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Fig. 1. Geometric palette extraction and video recoloring using our method. Top to bottom: frames of the input video, corresponding frames of the recolored
video, a timeline view of the geometric palette, and RGB-space visualizations of the sliced polyhedral palettes and image colors at corresponding frames. The
input video is a year-long time-lapse. Our extracted geometric palette captures object-level time-varying color changes rather well, e.g., the color of leaves
changes from green to orange. We successfully change the video from spring-summer-autumn to spring-autumn-summer-winter order. In the geometric
palette, each node denotes a palette color. The color modification of a node is displayed by a vertical arrow, where the upper/lower half-disk shows the color
before/after the edit, respectively.©Eirik Solheim.

Color correction and color grading are important steps in film production.
Recent palette-based approaches to image recoloring have shown that a
small set of representative colors provide an intuitive set of handles for
color adjustment. However, a single, static palette cannot represent the
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time-varying colors in a video. We introduce a spatial-temporal geometry-
based approach to video recoloring. Specifically, its core is a 4D skew poly-
tope with a few vertices that approximately encloses the video pixels in
color and time, which implicitly defines time-varying palettes through slic-
ing of the 4D skew polytope at specific time values. Our geometric palette is
compact, descriptive, and provides a correspondence between colors through-
out the video, including topological changes when colors merge or split. Ex-
periments show that our method produces natural, artifact-free recoloring.

CCS Concepts: • Computing methodologies → Image manipulation;
Image processing.

Additional Key Words and Phrases: Palette, Color, Painting, Image, Video,
Spatial-temporal, Recoloring, Layer, RGB

ACM Reference Format:
Zheng-Jun Du, Kai-Xiang Lei, Kun Xu, Jianchao Tan, and Yotam Gingold.
2021. Video Recoloring via Spatial-Temporal Geometric Palettes.ACMTrans.
Graph. 40, 4, Article 150 (August 2021), 16 pages. https://doi.org/10.1145/
3450626.3459675

ACM Trans. Graph., Vol. 40, No. 4, Article 150. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459675
https://doi.org/10.1145/3450626.3459675
https://doi.org/10.1145/3450626.3459675


150:2 • Zheng-Jun Du, Kai-Xiang Lei, Kun Xu, Jianchao Tan, and Yotam Gingold

1 INTRODUCTION
Palette-based image editing is a recent paradigm for adjusting the
colorful appearance of an image [Chang et al. 2015; Mellado et al.
2017; Tan et al. 2015, 2018a; Wang et al. 2019; Zhang et al. 2017].
These approaches decompose an image into a palette and per-pixel
mixing parameters. The palette is a small set of salient or repre-
sentative colors. This provides users with an intuitive set of han-
dles with which to edit the image. Users manipulate the palette
colors by, for example, darkening a green color or changing a red
color to orange. Each pixel’s color is then updated based on the
edited palette, producing a recolored image. The palette provides
a more intuitive editing basis than the RGB channels of the input
image. Palette-based image editing provides more control than ap-
proaches based on transferring the color from one image to another
[He et al. 2019]; or global functions such as exposure adjustment,
hue rotation, or a look-up table for the entire color space. A com-
mon formulation, and one we adopt as well, is to assign each pixel
additive mixing weights. Then each pixel’s color can be computed
as

∑
𝑖 𝑤𝑖v𝑖 , where 𝑤𝑖 is the weight for palette color v𝑖 . This is a

kind of dimensionality or basis enlargement. Each pixel’s RGB val-
ues are unmixed into more intuitive but higher dimensional mixing
weights for the palette colors. In other fields, this is known as gener-
alized barycentric coordinates (geometry processing), endmember
extraction (hyperspectral imaging), or convex non-negative matrix
factorization.
Color adjustment is also an important step in film production.

Professional colorists divide the task into two stages, color correc-
tion and color grading. During color correction, colorists align the
colors of different shots to provide a coherent color scheme and in-
tensity throughout the film despite recording with different equip-
ment or illumination or scenery. During color grading, colorists al-
ter the colors to achieve a particular artistic look or feeling. Existing
tools for video color editing are also based on transfer by example
[Duchêne et al. 2017] or global operations [Adobe 2020].
The key challenge in applying palette-based editing to video

color adjustment is that the colors change over time. For artistic
control, color adjustments must also be able to change over time.
A single, static palette cannot represent the time-varying colors in
a video. Computing a separate palette per-frame would create an
unusably large number of handles for the user to adjust.

Contributions. Weextend the palette-based recoloring framework
to video scenarios. We do this by finding a compact yet descriptive
geometric palette for the video.This palette can be directly edited to
recolor the video. Our geometric palette provides a correspondence
between palette colors throughout the video, including when col-
ors merge or split. Users can add new key frames to create complex,
time-varying color changes. Our algorithm is based on the geome-
try of the video’s colors in 4D (color and time). To obtain a simple,
corresponded palette between key frames, we use a 4D skew poly-
tope (i.e., a generalized polyhedron whose faces are allowed to be
non-planar) in RGBT space to enclose the video colors over time.

2 RELATED WORK

2.1 Palette Extraction

A palette or color theme is a succinct representation of an image or
video. Several methods investigated human perception of palettes.
These works fit predictive models of human palette preference and
generate perceptual palettes from input images [Cao et al. 2017;
Feng et al. 2018; Lin and Hanrahan 2013; O’Donovan et al. 2011].
Several other approaches [Afifi 2019; Chang et al. 2015; Nguyen
et al. 2017; Zhang et al. 2017] employ k-means clustering of pixel
colors to extract palette colors.These palettes capture the dominant
colors in an image.

Recently, several works extract palettes from images based on
simplified (or approximated) convex hulls in RGB color space [Bap-
tiste et al. 2019; Grogan and Smolic 2020; Kim and Choi 2020; Tan
et al. 2018a, 2016; Wang et al. 2019]. The extracted convex hull
has a simple geometric shape and its vertices intuitively represent
palette colors. Pixel colors can be naturally represented as linear
combinations of palette colors. Its linear nature makes the recolor-
ing process intuitive, efficient, and results in better recoloring qual-
ity than clustering based approaches. However, convex-hull-based
palettes may miss important colors that lie within the convex hull.
Our method extends convex-hull palettes to videos.

In addition to the above families of approaches, several alterna-
tive approaches to palettes have been proposed. Duque-Arias et al.
[2019] represent image colors using structured color lines. This is a
more representative format, but not as compact as a palette and so
less convenient for editing. DiVerdi et al. [2019] generated “playful
palettes” that can be interpolated to obtain new colors according to
a spatial arrangement of palette colors and their RGB values. Jeong
et al. [2019] built a hierarchical palette representation for image.
Shugrina et al. [2020] explored nonlinear interpolation of colors
triads as a palette representation, which proved to be a simple yet
powerful approximation.These approaches are not amenable to our
geometric extension to videos.

2.2 Palette-Based Image Decomposition
After palette extraction, the image could be further decomposed
into layers, where each layer is a spatially varying influence map
of a palette color. Several methods proposed to use “over” composit-
ing layers [Richardt et al. 2014; Tan et al. 2015, 2016]. The layers are
order-dependent, translucent “coats of paint” of the palette colors.
When blended one on top of the other, they reconstruct the input
image. Koyama and Goto [2018] extended this to advanced blend-
ing modes. One particular blending mode, additive mixing weights,
is notable for its simplicity and order-independence [Aksoy et al.
2017; Lin et al. 2017; Tan et al. 2018a; Wang et al. 2019; Zhang et al.
2021, 2017]. Our method uses additive mixing weights as well.

Several works based their decompositions on physically-inspired
nonlinear color mixing models, namely Kubelka-Munk [Abed 2014;
Aharoni-Mack et al. 2017; Tan et al. 2019, 2015]. Several methods
consider illumination-aware palettes or layers [Cheng et al. 2020;
Duchêne et al. 2017; Meka et al. 2019]. They also explored recolor-
ing while changing the illumination of the input image for natural
recoloring effects. In our setting, we use temporally coherent addi-
tive mixing weights.
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2.3 Color Editing
Color editing, generally stated, is well-studied beyond palette-based
approaches.Many approaches have explored user guidance by draw-
ing colored scribbles or approximately-drawn spatial markings; the
algorithms propagate these hints to other areas of the image or
video [An and Pellacini 2008; Chen et al. 2012; Levin et al. 2004;
Lischinski et al. 2006; Pellacini and Lawrence 2007; Xu et al. 2009].
Scribbles impose a higher cost on users than palette-based edits,
since users must provide spatial and color guidance. Color trans-
fer is another form of color editing, in which one image adopts
the colors from another reference image. Color transfer has been
explored by many classical methods [Bonneel et al. 2013; Green-
field and House 2003, 2005; Reinhard et al. 2001; Tan et al. 2018b;
Welsh et al. 2002; Yang and Peng 2008] and recently with deep
learning techniques [He et al. 2019; Huang et al. 2020; Luan et al.
2017].These approaches consider color correspondence and seman-
tic feature correspondence between the reference image and recol-
ored image. While powerful, these methods provide very few edit-
ing controls to users beyond the choice of reference image.
Palette-based recoloring methods provide a trade-off between

user control and recoloring. Our method follows the palette-based
color editing framework, decomposing videos into 4D geometric
palettes and efficient additive mixing weights.

2.4 Color Quantization
In a quantized image, i.e., a GIF-formatted image, instead of stor-
ing a full RGB color, each pixel only stores the index to a color
lookup table. The color lookup table, which is also referred to as
a palette, ususally contains 64–256 distinct colors. Color quantiza-
tion is the process of converting an image to a quantized represen-
tation, which reduces the number of distinct colors while preserv-
ing visual fidelity. Various color quantization methods [Balasubra-
manian and Allebach 1991; Celebi 2011; Gervautz and Purgathofer
1988; Orchard et al. 1991;Wen and Celebi 2011;Wu 1992] have been
proposed to obtain the color palette (color lookup table) from an im-
age. Some otherworks extend color quantization to videos [Cheung
and Chan 2003; Kusswurm 1998; Roytman and Gotsman 1995], or
simultaneously achieve color quantization and dithering [Huang
et al. 2016]. See Ozturk et al. [2014] for a review of color quanti-
zation. The palette used in color quantization is different from the
palette used in our method. First, the purpose of quantization is to
reduce image storage rather than recoloring. Second, quantization
palettes are usually much larger.

3 BACKGROUND AND PRELIMINARIES
Our approach builds on convex-hull-based methods for palette ex-
traction and additive mixing weight computation for images [Tan
et al. 2018a, 2016; Wang et al. 2019].

Additive Mixing Weights. Given an image I and a palette V of
colors, the color of each pixel p can be expressed as a weighted
sum of palette colors:

p =
|V |∑
𝑖

𝑤𝑖,pv𝑖 ,∀p ∈ I, (1)

v𝑖 ∈ V denotes a palette color, and𝑤𝑖,p denotes the additive mixing
weight of pixel p corresponding to the palette color v𝑖 . If the con-
vex hull of the palette colors encloses the pixel color in color-space,
then mixing weights can be convex:

∑
𝑖 𝑤𝑖 = 1, 0 ≤ 𝑤𝑖 ≤ 1. We use

RGB space throughout this work.

Convex-Hull-Based Palettes. Tan et al. [2018a, 2016] proposed to
compute the 3D convex hull of all pixel colors in RGB space, and
then to iteratively simplify the convex hull to obtain a color palette
V. The iterative simplification stops when further simplification
would exceed a maximum allowable reconstruction error. Recon-
struction errors occur whenever pixel colors lie outside the simpli-
fied hull, whose vertices are constrained to lie within the RGB color
gamut [0, 1]3. There are three desirable properties for a convex-
hull-based palette: a small number of vertices (colors), high recon-
struction accuracy, and a compact palette. Too many vertices are
tedious for the user to manipulate. A compact palette is more rep-
resentative of image colors (i.e. closer). This increases maximum
weight values, which increases the directness of control offered by
the palette. Wang et al. [2019] improved the compactness of the
simplified convex hull via a vertex refinement step. Note that the
polyhedrons generated by Tan et al. [2018a, 2016] and Wang et al.
[2019] are simplified and approximate convex hulls, not accurate
ones. For simplicity of description, we will continue to use the term
convex hull to denote these approximations.

We measure the reconstruction error or loss as the average dis-
tance of all pixels to the convex hull of the palette:

𝑅(V, I) = 1

|I|
∑
p∈I

∥p − proj(p)∥, (2)

where proj(p) is the projection ofp into the convex hull of𝑉 . (proj(p) =
p when p is already inside.) To avoid enumerating all pixels, one
can compute a faster, approximate reconstruction error by randomly
sampling a small subset of pixels.

We use Wang et al. [2019]’s definition of compactness loss:

𝐶 (V, I) = 1

|V|
∑
v∈V

∥v − v𝑁 ∥, (3)

where v𝑁 is the average of the k-nearest image pixels to v in color-
space. We use 𝑘 = 50. Reconstruction error and compactness are
in tension with each other. We define the overall loss 𝐿 of a single
frame as their weighted sum:

𝐿(V, I) = 𝜆𝑅(V, I) +𝐶 (V, I), (4)
where 𝜆 control the relative contribution of the two terms. We set
𝜆 = 50 for all our examples.

4 4D GEOMETRIC PALETTE
This section defines our 4D time-varying geometric palettes, which
extend convex-hull-based image palettes. Section 5 explains how
we extract the geometric palette from an input video.

There are several desiderata when extending palette-based edit-
ing from images to videos. (1) The user should be able to edit time-
varying effects. For example, a time lapse video may depict foliage
changing from summer-like to autumn-like—or the user may wish
to add this effect. (2) The palette and video should remain tem-
porally coherent, so that edits don’t introduce undesired abrupt
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changes. (3) The palette should remain easy to use, which means
it should have a small number of representative colors that accu-
rately reconstruct the video.
In defining our 4D geometric palettes, we extend convex-hull-

based image editing approaches [Tan et al. 2018a, 2016; Wang et al.
2019]. One naive approach would be to treat the entire video as
a single, volumetric image and extract a single, global convex-hull
palette shared by the entire video [Tan et al. 2018b].The time-varying
nature of the input video must be encoded entirely as time-varying
per-pixel weights. In this naive approach, it is impossible to edit
time-varying color changes in the input, since the extracted palette
is static by construction. Moreover, the compactness of a shared,
global palette will be low, since it must enclose all colors across all
frames simultaneously.
Another naive extension would be to compute an independent

convex-hull-based decomposition for each frame of the video. How-
ever, this approach creates far too many vertices for users to edit
and has no temporal coherence. Finally, one could compute the con-
vex hull of pixels in 4D RGBT space (3D color plus time). Similarly,
it also prone to suffer from poor compactness. We compare to these
and other techniques in Section 6.2.
Our goal is to generate a geometric palette for a video, i.e., a

3D polyhedron per video frame that approximately encloses the
frame’s colors. We call this per-frame polyhedron the frame’s poly-
hedral palette. Polyhedral palettes have all the same desiderate as a
simplified convex hull (Section 3). In addition, polyhedral palettes
in different frames should be related according to three additional
desirable properties. First, polyhedral palettes should be temporally
coherent between adjacent frames. Sudden changes should be avoided.
Second, topological changes should be allowed, e.g., one frame can
have a polyhedral palette with 4 vertices and the next frame can
have one with 5 vertices. This corresponds to colors appearing or
disappearing in time. Third, the overall geometric palette should
expose to the user as few parameters as possible. Exposing all pa-
rameters (i.e., vertices and edges) of all frames’ polyhedral palettes
would be tedious and difficult to control. Our interface should pro-
vide away to conveniently control all ormultiple polyhedral palettes
simultaneously.
To achieve these goals, we base our 4D geometric palettes on a

geometric structure called a 4D skew polytope. We project all video
pixels into 4D RGBT space (3D RGB color plus the time dimension).
The 4D skew polytope is constructed to enclose all (or most) video
pixels in 4D RGBT space. The 3D polyhedral palette for a specific
video frame is implicitly defined as the slice of the 4D skew poly-
tope at a specific time value. As a result, our representation has few
parameters. It only needs to store the vertices and edges of the 4D
skew polytope. Video recoloring is achieved by editing the RGB val-
ues of each vertex of the 4D skew polytope or by introducing new
colors along its inter-frame edges.

4.1 4D Skew Polytope
We define our 4D skew polytope, its slicing operator, and how to
compute mixing weights in detail.

4.1.1 Definition. A4Dpolytope (skew or non-skew) in RGBT space
can be defined as 𝑃 = (𝑉 , 𝐸, 𝐹, Γ), where𝑉 , 𝐸, 𝐹 , and Γ are the set of
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(a) Skew polyhedron (left) vs non-skew polyhedron (right).
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(b) Sliced skew polytope (left) versus sliced non-skew polytope (right).

Fig. 2. A lower-dimensional illustration of our 4D geometric palette. Here,
the geometric palette is a 3D skew polytope for a video using a 2D color
space. The time axis runs orthogonally to face 𝑣1𝑣2𝑣3. (a) A skew poly-
tope (left) can have non-planar faces, unlike non-skew polytope (right). (b)
Slicing a skew polytope results in a simpler polygon (left) than slicing a
non-skew polytope (right).

vertices (palette colors), edges, faces, and 3-cells of the 4D polytope,
respectively. Each vertex 𝑣 = (𝑟, 𝑔, 𝑏, 𝑡) ∈ 𝑉 is a 4D point in RGBT
space. For simplicity, we normalize time values within [0, 1], e.g.,
the first video frame and last video frame correspond to 𝑡 = 0 and
𝑡 = 1, respectively. (RGB values already lie within [0, 1].) There
are two types of edges: intra-frame edges and inter-frame edges. An
intra-frame edge connects two vertices in the same video frame, i.e.,
having the same 𝑡 value. An inter-frame edge connects two vertices
in different video frames.

4.1.2 Slicing. A polytope of dimension (𝑛 − 1) can be obtained by
intersecting or slicing a polytope of dimension𝑛with a hyper-plane.
For example, one obtains a 2D polygon by slicing a 3D tetrahedron.
In this way, we naturally obtain the 3D polyhedral palette for the
𝑖−th video frame by slicing the 4D polytope 𝑃 with a hyper-plane
𝑡 = 𝑡𝑖 :

V𝑖 = 𝑆 (𝑃, 𝑡𝑖 ), (5)
where 𝑆 (·) indicates the slicing operator, 𝑡𝑖 denotes the time of the
𝑖−th video frame, and V𝑖 denotes the resulting polyhedral palette.

The 4D polytope together with the slicing operator allows us to
obtain time varying 3D polyhedral palettes. The generated polyhe-
dral palettes vary continuously along the time dimension. Topologi-
cal changes may occur. An illustration of slicing is given in Figure 2
(b).

4.1.3 Skew vs non-skew. In mathematics, a skew polyhedron is a
generalized polyhedron whose faces are allowed to be non-planar
[Wikipedia 2020]. In contrast, the faces of a non-skew polyhedron
must be planar. Since we have 4D data, we use the higher dimen-
sional generalization, skew polytopes. We use non-planar faces for
two reasons. First, a skew polytope has fewer edges and hence its
representation is simpler. Second, slicing a non-skew 4D polytope

ACM Trans. Graph., Vol. 40, No. 4, Article 150. Publication date: August 2021.



Video Recoloring via Spatial-Temporal Geometric Palettes • 150:5

produces a 3D polyhedron with unnecessarily more vertices. This
is illustrated in 3D in Figure 2, where slicing a non-skew polyhe-
dron produces a polygon with 7 vertices, whereas slicing a skew
polyhedron produces a polygon with 4. Fewer vertices are easier to
visualize and control.

4.2 Computing Mixing Weights
At any time 𝑡 , we can obtain the sliced 3D polyhedral palette V𝑡

(Equation 5). We can compute the mixing weights𝑊p for a color
p = (𝑟, 𝑔, 𝑏) with respect to V𝑡 using any generalized barycentric
coordinate scheme. In our experiments, we use Mean Value Coor-
dinates (MVC) [Floater et al. 2005; Ju et al. 2005; Wang et al. 2019].
This allows us to express p =𝑊pV𝑡 , where𝑊p is a row-vector and
V𝑡 is the matrix whose rows are the palette colors.

In turn, the vertices V𝑡 of the polyhedral palette lie along edges
of the 4D geometric palette. They can be expressed as a linear com-
bination of the edge’s endpoints:

V𝑡 =𝑊𝑡V, (6)

where V is the matrix whose rows are the 4D geometric palette’s
vertices.

Since both steps are linear, they can be combined through matrix
multiplication. In this way, any RGBT point p = (𝑟, 𝑔, 𝑏, 𝑡) can be
directly expressed with additive mixing weights in terms of the 4D
geometric palette:

p =𝑊𝑅𝐺𝐵𝑇V, (7)

where𝑊𝑅𝐺𝐵𝑇 =𝑊p𝑊𝑡 .

5 4D GEOMETRIC PALETTE EXTRACTION
In this section, we explain how to extract a 4D geometric palette
from a given video.

5.1 Overview
A straightforward approach to generate a 4D skew polytope from
a video is to use the (simplified) 4D convex hull enclosing all video
pixels in RGBT space. However, the resulting 4D convex hull of-
ten encloses a lot of empty space along the time dimension and not
satisfy our compactness property. A comparison to this straightfor-
ward approach is given in Section 6.2.

Instead, we propose a progressive approach to extract the 4D
skew polytope. Our approach mainly consists of 4 steps:

• Initialization. We generate an initial 4D skew polytope by
gluing together the approximated 3D RGB convex hulls of
adjacent video frames.This initial 4D skew polytope is overly
complex (i.e., has a large number of vertices and edges). It is
a starting point for later topological refinement and mesh
simplification. See Section 5.2.

• Block Merging. In the initialization step, each video frame
generated its polyhedral palette independently. As a result, it
is likely that the polyhedral palettes of adjacent frames have
different topology, e.g., one has 5 vertices but the other has
6 vertices. Topological changes between frames are often un-
necessary and will lead to difficulty during later mesh simpli-
fication. Hence, we introduce a block merging algorithm that

greatly reduces the number of topological changes between
frames. See Section 5.3.

• Vertex Removal. To reduce the complexity of the 4D skew
polytope, we simplify the 4D skew polytope by iteratively
removing vertices until the overall loss reaches a predefined
threshold. See Section 5.4.

• Vertex Refinement. After the above simplification step, we
perform vertex refinement to further reduce the overall loss
and increase temporal coherence. See Section 5.5.

The full pipeline is illustrated in Figure 3.

5.1.1 Loss function. We use the following loss throughout our ap-
proach, described in detail below. Given a video sequence I with 𝑁
frames, we denote the extracted 4D skew polytope as 𝑃 . Following
previous work on image palettes [Wang et al. 2019], we use Equa-
tions 2, 3, and 4 to define the reconstruction loss, compactness loss,
and overall loss (i.e., combining reconstruction and compactness)
of a video frame. The overall loss for the entire video is defined as
the average loss of all frames:

𝐿v (𝑃, I) =
1

𝑁

∑𝑁

𝑖=1
𝜃𝑖𝐿(𝑆 (𝑃, 𝑡𝑖 ), I𝑖 ), (8)

where 𝑖 enumerates over all frames, 𝑆 (𝑃, 𝑡𝑖 ) (Equation 5) denotes
the sliced 3D polyhedral palette of 𝑃 at time 𝑡𝑖 (or frame 𝑖), I𝑖 and
𝜃𝑖 denote the 𝑖-th video frame and its corresponding weight, respec-
tively.

5.2 Generating the Initial 4D Skew Polytope
5.2.1 Generating a polyhedral palette for each frame. For each video
frame, we use the method in Tan et al. [2016] to extract a simplified
3D RGB convex hull. We refine the vertex positions to reduce the
overall loss (Equation 4) using the method in Wang et al. [2019].
This results in an approximated RGB convex hull (i.e., RGB polyhe-
dron) which is usually a bit smaller than the original convex hull
with lower compactness loss. This is the frame’s polyhedral palette.

5.2.2 Gluing adjacent frames. For each pair of adjacent frames, we
need to connect the vertices of the two polyhedral palettes to form
a two-frame 4D skew polytope. Formally, denote the vertex sets of
the two frames’ polyhedral palettes asV = {𝑣𝑖 } andU = {𝑢 𝑗 }. Our
goal is to generate a set of inter-frame edges E = 𝑒𝑘 , where each 𝑒𝑘
connects a vertex in V and another vertex in U.

We introduce 4 conditions to ensure that the resulting two-frame
4D skew polytope is not only valid (a closed polytope), but also
has a clear vertex correspondence. These conditions are illustrated
in Figure 4. The first two conditions ensure that each vertex has
a correspondence, and that the correspondence does not create a
transient color that appears and disappears between two frames.

• Inter-degree Rule 1. We define the inter-degree of a vertex
as the number of inter-frame edges it has. The degree of ev-
ery vertex inV and inU should ≥ 1. Zero inter-degree is not
allowed.

• Inter-degree Rule 2. For each inter-frame edge, i.e., con-
necting a vertex 𝑣 and a vertex𝑢, At most one vertex in them
is allow to have inter-degree ≥ 2.
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Initial Skew Polytope Generation Block Merging Vertex Removal Vertex Refinement PaletteInput Video

Approximated RGB Convex Hull

RGBT Skew Polytope

t0               t1 t2              t3 t0           t1 t2             t3 t0            t1 t2           t3 t0             t1 t2            t3

1 2 3 4

Fig. 3. The pipeline of our geometric palette extraction approach. Our method takes a video as input and automatically extracts the corresponding 4D time-
varying geometric palette. The pipeline mainly contains four steps. 1) Initial skew polytope generation. We first extract the approximated RGB convex hull
for each video frame, and then build the RGBT skew polytope on adjacent video frame pairs, finally, we glue all two-frame skew polytopes together. 2)
Block merging. We divide the video frames into different blocks based on the topology of their polyhedral palettes, and perform block merging that enforce
the similar adjacent blocks share the same topology. 3) Vertex removal. We iteratively remove vertices in order to simplify the 4D skew polytope. 4) Vertex
refinement. We locally refine vertex positions to further reduce the overall loss and increase temporal coherence. The resulted 4D skew polytope corresponds
to the generated geometric palette. Note that our 4D skew polytope is illustrated in a lower dimension (3D) for better understanding.

The second two conditions ensure that an intra-frame edge in one
frame maps to another intra-frame edge (or else merges to a vertex)
in the other frame:

• Topological Rule 1. For each vertex 𝑣 that has multiple
inter-frame edges, i.e., connects to two different vertices 𝑢1
and 𝑢2, then 𝑢1 and 𝑢2 must be already connected through
an intra-frame edge. (same for 𝑢 connecting to 𝑣1 and 𝑣2).

• Topological Rule 2. For each intra-frame edge with two
end vertices 𝑣1 and 𝑣2, suppose 𝑣1 connects to 𝑢1 and 𝑣2
connects to 𝑢2, then, we must satisfy that 𝑢1 = 𝑢2 (they are
the same vertex), or 𝑢1 and 𝑢2 must be already connected
through an intra-frame edge.

The above requirements help make topological correspondences
or changes between polyhedral palettes more meaningful. There
will be three allowable kinds of vertex correspondence between
polyhedral palettes: 1) One-to-One: a vertex 𝑣 in V connects to
only one vertex 𝑢 in U (and vice versa). 2) Many-to-One: multi-
ple vertices in V connect to a single vertex 𝑢 in U; we refer to 𝑢
as a merging vertex. 3) One-to-Many: a vertex 𝑣 in V connects to
multiple vertices in U; we refer to 𝑣 as a splitting vertex. Note that
many-to-many vertex correspondences are not allowed.
In addition to those requirements, we also desire that the 4D

skew polytope is smooth in the time dimension. For example, if
frames 1 and 2 both have a red and green vertex, connecting red
to red and green to green is obviously better than connecting red
to green and green to red. Formally, we seek a set of inter-frame
edgesE that minimizes the following equation subject to the above
conditions:

∑
(𝑢,𝑣) ∈𝐸 ∥𝑢RGB − 𝑣RGB∥. We compute a two-frame 4D

RGBT-space convex hull using all vertices inV
⋃

U and restrict the
search space to the set of inter-frame edges in the 4D convex hull.
The optimal set of inter-frame edges is found through an exhaustive
search.

5.2.3 Glue all frames. Finally, we glue all two-frame 4D skew poly-
topes created from all frame pairs together. This forms the initial

v1 v2

v3

u2

u3
u4

u1

v1 v2

v3

u2

u3u4

u1

(a) (b)

v1 v2

v3

u2

u3u4

u1

v1 v2

v3

u2

u3u4

u1

(c) (d)
Fig. 4. The inter-degree rules and topological rules. (a)𝑢4 is an isolated ver-
tex with degree = 0, which violates inter-degree rule 1; (b) both endpoints
of inter-frame edges (𝑣2,𝑢3) and (𝑣3,𝑢3) with inter-degree ≥ 2, which
violates inter-degree rule 2; (c) the intra-frame edge (𝑣1, 𝑣2) has no corre-
sponding vertex and edge in other frames, which violates topological rule
2; (d) All inter-frame edge rules and topology rules are met, and 𝑣3 is a
splitting vertex.

all-frame 4D skew polytope. Note that the initial 4D skew polytope
is overly complex. It contains too many vertices and edges and has
complicated topology. To address this, we perform topological re-
finement and mesh simplification, described below.

5.3 Block Merging
The initial 4D skew polytope is overly complex, containing hun-
dreds of vertices and edges. It needs to be further simplified to be
used as a 4D geometric palette. As a mesh, it may seem straight-
forward to simplify it via a “vertex removing” algorithm that itera-
tively removes vertices. However, directly simplifying the initial 4D
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skew polytope leads to frequent topological changes in the sliced
polyhedral palettes.
We call a pair of two adjacent frames (a frame pair) topologically

consistent if (1) their polyhedral palettes have the same topology,
i.e., the same number of vertices and the same intra-frame connec-
tivity; and (2) their inter-frame edges (Section 5.2.2) are all one-to-
one. Otherwise, the frame pair is called topologically inconsistent.
Many initial frame pairs are inconsistent, because the polyhedral
palette for each frame is generated independently and temporal co-
herence is not considered in the process. Even frame pairs with
small color or content changes may be inconsistent. To address this
problem, we propose an algorithm to create blocks of contiguous,
topologically consistent frames.

5.3.1 Blocks. Wedefine a block as a sequence of contiguous frames
where each pair of adjacent frames is consistent, meaning all frames
have identical topology and all inter-frame edges are one-to-one. A
block can contain a single frame (when it is inconsistent with both
of its adjacent frames) or multiple frames. The entire video (or the
4D skew polytope) can be viewed as a sequence of blocks 𝐵 = {𝑏𝑖 },
which we call a block configuration.

Two adjacent blocks can be merged. The block merge operation
merges a block 𝑏2 into an adjacent block 𝑏1, producing a merged
block 𝑏 which contains all frames of 𝑏1 and 𝑏2. The frames in 𝑏2 dis-
card their polyhedral palettes and adopt new ones consistent with
those in 𝑏1. Without loss of generality, assume 𝑏1 comes before 𝑏2.
Denote the last frame of block 𝑏1 as 𝑠 and its polyhedral palette
V𝑠 . Block 𝑏2 contains frames 𝑠 + 1, . . . , 𝑠 + 𝑛, for which we need
to compute new polyhedral palettes V𝑠+1, . . . ,V𝑠+𝑛 . As shown in
Figure 5, the new polyhedral palettes are defined iteratively as the
vertex refinement of the previous frame’s:

V𝑘 = VertexRefine(V𝑘−1, I𝑘 ), 𝑘 = 𝑠 + 1, . . . , 𝑠 + 𝑛. (9)
VertexRefine iteratively optimizes [Wang et al. 2019] the vertices of
V𝑘−1 to better match frame I𝑘 according to the overall loss (Equa-
tion 4). The topology of 𝑏2’s new polyhedral palettes is taken di-
rectly from 𝑏1. The inter-frame edges inside the merged block 𝑏 are
regenerated to simply be one-to-one. Note that block merging is
not commutative. Merging 𝑏2 into 𝑏1 is different from merging 𝑏1
into 𝑏2.

5.3.2 Evaluating a block configuration. Wewish to reduce the num-
ber of blocks of a block configuration while maintaining the recon-
struction accuracy and compactness of the 4D skew polyhedron.
Hence, we use the overall loss in Equation 8 to measure the quality
of a block configuration, where the frame weight 𝜃𝑖 is defined as:

𝜃𝑖 =
(
1 + 𝛼

𝑛 𝑗

𝑁

) (
1 + 𝛽𝑚 𝑗

)
, (10)

where block 𝑏 𝑗 contains frame 𝑖 , 𝑛 𝑗 denotes the number of frames
in𝑏 𝑗 ,𝑁 denotes the total number of frames, and𝑚 𝑗 denotes the ver-
tex number of the polyhedral palette in each frame of 𝑏 𝑗 . The term(
1 + 𝛼𝑛 𝑗/𝑁

)
penalizes large blocks and hence encourages small

blocks to be merged first. The term (1+ 𝛽𝑚 𝑗 ) penalizes larger poly-
hedral palettes (i.e., with large numbers of vertices) and encourages
the retention of blocks with smaller polyhedral palettes. 𝛼 and 𝛽 are
parameters controlling the strength of the two terms, which we em-
pirically set as 𝛼 = 10 and 𝛽 = 1.

s                 s+1              s+2

s                 s+1              s+2

b1 b2

b  

s                 s+1              s+2

Fig. 5. BlockMerging. Two adjacent blocks𝑏1 and𝑏2 (top row) are merged
to a single block 𝑏 (bottom row), where the polyhedral palettes in block 𝑏2
discard their own topology and use the topology in block 𝑏1 instead.

5.3.3 Block merging algorithm. Our algorithm for topological re-
finement of the 4D Skew Polytope iteratively merges blocks until
the block configuration loss reaches a threshold. The details are as
follows:

(1) We start with the initial block configuration 𝐵 and compute
its loss as 𝐿0

𝑏
according to Equation 8, 10.

(2) For every pair of adjacent blocks 𝑏1 and 𝑏2 in 𝐵, we compute
the quality (block configuration loss) of both possible block
merge operations, 𝑏1 into 𝑏2 and 𝑏2 into 𝑏1.

(3) We greedily select the merge with the minimal block config-
uration loss among all possible merges computed in Step (2).
We update the block configuration 𝐵 accordingly.

(4) Repeat Steps (2) and (3) until the current block configuration
loss 𝐿𝑏 is larger than a threshold multiplied by the initial loss,
i.e., 𝐿𝑏 > 𝜂1𝐿

0
𝑏
or only one block is left. 𝜂1 is a predefined

threshold, which we typically set to 𝜂1 = 3.5.
After block merging, the number of blocks is greatly reduced, re-

sulting in a 4D skew polytope with much simpler topology. Any
remaining topological changes—vertices with inter-frame edge de-
gree greater than two (i.e., splitting andmerging vertices)—correspond
to colors appearing and disappearing (resp. splitting and merging)
in the video.

5.4 Vertex Removal
After block merging, the 4D skew polytope has simpler topology
but still contains unnecessary vertices. Unnecessary vertices man-
ifest as redundant keyframes for a palette color, where the color
does not change in the keyframe or else it changes exactly as would
be expected by linearly interpolation. In this step, we progressively
simplify the 4D skew polytope through iterative vertex removal
without changing its topology.

5.4.1 Removing one vertex. We remove a vertex by replacing it
with a ghost vertex. The ghost vertex is virtually defined and its po-
sition is enforced to lie on the inter-frame edge between non-ghost
edge endpoints. As shown in Figure 6, afterwe remove vertex𝑢, ver-
tex 𝑣 and vertex 𝑤 are then connected to form a new inter-frame
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edge 𝑣𝑤 . The ghost vertex 𝑢 ′ is enforced to lie on 𝑣𝑤 . Specifically,
it is the intersection point of the hyperplane 𝑡 = 𝑡𝑖 and the edge 𝑣𝑤 .

Our vertex removal scheme has two restrictions. First, splitting
and merging vertices cannot be removed, since removing such ver-
tices would change the topology generated by block merging. In
Figure 6, vertex 𝑟 is a splitting vertex and cannot be removed. Sec-
ond, vertices in the first and last frames cannot be removed.

u

ti
r

ti+1ti-1

v w v w

r

u'

ti ti+1ti-1

(a) (b)
Fig. 6. Removing a vertex in the skew polytope. (a) Before removing vertex
𝑢; (b) vertex 𝑢 is removed and replaced by a ghost vertex 𝑢′.

5.4.2 Iterative removal. Similar to the block merging process, we
also use the overall loss in Equation 8 to measure the quality of a
simplified 4D skew polytope, this timewith the frameweight 𝜃𝑖 = 1
for all frames. We iteratively remove vertices until the overall loss
reaches a threshold. The details are as follows:

(1) We start with the 4D skew polytope generated from block
merging and compute its initial loss 𝐿0𝑣 according to Equa-
tion 8.

(2) For each possible vertex, we compute the overall loss with
that vertex removed. To reduce the search time, we only con-
sider the 𝑘 vertices closest to their potential ghost position
in RGBT-space as candidates for removal. In our implemen-
tation, we set 𝑘 = 10.

(3) We greedily select and remove the vertex whose removal re-
sults in the smallest overall loss.

(4) Repeat Steps (2) and (3) until the current overall loss becomes
a factor greater than the initial overall loss, i.e., 𝐿𝑣 > 𝜂2𝐿

0
𝑣 , or

no additional vertices can be removed. We always set 𝜂2 = 3.

5.5 Vertex Refinement
After simplifying the 4D skew polytope, we perform additional ver-
tex refinement to further reduce the overall video loss. We also ex-
pect the 4D skew polytope to be temporally coherent so that poly-
hedral palettes change smoothly along the timeline. To measure
the smoothness of a 4D skew polytope 𝑃 , we define an additional
smoothness term as:

𝐾 (𝑃) = 1

|𝐸 |
∑

(𝑢,𝑣) ∈𝐸

����𝑢RGB − 𝑣RGB
𝑢𝑡 − 𝑣𝑡

����, (11)

where we enumerate each edge (𝑢, 𝑣) in the inter-frame edge set
𝐸 of the 4D skew polytope 𝑃 and sum the slope of color variation
with respect to time. The refinement loss is defined as the overall
video loss (Equation 8) with the addition of this smoothness term:

𝐿′v (𝑃, 𝐼 ) = 𝐿v (𝑃, I) + 𝛾𝐾 (𝑃), (12)

where the weight 𝛾 is set to 0.01 and the frame weight 𝜃𝑖 in the
overall video loss is set to 1.

We locally adjust the positions of all vertices to minimize the
refinement loss in Equation 12. We employ an iterative scheme.
Specifically, at each iteration, we select one vertex for local ad-
justment and keep all other vertices fixed. We use the NLopt li-
brary [Johnson [n.d.]] to locally adjust the position of a vertex 𝑣RGBT
in 4D RGBT space constrained to the 4D box [𝑣𝑅 − 0.1, 𝑣𝑅 + 0.1] ×
[𝑣𝐺 − 0.1, 𝑣𝐺 + 0.1] × [𝑣𝐵 − 0.1, 𝑣𝐵 + 0.1] × [𝑣𝑠

𝑏
, 𝑣𝑒
𝑏
]. Where 𝑣𝑠

𝑏
and

𝑣𝑒
𝑏
are the start and end times of the block where 𝑣 is located. To

maintain the block structure, vertices in the first/last frames and
splitting/merging vertices may not change their 𝑡 value. We cycle
through all vertices several times for the above iterative refinement
process until convergence (typically 3 cycles).

6 EXPERIMENTS
We ran our geometric palette extraction method on a PC with a
3.6 GHz CPU and 16 GB RAM.The initial 3D polyhedral palette for
each video frame is generated using the Python code from Tan et al.
[2018a] and C++ code provided by Wang et al. [2019].

We implemented an interactive tool on a MacBook Pro with a
3.1 GHz CPU and 8 GB RAM. Our GUI presents the 4D geometric
palette in a timeline view familiar from video editing packages and
a color picker for adjusting the selected palette color. The currently
selected frame is shown before and after recoloring, along an RGB-
space visualization of the frame’s original and edited colors and
sliced polyhedral palette.

Fig. 7. Our video recoloring GUI presents the 4D geometric palette in a
familiar timeline view (upper left). The currently selected frame before and
after recoloring is shown in the upper and middle right, respectively, along
with an RGB-space visualization of the frame’s colors and sliced polyhedral
palette.

6.1 Evaluation
In this subsection, we evaluate the effects of parameters used in
our method: three parameters (𝛼 , 𝜂1, and 𝛽) used in block merging
(Section 5.3) and one parameter (𝜂2) used in vertex removal (Sec-
tion 5.4). We also evaluate the necessity of the vertex refinement
step (Section 5.5) and validate our choice of mixing weights.
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Table 1. The number of blocks left after blockmerging with different values
of 𝛼 and 𝜂1. The second column (Init.) displays the initial number of blocks
before block merging. We found setting 𝛼 = 10 and 𝜂1 = 3.5 leads to a
good balance.

Example Init. 𝜂1 (𝛼 = 5) 𝜂1 (𝛼 = 10) 𝜂1 (𝛼 = 15)
1.5 3.5 6.0 1.5 3.5 6.0 1.5 3.5 6.0

FoRest (Fig. 13(a)) 61 3 1 1 3 2 1 5 2 1
StReet (Fig. 13(b)) 75 8 3 1 12 3 2 13 4 2
Cloud (Fig. 14(a)) 77 1 1 1 2 1 1 5 1 1
Night (Fig. 14(c)) 74 1 1 1 6 3 1 6 2 1
WateR (Fig. 14(d)) 98 5 2 1 9 3 2 12 5 2

Table 2. The averaged vertex count of all polyhedral palettes after block
merging with different values of 𝛽 . We found setting 𝛽 = 1.0 achieves a
good balance.

Example 𝛽 = 0 𝛽 = 1.0 𝛽 = 2.0 𝛽 = 5.0
FoRest (Fig. 13(a)) 8.0 7.4 7.4 7.4
StReet (Fig. 13(b)) 8.0 8.0 8.0 8.0
Cloud (Fig. 14(a)) 8.0 7.0 7.0 7.0
Night (Fig. 14(c)) 7.0 7.0 6.6 6.6
WateR (Fig. 14(d)) 7.4 7.0 7.0 7.0

6.1.1 Parameters𝛼 and𝜂1. In blockmerging, the parameter𝛼 (Equa-
tion 10) controls how much the loss depends on block size, and 𝜂1
controls when the iteration stops (i.e., when the current block con-
figuration loss 𝐿𝑏 > 𝜂1𝐿

0
𝑏
). They together control howmany blocks

are left after block merging. Typically, larger 𝛼 and smaller 𝜂1 lead
to more blocks and hence more complex topology of the 4D skew
polytope, while smaller 𝛼 and larger 𝜂1 lead to fewer blocks and
simpler topology.
We tested our block merging algorithmwith different value com-

binations of𝛼 and𝜂1 on various examples. For each case, we recorded
the number of blocks left after block merging. The results are pro-
vided in Table 1. Overall, we found that setting 𝛼 = 10 and 𝜂1 = 3.5
produces a moderate number of blocks for all examples, leading to
a good balance between topology complexity and ease of control.

6.1.2 Parameter 𝛽 . In block merging, larger values of parameter
𝛽 (Equation 10) encourage using polyhedral palettes with smaller
number of vertices. With 𝛽 = 0, when merging two blocks con-
taining polyhedral palettes with different vertex numbers, the algo-
rithm will tend to keep the polyhedral palette with more vertices
and discard the one with fewer vertices. Since polyhedral palettes
with more vertices have more degrees of freedom to optimize, they
typically produce smaller overall frame loss.
We tested our block merging algorithm with different values of

𝛽 . We recorded the averaged vertex count of polyhedral palettes of
all frames after block merging. The results are shown in Table 2.
From the results, we see that setting 𝛽 > 0 generally decreases the
average vertex count compared to setting 𝛽 = 0. We found setting
𝛽 = 1.0 produces a moderate averaged vertex number and use it
for all our results.

6.1.3 Parameter 𝜂2. During vertex removal, the threshold 𝜂2 con-
trols when the iterative vertex removing process stops (i.e., 𝐿𝑣 >
𝜂2𝐿

0
𝑣 ) and hence determines the complexity (i.e., vertex count) of

(a) 𝜂2 = 1.5, 26 vert (b) 𝜂2 = 3.0, 20 vert (c) 𝜂2 = 6.0, 18 vert
Fig. 8. Geometric palettes generated with different values of 𝜂2. The
palettes are generated from video example PlaygRound (see Fig. 13 (c)).

(a) with vertex refinement (b) without vertex refinement
Fig. 9. Geometric palettes generated with and without vertex refinement.
Without vertex refinement, color stops appear temporally closer to each
other, leading to abrupt color changes.The palettes are generated from
video example Night (see Fig. 14 (c)).

the 4D skew polytope. Fewer vertices allow more convenient inter-
action but tend to result in higher overall loss. So a trade-off needs
to be made. Figure 8 (a)–(c) show several geometric palettes gener-
ated with different values of 𝜂2. It can be seen clearly that larger
values of 𝜂2 result in fewer vertices. Meanwhile, fewer vertices lead
to larger overall video loss. We set 𝜂2 = 3.0 to achieve a balanced
trade-off.

6.1.4 Vertex refinement. As the final step in our pipeline, vertex
refinement is performed to further reduce the overall video loss
and improve temporal coherence. Figure 9 compares the geometric
palette generated with and without vertex refinement. Vertex re-
finement decreases the slope of sharp inter-frame edges, and hence
improves temporal coherence.

6.1.5 Mixing weights. In our experiments, we use Mean Value Co-
ordinates (MVC) [Floater et al. 2005; Ju et al. 2005; Wang et al. 2019]
to compute mixing weights. The choice of mixing weights is arbi-
trary. We experimented with an alternative RGBXY-space closed-
form approach to compute smoothmixingweights [Tan et al. 2018a].
While both methods achieve satisfactory (and similar) recoloring
results (Figure 10), the RGBXY method requires a costly additional
preprocessing step in order to construct a 5D RGBXY convex hull
for each video frame, taking minutes and gigabytes of memory per
frame. In contrast, MVC is much faster, allowing real-time weight
computation without preprocessing.

6.2 Comparisons
Recoloring approaches such as color transfer or edit propagation
provide either less user control (color transfer) or require more
user interaction (edit propagation).These are totally different kinds
of user interaction from our method. Hence, we only compare our
methodwith existing palette-based editingmethods, including RGB
convex hull methods [Tan et al. 2018a, 2016; Wang et al. 2019] and
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(a) input video (b) MVC (c) RGBXY
Fig. 10. The same frame of an input video (a) recolored using MVC (b) and
RGBXY (c) mixing weights. Both results are similarly satisfactory, yet MVC
weights are much faster to compute and need no preprocessing. The results
are generated from frame #99 of video example FoRest (see Fig. 13 (a)).

a clustering-based method [Chang et al. 2015]. Since those existing
palette-based methods are all designed for image recoloring, we ex-
tend them to handle videos.
For the RGB convex hull method, to extract a palette from a

video, we gather all pixel colors in all frames together and com-
pute a simplified RGB convex hull [Tan et al. 2018a, 2016] followed
by local vertex refinement [Wang et al. 2019]. For recoloring, we
extended these methods with two options for editing using the ex-
tracted palette. One option uses a constant palette across all frames.
The other option treats the first and last frames as two keyframes.
Users can adjust the palettes of the two keyframes separately. The
palettes of in-between frames are computed by linear interpolation.
We extended the clustering based method [Chang et al. 2015] to

handle video coloring in a similar way. We extract a palette from
all pixel colors of all frames together. We similarly treat the first
and last frames as two keyframes, linearly interpolating the editing
palettes at the keyframes to achieve time-varying editing effects.
We also experimented with RGBT convex hulls, a simpler exten-

sion of the RGB convex hull method [Tan et al. 2016] to 4D. We
first construct a 4D convex hull in RGBT space which encloses all
video pixels over time. Each pixel’s 4D values are its RGB colors
and time 𝑡 . We iteratively simplify the 4D RGBT convex hull as in
Tan et al. [2016] until the vertex count of the convex hull reaches a
predefined threshold. The 4D convex hull is a 4D polytope by defi-
nition, so we also slice it to obtain a polyhedral palette at a specific
frame.
Figure 11 shows a comparison of our method with the RGB con-

vex hull method, and the RGBT convex hull method. The input
video Seasons is a time-lapse video of trees in four seasons. The
recoloring intent is to make the earth in spring darker, leaves in
summer greener, leaves in autumn more reddish, and fallen leaves
in winter whiter. Notice that the geometric palette generated by our
method captures object-level time-varying color changes ratherwell,
e.g., the leaf color changes from green to yellow to orange. Our
method successfully achieves the recoloring intent by adjusting the
colors of a few vertices. In contrast, existing methods fail to adjust
the leaf color in the middle of the video as expected, i.e., in summer
and autumn. In addition, the polyhedral palettes generated by the
RGBT convex hull method (Figure 11 bottom row) are extremely
complex and less interpretable compared to the polyhedral palettes
generated by our method.
Figure 12 shows an additional comparison on a second video

Building. The recoloring intent is to make the clouds redder and
sky greener during sunset in the middle of the video, but keep the
sky color unchanged apart from sunset (during the day and night).

Table 3. Statistics. For each video example, we provide the number of
frames, the total number of pixels, the vertex count of the extracted 4D poly-
tope, the preprocessing time (pre) for extracting initial polyhedral palettes
for all frames using [Tan et al. 2016; Wang et al. 2019], and the time taken
by our (4D) geometric palette extraction method (excluding the time taken
for extracting initial polyhedral palettes).

Example frame pixel vert pre 4D
no. no. no. time time

Seasons (Fig. 1, Fig. 11) 50 13M 23 18 min 12 min
Building (Fig. 12) 120 96M 20 36 min 40 min
FoRest (Fig. 13 (a)) 100 46M 14 48 min 33 min
StReet (Fig. 13 (b)) 100 86M 23 42 min 48 min
PlaygRound (Fig. 13 (c)) 80 64M 20 33 min 35 min
SunRise (Fig. 13 (d)) 150 52M 17 35 min 52 min
City (Fig. 13 (e)) 120 58M 26 22 min 55 min
Fountain (Fig. 13 (f)) 60 17M 24 26 min 12 min
Cloud (Fig. 14 (a)) 120 117M 22 30 min 61 min
MoRning (Fig. 14 (b)) 100 35M 18 38 min 40 min
Night (Fig. 14 (c)) 100 92M 22 26 min 56 min
WateR (Fig. 14 (d)) 100 92M 23 26 min 45 min
Mountain (Fig. 15) 120 55M 20 31 min 45 min

In addition, we desire to make the building at the beginning of
the video brighter, and the sky at the end of the video darker. Our
method successfully achieve this recoloring intent. The other meth-
ods fail due to the lack of precise control in time. For example, the
RGB convex hull method inevitably and undesirably changes the
color of the sky in the first frame when editing the sky color in the
middle frames.

The quantitative losses measured for videos Seasons (Figure 11)
and Building (Figure 12) also verify that our generated palette
is more compact. Our palette produces much lower compactness
loss (i.e., 0.036 and 0.1255) than the RGB convex hull method (i.e.,
0.0649 and 0.3201) and the RGBT convex hull method (i.e., 0.2635
and 0.3515), with only slightly higher reconstruction loss.

6.3 Results
We have used our method to recolor a diverse set of videos. Most of
our example videos are time-lapses in order to exaggerate the color
variation over time. In general, they contain complex and relatively
rapid color changes and are rather challenging. Results are shown
throughout the paper and in galleries in Figures 13 and 14. For ex-
ample, in Figure 13(c), we adjust the color of the sky from orange
to purple. In Figure 13(e), after recoloring, the light color gradu-
ally changes from green to yellow, and the morning looks warmer
than the original video. In Figure 13(f), we make the tower’s color
change consistent with the fountain color variation. In Figure 14(a),
we perform more color variations to the cloud and the mosque to
make them more colorful.

Statistics for all examples are provided in Table 3, including the
frame count, video resolution, size of the extracted 4D geometric
palette (i.e., vertex count), the preprocessing time (i.e., the time for
extracting initial polyhedral palettes for all frames using [Tan et al.
2016; Wang et al. 2019]) and the running time of our geometric
palette extraction method. Once the geometric palette is extracted,
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we provide real-time recoloring feedback, since only a single frame
is needed for previewing. Our method produces natural, artifact-
free recoloring. The time-varying palette reflects color changes in
the input video, providing handles necessary for time-varying re-
coloring intents such as changing light and sky colors and their
reflections.
Our tool also supports adding new keyframes (i.e., color stops)

to the geometric palette. This allows more complex temporal color
changes with more sophisticated user interactions. Such an exam-
ple is shown in Figure 15. With the help of newly added color stops,
we are able to introduce non-linear temporal color changes not
present in the input video. We change the sky, cloud, and moun-
tain from lavender to blue and then back to lavender.

6.4 User Study
We performed a user study to evaluate our palette extraction and
recoloring algorithm as well as its GUI interface. We invited 16 par-
ticipants, 7 male and 9 female, aged between 21 and 26. Nine of
the participants were art school students or had extensive experi-
ence using state-of-the-art commercial video colorization tools. We
asked the participants to perform four video recoloring tasks. Two
tasks were guided with specific recoloring goals: make the video
Building look old, and make the seasons more distinct in the video
Seasons. The other two tasks were open-ended. We asked partici-
pants to freely edit two given videos however they like. Prior to the
recoloring tasks, we provided a tutorial and a trial stage for partici-
pants to learn to use our tool. After participants completed all tasks,
they responded to a questionnaire surveying our palette extraction
accuracy, recoloring quality, and user experience.
Feedback was generally very positive. For example, 100% of par-

ticipants were satisfied or very satisfied with the UI, 87.5% agree
that the extracted geometric palettes reflected the video color dis-
tribution, 87.5% reported that they can easily achieve their recolor-
ing intent using our tool, and 93.5% reported that the video recol-
oring result matched their expectations. Many of the participants
were familiar with colorization in professional video editing soft-
ware like DaVinci Resolve yet found our approach more flexible
and reported that they would prefer our tool in the future. To sim-
plify our interface for the user study, we disabled the ability to add
new color stops. Expert users were already familiar with this func-
tionality, however, and reported wanting such functionality in the
post-study survey. This suggests that our approach can meet the
needs of professional colorists. Statistics from our user study are
provided in the supplementary materials.

7 LIMITATIONS AND CONCLUSION

7.1 Limitations
Our method has several limitations. While our method is able to
support a range of useful colormanipulations, linear-mixing-weight-
based approaches cannot handle non-linear color manipulations
such as tone mapping. Another limitation is that palette-based edit-
ing methods perform global recoloring, so some spatially-varying
or per-object changes require spatial masks or additional semantic
information. Finally, our method will probably be less successful
for multi-shot videos with discontinuous temporal color changes,

since we assume colors change smoothly over time. This problem
could be bypassed by decomposing the multi-shot video into shots,
and then extracting a 4D palette for each shot separately.

7.2 Conclusion and Future Works
Wehave shown that palette-based image recoloring can be extended
naturally to videos by making the color palette a first-class object
in a timeline view. By framing the problem in terms of a 4D RGBT
skew polytope, our approach is able to capture topological changes
to the palette. Our skew polytope leads to a vastly simpler and
more editable polytope than a naive approach. Importantly, our
user study participants, including those with extensive experience
using state-of-the-art commercial colorization tools, preferred our
approach.

There are many opportunities to improve the performance of our
time-varying palette extraction. Currently, the analysis of a new
video clip can be somewhat lengthy. We plan to explore frame skip-
ping, GPU acceleration and additional pruning to further speed up
our geometric palette extraction process. For example, removing a
vertexmay only affect nearby frames, so the loss function of distant
frame need not be recomputed. Merging two large blocks typically
leads to a big increase in the loss function, so we can prune rather
than ‘wasting time’ trying to merge them.

We also wish to explore the constraints that comewith nonlinear
video editing workflows, where videos may be spliced and joined
and otherwise edited. We also wish to explore palette extraction for
streaming videos.

Another promising direction for future work is to generalize the
piecewise linear nature of our RGBT geometry to allow curved
color stops using splines as edges or even curved faces (as in Shug-
rina et al. [2020]).
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Fig. 11. Comparison of our method with RGB convex hull based methods [Tan et al. 2018a, 2016; Wang et al. 2019], a clustering base method [Chang et al.
2015], and the RGBT convex hull method. The recoloring intent is to emphasize the change in seasons by making the earth darker in spring, the leaves greener
in summer and redder in autumn, and the fallen leaves whiter in winter. Our palette captures object color changes in the video, such as the change in leaf
color from green to yellow, and finally orange. This enables direct and flexible user edits. Note the differences in the highlighted regions. ©Eirik Solheim.
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Fig. 12. Another comparison of our method with RGB convex hull based methods [Tan et al. 2018a, 2016; Wang et al. 2019], a clustering base method [Chang
et al. 2015], and the RGBT convex hull method we describe. The recoloring intent is to make the clouds glow red and the sky tint green during sunset, but
keep the original sky color unchanged at other times (day and night). In addition, the intent is to make the building at the beginning of the video brighter
and the sky at the end of the video darker. The RGBT convex hull method extracts the wrong time for sunset, confusing the user on how to achieve their
goal and undesirably modifying the sky color after sunset. Note the differences in the highlighted regions. ©Haitong Yu.
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Fig. 13. Diverse results of video recoloring using our method. For each example, the timeline view of the extracted geometric palette is shown on the right.
Each circular node represents a palette color at a point in time. Color adjustments are displayed by a vertical arrow, upper half-disk: before editing, lower
half-disk: after editing. ©Home Adrift (a), Carl_watermark (b), Haitong Yu (c), Felix Mittermeier (d), Travel Hungry For Life (e), Subway-Sun (f).
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Fig. 14. More recolored videos using our method. ©Islamic Stock Library (a), Bhargava Marripati (b), Lukas Bieri (c), NewLayer (d).
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Fig. 15. Recolored results without (top) and with (bottom) the addition of new keyframes. ©Guguheguagua.
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