical flow can be obtained with the
virtual camera motion engine descibed in Sec. 3.2. We then feed 𝐼
again to the weight predictor to obtain the weights ŵ for the new
view image. Finally, we enforce temporal consistency between the
predicted weights w and ŵ, and between the enhanced image and
the warped result of the enhanced image, which we will explain
later in the loss function subsection.

Note that the above process of estimating optical flows and
imposing temporal consistency is only involved during the training
stage. During the inference stage, we simply feed video frames to
the image enhancer in a frame-by-frame fashion, and the temporal
consistency is automatically preserved.

3.3 Loss Function
Our loss function for the video enhancement task is defined as the
weighted sum of an enhancement loss, an LUT loss, and a temporal
consistency loss:

L = L𝑒𝑛ℎ𝑎𝑛𝑐𝑒 + L𝑙𝑢𝑡 + 𝜆𝑡L𝑡𝑒𝑚𝑝 , (8)

where the enhancement loss L𝑒𝑛ℎ𝑎𝑛𝑐𝑒 ensures content consistency
of enhanced images, the LUT loss L𝑙𝑢𝑡 is included to enforce the
smoothness of LUTs, and the temporal consistency loss L𝑡𝑒𝑚𝑝

enforces the temporal stability. 𝜆𝑡 is set according to the ablation
study.

Specifically, given a pair of input image 𝐼 and the ground truth
enhanced image 𝐼𝐺𝑇 , the enhancement loss L𝑒𝑛ℎ𝑎𝑛𝑐𝑒 is defined as:

L𝑒𝑛ℎ𝑎𝑛𝑐𝑒 =



f𝑐 (𝐼 ,w) − 𝐼𝐺𝑇




2 , (9)

where f𝑐 denotes the image enhancer in Eqn. (6) and w𝑡 is the
predicted weight vector in Eqn. (5).

In order to stably transform the input RGB values into the de-
sired color space without generating much artifacts, following the
adaptive 3D-LUT work [48], we also employ a smooth regulariza-
tion term R𝑠 and a monotonicity regularization term R𝑚 on our
F2D-LUTs as follows:

L𝑙𝑢𝑡 = 𝜆𝑠R𝑠 + 𝜆𝑚R𝑚 . (10)

The smooth regularization consists of a 2D total variation regular-
ization term and a ℓ2-norm regularization on the predicted weights:

R𝑠 =
∑︁

f ∈{f𝑅𝐺 ,f𝐺𝐵 ,f𝑅𝐵}

∑︁
𝑖, 𝑗

(

f(𝑖+1, 𝑗) − f(𝑖, 𝑗)


2

+


f(𝑖, 𝑗+1) − f(𝑖, 𝑗)



2 + ∥w∥2
)
.

(11)

The monotonicity regularization on 2D-LUT learning is defined
as follows:

R𝑚 =
∑︁

f ∈{f𝑅𝐺 ,f𝐺𝐵 ,f𝑅𝐵}

∑︁
𝑖, 𝑗

(
𝜑

(
f(𝑖, 𝑗) − f(𝑖+1, 𝑗)

)
+𝜑

(
f(𝑖, 𝑗) − f(𝑖, 𝑗+1)

))
,

(12)

where 𝜑 (𝑥) denotes the ReLU function, i.e., 𝜑 (𝑥) =𝑚𝑎𝑥 (0, 𝑥).
The temporal consistency loss is defined to enforce both con-

sistency on enhanced results and on weight parameters between
warped and unwarped counterparts:

L𝑡𝑒𝑚𝑝 = 𝛽1


W (

f𝑐 (𝐼 ,w)
)
− f𝑐 (𝐼 , ŵ)



2 + 𝛽2 ∥w − ŵ∥2 , (13)

where W denotes the warping function that warps image with op-
tical flow, 𝛽1 and 𝛽2 are the weights to ensure the similar magnitude
of these two loss terms.

4 EXPERIMENT
Implementation Details We apply random cropping, horizontal
flipping for data augmentation following [48]. During training, the
mini-batch size is set to 1 for image task and 64 for video task.
The learning rate is initialized as 10−4, and the model is trained by
Adam optimizer [25] with default parameters for 400 epochs. For
the loss function, we adopt the default parameter settings as [48],
i.e., 𝜆𝑠 is set to 1𝑒 − 4, and 𝜆𝑚 is set to 10 in all our experiments.
Empirically, we set 𝛽1 and 𝛽2 as 0.1 and 1, respectively. The optimal
weight 𝜆𝑡 of our proposed temporal consistency loss is discussed
in the ablation study.

We have implemented and tested our method on two deep learn-
ing frameworks, i.e., PyTorch [35] and Jittor [15]. The inference
performance of both frameworks is given in Tab. 1. Generally, Jit-
tor’s implementation is faster than that of PyTorch. All experiments
are performed on a PC with an NVIDIA RTX 3090 Ti GPU.
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Input HDRNet [10] A3D-LUT [48] F2D-LUTs (ours) Target

Figure 4: Image retouching comparisons. Shown are the test images from FiveK, results from the HDRNet [10], results from the
A3D-LUT [48], our results, and the ground truth. The corresponding error maps are also given. (Best viewed with zoom)

Table 1: Inference speed comparison between PyTorch and
Jittor. The boldface denotes the faster framework.

Platform Time per image Iterations per second
(ms/im) (it/s)

PyTorch [35] 1.2435 6.4092
Jittor [15] 1.1302 6.7801

We have trained and evaluated our method on two datasets: MIT-
Adobe 5K [4] (FiveK) and a synthetic video dataset based on Arrow
of Time (AOT) dataset [36].
Image Dataset The MIT-Adobe 5K dataset contains 5,000 raw
images and the paired retouched results, each of which is retouched
by five human experts. We use the standard training and testing
split and use images retouched by expert C as the ground truth
following the common practice [10, 39, 48]. Following [48], we
conduct experiments on two resolutions, i.e., 480p and the original
image resolution.
Synthetic Video Dataset We also construct a synthetic video
dataset to evaluate our method for video enhancement task. Fol-
lowing [51], we use the original AOT dataset [36] as ground truth
and generate different degrees of under-exposed and over-exposed
video clips as low-quality inputs (see details in Appendix B). The
synthetic dataset includes 180 video clips collected from YouTube
by retrieving a diverse set of keywords. Consequently, we use about
31K paired frames from 160 sequences for training and the remain-
ing 20 sequences for testing. Note that our image-to-video model is
trained by taking a single image as input at each iteration rather
than using sequential inputs. During the inference phase, our model
enhances the test video clips frame by frame.
MetricsWe evaluate their performances with two commonmetrics,
i.e., Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM) [43] 1. In addition, following [50], we also validate temporal
stability of models with AB(Var) [31], Mean Absolute Brightness
Difference (MABD) [19]. The lower values in the three metrics
stand for better temporal stability.

1We compute SSIM using the implementation in [48].

Table 2: Quantitative comparison of image retouching results
on the FiveK dataset with different resolutions. Here, “N.A.”
means that the result is not available. Note that some results
are replicated from [48]. Running speed (in FPS) is measured
on 4K-resolution images using a single GTX 3090 Ti.

Method FiveK-480p FiveK-original Speed
PSNR↑ SSIM↑ PSNR↑ SSIM↑

UPE [39] 21.88 0.853 21.65 0.859 6
Dis-Rec [34] 21.98 0.856 21.81 0.862 0.01
DPE [7] 23.75 0.908 N.A. N.A. N.A.
HDRNet [10] 24.32 0.912 24.03 0.919 25
A3D-LUT [48] 25.21 0.922 25.10 0.930 821

F2D-LUTs 25.34 0.929 25.19 0.935 797

4.1 Evaluation and Results
Image EnhancementWe first independently evaluate the effec-
tiveness of our image enhancer (Sec. 3.1) on image enhancement
tasks. We have compared with several representative baselines, i.e.,
UPE [39], Dis-Rec [34], HDRNet [10], DPE [7], and A3D-LUT [48].
All methods are trained on the FiveK dataset with both resolu-
tions. Tab. 2 reports the PSNR and SSIM scores, where the best
performance for each evaluation metric is highlighted in bold black.
Compared with the reinforcement-learning-based method [34] and
the transformation function basedmethods [10, 39], the LUTs-based
methods achieve better performance with much fewer parameters.
Our proposed image enhancer is superior to the compared methods
in both 480p and full-resolution settings attributed to the 2D struc-
ture and the interpolation function. We also report the running
speed on 4K-resolution images and model parameters. Fig. 4 shows
the qualitative comparisons with corresponding error maps of dif-
ferent image models. Our observation is that the HDRNet tends
to enhance images excessively with a broader range of RGB space,
while our method is more consistent with the tonal style of targets
compared with A3D-LUT.
Video EnhancementWe compare our overall video enhancement
method with state-of-the-art methods, including image-based en-
hancement methods, video-based enhancement methods as well as
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Fr
am

e
1

Fr
am

e
13
6

Fr
am

e
16
5

Figure 5: Qualitative comparison on video enhancement task. Shown are the input test video from the AOT dataset, and results
from four baselines including SID [6], RetinexNet [44], FastBlind [26], StableLLVE [50]. We also show the video enhancement
results using our model trained on the AOT and FiveK datasets in last two column. Please zoom in for a better view.

Table 3: Quantitative comparison on the synthetic video
dataset. Our model as well as image-based methods are
trained with image data, while ★ denotes methods using se-
quential video data for training.

Methods PSNR ↑ SSIM ↑ MSE ↓ AB(Var)↓ MADB↓

LIME [13] 18.28 0.8381 1.31 0.295 49.960
MELLEN [31] 18.50 0.7713 1.21 0.552 19.669
RetinexNet [44] 21.53 0.9182 0.65 0.077 8.403
A3D-LUT [48] 27.95 0.9335 0.32 0.255 17.880
SID [6] 24.19 0.9345 0.41 0.065 12.664
SMOID★ [19] 25.21 0.9332 0.39 0.054 11.664
vid2vid★ [41] 23.93 0.9259 0.55 0.196 12.586
Fast blind★ [26] 26.73 0.9326 0.35 0.053 11.984
StableLLVE [50] 27.55 0.9334 0.37 0.051 11.034
A3D-LUT+L𝑡𝑒𝑚𝑝 28.30 0.9346 0.29 0.106 12.052

Ours 29.08 0.9409 0.22 0.051 10.958

methods utilizing self-consistency. The image-based methods in-
clude a traditional method LIME [13] as well as four deep-learning
based methods, i.e., MBLLEN [31], RetinexNet [44], SID [6] and
A3D-LUT [48]. They are used to enhance videos by processing
video frames one by one. The two competing video-based methods
include vid2vid [41] and SMOID [19]. In addition, we also compare
two methods utilizing self-consistency, i.e., Fast blind [26] and Sta-
bleLLVE [50]. All methods are trained using the synthetic video
dataset (from AOT) for a fair comparison.

Quantitative results are provided in Tab. 3. The image-to-image
methods do not perform well especially on the AB(Var) metric since
they fail to preserve temporal consistency, e.g. suffering from flick-
ering. Compared with image-based methods, video-based methods
generally achieve better PSNR and SSIM and are more stable ac-
cording to AB(Var) and MADB. The post-processing method Fast
blind, based on the enhancement results of HDRNet, achieves better
performance on both quality and stability than the above methods.
The image-to-video model, StableLLVE, can also generate stable
results, however, the visual performance is limited by the prediction
model which visual quality is unsatisfactory due to lacking color
diversity. Our proposed model is superior to the compared methods

Figure 6: Results of user study. Our method is compared with
five image-based methods for blind A/B tests. In each com-
parison, we show the preference percentage of the compared
method and ours, and require the participants to select the
result that are more stable and visually pleasant.

in terms of visual quality and stability. We additionally measure
the performance of A3D-LUTs on the video task by replacing our
F2D-LUTs with the originally A3D-LUTs while keeping other com-
ponents unchanged, i.e., A3D-LUT+L𝑡𝑒𝑚𝑝 . The results show that
our proposed F2D-LUTs are more effective, i.e., having a higher
dimension of self-adaptive weights𝑤 but with much smaller model
sizes, which are more suitable for video tasks.

Fig. 5 further shows qualitative comparisons. It can be found that
the image enhancement methods SID and RetinexNet suffer from ar-
tifacts, while the generated results of StableLLVE are unsatisfactory
due to incorrect temperature. For the video temporal consistency
works, the method of Fast blind takes the original and per-frame
processed videos as inputs to produce a temporally consistent video.
In the last column of Fig. 5, we also show results generated by our
method trained with the FiveK dataset. Those results tend to have
more vivid colors due to the color diversity of the FiveK dataset.
User StudyWe have conducted a user study to evaluate the sub-
jective visual quality of our method on the video retouching task.
We compare with five image-based methods including LIME [13],
MELLEN [31], RetinexNet [44], SID [6] and StableLLVE [50]. We
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Table 4: Ablation results on the image enhancer model. We
show the PSNR results of using number (𝑀) of A3D-LUT [48]
and the proposed F2D-LUTs with two interpolation func-
tions.

LUTs Num. 1 2 3 4 5

A3D-LUT 23.15 24.86 25.21 25.26 25.29
F2D (cubic) 24.84 25.17 25.24 25.25 25.26
F2D (bicubic) 25.01 25.25 25.34 25.36 25.40

Table 5: Ablation studies on the weights of temporal consis-
tency loss on the synthetic video dataset. Note that the model
with 𝜆𝑡=0 equals our proposed F2D-LUTs.

Setting PSNR ↑ SSIM ↑ MSE ↓ AB(Var)↓ MADB↓
𝜆𝑡=0 28.22 0.9339 0.30 0.254 17.860
𝜆𝑡=0.01 28.40 0.9342 0.28 0.127 14.384
𝜆𝑡=0.1 28.83 0.9386 0.24 0.092 11.982
𝜆𝑡=0.5 29.08 0.9409 0.22 0.051 10.958
𝜆𝑡=1.0 29.02 0.9398 0.22 0.048 10.324

randomly select seven testing videos from the AOT dataset for the
blind A/B test, and invite 29 participants for the study. Only two
enhanced videos are shown at a time, and the participants are asked
to choose a better one considering the tones and stability. Fig. 6 sum-
maries the feedback results, suggesting that our retouched videos
are visually more appreciated than those of competing approaches.

4.2 Ablation Study
We conducted several ablation studies to investigate the effective-
ness of the proposed image enhancer as well as the temporal consis-
tency loss in our model. For image enhancer, we perform ablation
studies on the 480p FiveK dataset, while the temporal consistency
loss is discussed on the video dataset.
Image EnhancerWe evaluate the performance of our proposed
F2D-LUTs with different settings on image enhancement, including
the number 𝐾 of F2D-LUTs and the choice of the interpolation
function. Tab. 4 reports the performance of A3D-LUTs and our F2D-
LUTs with different numbers of LUTs from 𝐾 = 1 to 𝐾 = 5. The
results of 𝐾 = 1 verify the effectiveness of our proposed F2D-LUT
compared with a single 3D-LUT. When increasing the number of
LUTs from 1 to 3, both F2D-LUTs and A3D-LUTs are boosted signif-
icantly. In addition, further increasing the number of LUTs leads to
minor improvement for A3D-LUT, while our proposed F2D-LUTs
with bicubic interpolation function show the increased capacity. For
a fair comparison with A3D-LUTs, we still set 𝐾 to 3 in other exper-
iments. Fig. 7 visualizes three F2D-LUTs with 𝐾 = 1 learned with
both smooth and monotonicity regularization, with only mono-
tonicity regularization and with only smooth regularization. As
seen, the using either monotonicity regularization or smooth regu-
larization only results in irregular mapping results, while jointly
optimization leads to smoother and better visual results.
Temporal Consistency LossWe also conduct the ablation study
on the temporal consistency loss verifying its effect on the visual
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Figure 7: Visualization of the F2D-LUT (𝐾 = 1) learned with
different weights for L𝑙𝑢𝑡 on FiveK. (a) Visualization of 2D-
LUTs {f𝑅𝐺1 , f𝑅𝐵1 , f𝐺𝐵1 } in the RGB format by adding an addi-
tional channel filled with zeros. (b) Visualization of initial-
ized identical 2D-LUTs in one-channel format. Visualiza-
tion of learned 2D-LUTs optimized (c) with both smooth and
monotonicity regularization, (d) with only monotonicity reg-
ularization, (e) with only smooth regularization.

quality and temporal stability. Tab. 5 shows the performance of
our image-to-video model with different weight 𝜆𝑡 . As reported,
with the increase of 𝜆𝑡 , our model is gradually temporally stable
and achieves better visual quality. Compared with a pure image
enhancer (i.e., 𝜆𝑡=0), our model with 𝜆𝑡=0.5 decreases the MADB
metric by about 7.5, which is fixed in our remaining experiments.

5 CONCLUSION
In this paper, we propose a novel model for real-time video en-
hancement with LUTs-based image enhancer, which is trained on
static images to address the image-to-video task. Our proposed
F2D-LUTs exhibit capacity of representation and efficiency surpass-
ing the image-to-image methods on the MIT-Adobe-5K dataset. In
addition, by utilizing motion field inferred from the still images,
our proposed model is further imparted with temporal consistency.
Extensive experiments on the synthetic video dataset demonstrate
the superiority of our image-to-video model against SOTA methods
on both performance and efficiency.
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Input Image 𝐼 Depth Map D Obtained Image 𝐼 Optical Flow Field

Figure 8: The example results of virtual camera motion engine. From left to right: a) Input, b) Estimated depth map, c) The
generated image under a new virtual view, and d) Optical flow field consequence of virtual camera motion.

A MOTION FIELD INFERENCE
We generate non-existed optical flow from the still images to repre-
sent the motion field of video sequences via a virtual camera motion
engine [1]. We use the default setting in the official implementation
without the segmentation tool and randomly sample the transfor-
mation matrix for the datasets. Fig. 8 gives the visual results of the
generated image and obtained optical flow on the FiveK dataset. As
can be seen, such a physics-based engine can obtain reasonable new
images for mimicking the adjacent frame, benefit from which our
image-to-video model can model the temporal consistency directly.

B VIDEO DATASET SYNTHESIS
Following [51], we synthesize the under-exposed and over-exposed
samples by adjusting the exposure ratios of irradiances in the raw
image. As the raw image is not always available, the pseudo raw
image is first transformed with the reverse operation of the camera
response function (CRF), i.e., inverse camera response function
(ICRF). The CRF 𝑓 relates the actual measured intensity value 𝐼𝐵 at
a photosensitive element to the image irradiance 𝐼𝐸 by 𝐼𝐵 = 𝑓 (𝐼𝐸 ).
We use the sigmoid function as 𝑓 (·), thus the ICRF 𝑔 := 𝑓 −1 can be
formulated as:

𝐼𝐸 = 𝑔(𝐼𝐵) = 𝑛

√︄
𝜎𝐼𝐵

1 + 𝜎 − 𝐼𝐵
, (14)

where 𝑛 = 9 and 𝜎 = 0.6 according to the mean of the collected
camera curves [11]. Then the exposure of the input images can be
adjusted by multiplying the image irradiance by scaling factor 𝑠 .

We denote the exposure scaling factor as 𝑠𝑜 for the overexpo-
sure image and determine it by the clipped fraction of the image
information 𝑣𝑜 after adjusting the exposure. We use the percent-
age histogram function 𝐻 (·) to measure the image information,
thus, the exposure scaling 𝑠𝑜 for overexposure augmentation is
determined by:

𝑠𝑜 =
1
𝑖𝑡
, 𝑠 .𝑡 .

𝑖𝑡∑︁
𝑖=0

𝐻 (𝑖) = 1 − 𝑣𝑜 , (15)

Similarly, we suppose 𝑠𝑢 is the exposure scaling factor for the
underexposure image, and 𝑣𝑢 is the clipped fraction of the image
information after exposure adjustment. Thus, the exposure scaling
factor underexposure augmentation is determined by:

𝑠𝑢 = 𝑖𝑡 , 𝑠 .𝑡 .

𝑖𝑡∑︁
𝑖=0

𝐻 (𝑖) = 𝑣𝑢 . (16)

According to [51], we set 𝑣𝑜 ∈ [0.1, 0.2] for the overexposure adjust-
ment, and 𝑣𝑢 ∈ [0.4, 0.6] for the underexposure adjustment. After
sampling the exposure scaling factor, the augmented images 𝐼 ′

𝐵
can

be obtained by performing exposure adjustment and mapping to
the intensity value via CRF, i.e., 𝐼 ′

𝐵
= 𝑓 (𝑠 · 𝐼𝐸 ). In our video dataset,

85% videos are randomly sampled as under-exposed data, and the
remaining 15% videos are over-exposed data. In each video, frames
in each video clip (5 frames) employ the same exposure scaling
factor 𝑠 , while the following clip uses the exposure scaling factor
sampled from [𝑠 − 𝛿, 𝑠 + 𝛿]. We set 𝛿 as 0.02 for synthesizing videos
shot in the environment with normal illumination.
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