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OUR METHOD

Key Idea: Deep Inverse Rendering
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KEY CHALLENGES
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KEY CHALLENGES

* How to set correct error metric to

preserve quality coherence of ' ‘ /- "
different maps? ' .

SVBRDF SVBRDFs Multiple
auto-encoder measurements

 How to construct a smooth space
suitable for optimization?

* How to get a good initialization?
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KEY CHALLENGES
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ASSUMPTIONS

* Planar object

* Point light source collocated with
the camera

* Fix distance between object plane
and camera
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TRAINING SVBRDF AUTO-ENCODER
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TRAINING SVBRDF AUTO-ENCODER
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TRAINING SVBRDF AUTO-ENCODER
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TRAINING SVBRDF AUTO-ENCODER
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TRAINING SVBRDF AUTO-ENCODER

Training Loss:

Lirain = Lmap tArender Lrender

Latent space smoothness:

Lsmooth = Asmooth”D(Z) — D(z + §)||1
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BOOTSTRAP THE OPTIMIZATION
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OPTIMIZE IN LATENT SPACE

\ SVBRDF auto-encoder

SVBRDFs

oo
%]

A7

4

¥
)
7
i
7
;/‘_”‘
7
)
S e T e e
S LA = A

Multiple measurements/
2




DETAIL REFINEMENT
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IMPROVED QUALITY WITH SINGLE INPUT
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COMPARISON WITH CLASSIC INVERSE RENDERING
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COMPARISON WITH CLASSIC INVERSE RENDERING
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Support arbitrary resolution!

HIGH RESOLUTION RESULTS
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Novel view rendering

Estimated SVBRDF with 20 input photos
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REAL CAPTURED RESULTS
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CONCLUSION & FUTURE WORK

* A unified deep inverse rendering framework

* Performs optimization in SVBRDF latent space

* Handles arbitrary number of inputs

e Future Work

* Leverage better initialization strategy

* Geometry + appearance estimation
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