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Figure 1: Comparison of our method with the convex hull based RGBXY method [TEG18] for palette based image decomposition and
recoloring. Our palette colors are more representative and our layer opacities are more sparse. For recoloring, to change the red apple and
strawberry in the input image to ‘light yellow’, our method is able to complete the task by intuitively adjusting one palette color (i.e., ‘red’)
due to the above advantages, however, the RGBXY method will inevitably introduce strong color bleeding artifacts to the orange.

Abstract
Palette-based image decomposition has attracted increasing attention in recent years. A specific class of approaches have been
proposed basing on the RGB-space geometry, which manage to construct convex hulls whose vertices act as palette colors.
However, such palettes do not guarantee to have the representative colors which actually appear in the image, thus making it
less intuitive and less predictable when editing palette colors to perform recoloring. Hence, we proposed an improved geometric
approach to address this issue. We use a polyhedron, but not necessarily a convex hull, in the RGB space to represent the color
palette. We then formulate the task of palette extraction as an optimization problem which could be solved in a few seconds. Our
palette has a higher degree of representativeness and maintains a relatively similar level of accuracy compared with previous
methods. For layer decomposition, we compute layer opacities via simple mean value coordinates, which could achieve instant
feedbacks without precomputations. We have demonstrated our method for image recoloring on a variety of examples. In
comparison with state-of-the-art works, our approach is generally more intuitive and efficient with fewer artifacts.

CCS Concepts
• Computing methodologies → Image processing;

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Yili Wang, Yifan Liu & Kun Xu / An Improved Geometric Approach for Palette-based Image Decomposition and Recoloring

1. Introduction

Palette-based image decomposition [TLG17,AASP17,TEG18] has
becoming more and more popular in recent years. They have
demonstrated impressive results for image editing and provide an
intuitive interface which is easy to learn and use for novice user-
s. In these works, a color palette, which is a small set of colors,
is first extracted from the image to represent its color distribution.
The image is then decomposed into a set of layers, where each lay-
er is a spatially varying opacity map modulated by a corresponding
palette color, such that the image could be reproduced by blending
all the layers. After layer decomposition, users could easily edit the
appearance of the image by modifying palette colors, or manipulat-
ing the layers.

Among existing works on palette-based image decomposition,
the convex hull based approaches [TLG17,TEG18] are state-of-the-
art ones. They observe that image colors imply a geometric struc-
ture in the RGB-space and could be enclosed by an RGB-space
convex hull, whose vertices correspond to a color palette. Based on
this observation, they extract a small size color palette through it-
erative simplification of the convex hull. To decompose the image
into layers, in a preprocessing stage, they build a 5D convex hull
in the RGBXY space and tessellate the 5D convex hull into non-
overlapping simplices, which typically takes a few minutes. At the
run-time stage, layer opacity values could be efficiently computed
through barycentric coordinates with respect to the tessellated 5D
simplices. They also provide a tool to visualize the geometric struc-
tures of the color palette (i.e., the convex hull) and image colors in
the RGB-space, helping users understand their geometric relation-
ships. Compared to other works, they are able to produce the most
satisfactory results considering both result quality and computation
efficiency.

Despite the benefits, however, its extracted palette colors may
have a low degree of representativeness. On the one hand, since the
palette colors are vertices of RGB-space convex hull, they do not
necessarily exist in the image. On the other hand, dominant image
colors, which are in the middle of RGB space, could not be selected
as palette colors due to geometric properties of convex hulls. Such
an example is shown in Figure 1. The input image includes three
objects: a red apple, a red strawberry and an orange. However, the
convex hull based method does not select a dominant color ‘orange’
as a palette color, but instead select ‘yellow’, which does not exist
in the image. This makes further recoloring less intuitive and less
predictable, i.e., adjusting palette color ‘red’ will largely influence
the appearance of the orange.

To address this problem, we propose an improved geometric ap-
proach for palette-based image decomposition. We follow Tan et
al. [TLG17, TEG18] to use a polyhedron to represent the color
palette. The motivation of our method is to increase the degree of
representativeness for the palette, and still maintains a high level of
reconstruction accuracy. As illustrated in Figure 2 (b), our method
will move the red vertex much closer to existing pixel colors, at the
cost of slightly increasing reconstruction error (i.e., a few colors
now become outside). We formulate the palette extraction process
as an optimization problem considering both reconstruction accura-
cy and degree of representativeness as constraints. First, we enforce
the polyhedron to enclose as many pixels as possible, i.e., main-

(a) The convex hull based method (b) Our method

Figure 2: Illustration of our palette extraction method (b), com-
pared with the RGB-space convex hull based method [TLG17] (a).
While the convex hull based method produces palette colors far
away from existing colors (i.e., a red vertex), our generated palette
colors are closed to existing colors and hence have a higher degree
of representativeness.

taining reconstruction accuracy as high as possible. Secondly, we
would also like the vertices of the polyhedron to be representative
with respect to the image, i.e., constraining each individual vertex
close to existing colors in the image as much as possible. The op-
timization could be efficiently solved in a few seconds through an
iterative solver. As shown in Figure 1, our method successfully se-
lected ‘orange’ as a palette color, and could change the appearance
of the red apple and strawberry in the input image without notice-
able artifacts by intuitively adjusting one palette color.

For layer decomposition, we use mean value coordinates (MVC-
s) [JSW05, FKR05] to compute layer opacities, based on the fact
that any colors inside the polyhedron could be expressed as a linear
interpolation of polyhedron vertices with associated MVCs. MVC-
s have analytic formulas and could be computed efficiently. The
mathematical properties of MVCs also ensure that they are contin-
uous anywhere and are smooth inside the polyhedron. MVC based
decomposition has the advantages of high efficiency, ease of imple-
mentation, small memory consumption, and nice parallelizability,
and it is demonstrated to produce smooth layers without any pre-
compuatation.

We have shown the effectiveness of our method for image re-
coloring on a variety of examples. It provides instant feedbacks,
and no precomputations are needed. In comparison with existing
palette-based image editing works, we make the following contri-
butions:

• We introduced an improved geometric approach for color palette
extraction, considering both reconstruction accuracy and degree
of representativeness. An iterative optimization scheme is also
proposed to solve for the palette within seconds.
• We also provided a simple MVC based layer decomposition

scheme, which is rather efficient and is able to produce spatially
smoother layers.
• Based on the above technical components, we give a palette-

based recoloring system which is generally more intuitive and
efficient and produces less artifacts, compared to state-of-the-art
approaches.

2. Related Works

Color Palette Extraction. A color palette (or color theme), is a s-
mall set of colors to depict the color distributions of an image. Lin
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et al. [LH13] trained a regression model to extract color palettes
from images. Some other works [CFL∗15, NPCB17, ZXST17] use
k-means clustering of pixel colors to select a palette of represen-
tative colors, which is able to capture dominant colors in an im-
age. Tan et al. [TLG17] proposed a geometric approach for palette
extraction. They first compute an RGB-space convex hull which
encloses all pixel colors, then iteratively simplify the convex hull
to have a small number of vertices. The vertices of the simplified
convex hull correspond to the generated palette colors. Since the
hull vertices must reside inside the unit RGB cube, some pixel col-
ors will probably lie outside the simplified convex hull which in-
troduces reconstruction errors. Tan et al. [TEG18] later proposed
a scheme to automatically determined a palette size, given a pre-
defined reconstruction error threshold. In all the above approach-
es, the palette colors are constant colors. Differently, Aksoy et
al. [AASP17] proposed to extract a palette of non-constant color
distributions represented by Gaussians. Non-constant color palettes
could better reconstruct color distributions in images, but they are
more complex to represent and manipulate. We use constant color
palettes due to its simplicity and ease of use.

Extracted color palettes could be manipulated to recolor im-
ages [WYW∗10, CFL∗15], patterns [LRFH13], or image group-
s [NPCB17]. Researchers have also proposed techniques to aes-
thetically rate color palettes [OAH11], and to order color palettes
for meaningful interpolation between them [PFC17].

Palette-based Decomposition. After a color palette is extracted,
the next step is to decompose the image into multiple layers where
each layer is typically a spatially varying opacity map modulated
by a corresponding palette color, such that the input image could
be reproduced by blending all the layers. One category of method-
s [TLG17, ZXST17, LFDH17, AASP17] formulates layer decom-
position as optimization problems, which enforce the composition
constraint (i.e., blending all layers results in the image). To make
layer opacities smooth and sparse, additional constraints concern-
ing spatially smoothness and sparsity may also be included in the
optimization. Optimization-based methods could produce visually
pleasing results, however, the time cost is usually high, taking min-
utes to hours to process a single image.

Another category of methods [TLG17, TEG18] computes layer
opacities through interpolation instead of solving a costly linear
or non-linear system. In the work of [TLG17], besides an op-
timization based approach to compute layer opacities, they also
proposed an interpolation based one. Specifically, after tessellat-
ing the RGB-space convex hull into non-overlapping tetrahedrons,
any pixel color could then be represented as a linear combination
of the 4 vertices of its enclosing tetrahedron using barycentric co-
ordinates. This is named as an as-sparse-as-possible (ASAP) ap-
proach, where each pixel has at most 4 non-zero layer opacities.
The ASAP approach is rather fast, however, since the generated
layer opacities have only C0 continuity, it suffers from speckling
artifacts. The ASAP approach is later extended to 5D RGBXY s-
pace [TEG18], i.e. 3D RGB colors + 2D XY positions. They first
build a 5D RGBXY-space convex hull and further compute lay-
er opacities using barycentric coordinates with respect to tesselat-
ed simplices in the 5D space. Compared to ASAP, the produced
layer opacities are much spatially smoother, and computing of the

opacities is still very fast. However, building the 5D convex hull
is slow, which usually takes minutes for a single image. Different
from the above approaches, our method utilizes mean-value coor-
dinates (MVCs) [FKR05, FKR05] to compute layer opacities, due
to its simplicity, efficiency, and smoothness nature.

The problem of layer decomposition has also been investigat-
ed from several other aspects. Besides linear blending modes (i.e.,
alpha blending and additive mixing), some works have been pro-
posed to support non-linear blending between layers [KG18, SKS-
F18]. Besides dealing with natural and bitmap images, some
works are designed to take physical paintings as input [TDL-
G17, AMSL17, TDSG15], or decompose images into vectorized
layers [RLMB∗14, FLB17].

Matting and Intrinsic Decomposition. It is worth to note that oth-
er image applications also utilize layer decomposition, such as im-
age matting [LLW07, LRAL08, SJTS04, CLT13] and intrinsic im-
age decomposition [GJAF09, STL08, BPD09, CRA11]. However,
their use of layers are different from palette-based image decom-
position. The purpose of image matting is to separate foreground
objects from backgrounds. Strokes or trimaps are given as input
to solve for alpha mattes and layer colors for foreground objects.
The values of alpha mattes tend to be exactly zero or one, except
in boundary areas. Each layer tends to capture an entire foreground
object (or the background) and hence allows to have spatially dif-
ferent colors. Differently, in palette-based editing, each layer has a
constant color and only allows spatial changes in opacity. Intrinsic
image decomposition aims at decomposing an image into a shad-
ing layer (caused by illumination) and a reflectance layer, where
the image could be reproduced by multiplication of the two layer-
s. In contrast, palette based editing uses linear blending modes in
general. Besides, as another major difference, both image matting
and intrinsic image decomposition do not involve the computation
of a color palette.

Image Recoloring. Besides palette-based decomposition, color
transfer and edit propagation are two other major techniques to per-
form image recoloring. Earlier works of color transfer [RAGS01,
WAM02] automatically recolors a given image through global col-
or mapping by matching color statistics with a reference image.
More sophisticated methods are further proposed to recolor an
image by transferring from Internet images [CZG∗11] or image
databases [HZMH14]. Color transfer is fully automatic, however,
it provides little controls to reflect user preferences. In edit propa-
gation [LLW04, LFUS06, AP08, PL07, XLJ∗09, LJH10], users are
required to put sparse strokes indicating different color edit opera-
tors (i.e., hue change) on an image, and the algorithms will prop-
agate the sparse edits to the whole image by enforcing similarity
constraints. Edit propagation provides detailed user controls, how-
ever, the need to draw strokes and specify edit operators for strokes
is somehow difficult for novice users to learn and use. In contrast,
palette-based editing only requires users to change palette colors,
providing a good balance between the range of control and ease of
use.

3. Background and Overview

Given an image I, the goal of palette based decomposition is to
extract a palette V of constant colors and to decompose the image
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into a set of additive layers of spatially varying opacities (i.e., each
layer corresponds to a particular palette color), which satisfies that
each pixel color is equal to the sum of palette colors weighted by
the corresponding layer opacities. Mathematically, for each pixel,
we have:

∑
v∈V

wv
i v = i, ∀i ∈ I, (1)

where i denotes the color of the pixel in the image, v ∈ V denotes
a palette color, wv

i denotes the opacity of the layer corresponding
to palette color v. Besides, the opacities over all layers are con-
straint to sum to one: ∑v wv

i = 1. The above problem (Equation 1)
is severe under-constrained. Generally, there exist infinite number
of solutions satisfying Equation 1 if the size of palette |V| ≥ 4.

Following previous works, we also employ a two-step scheme.
In the first step, we extract a color palette from the image (i.e.,
determine v in Equation 1). In the second step, we decomposite
the image into layers using the extracted palette (i.e., determine wv

i
in Equation 1).

Our palette extraction approach is built on top of the existing
convex hull based approaches [TLG17, TEG18]. They compute a
simplified convex hull of all pixel colors in the RGB space, and then
use the vertices of the convex hull as palette colors. The pixel col-
ors inside the convex hull could be accurately reconstructed from
the vertices while outside pixel colors may introduce reconstruc-
tion errors. In most cases, since only a few pixel colors are outside,
a high reconstruction accuracy could still be maintained. However,
it is likely to generate “hidden” palette colors, which do not exist
and are distant from existing image colors in the RGB-space, mak-
ing it less intuitive and less predictable when editing palette colors
to perform recoloring. We follow the method proposed by Tan et
al. [TLG17], using a geometric structure, i.e., a polyhedron, to rep-
resent a color palette in the 3D RGB color space. We formulate the
palette extraction process as an optimization problem. In our op-
timization, we not only enforce a high reconstruction accuracy as
was done in Tan et al. [TLG17], but also constrain the vertices of
the polyhedron, which are palette colors, to be as representative as
possible, i.e. enabling them to have a tendency moving towards the
existing pixel colors. We use an iterative approach to solve this op-
timization problem. The polyhedron is initialized using the convex
hull produced by Tan et al. [TLG17]. In each iteration, we alterna-
tively select a vertex to optimize for its best position. The optimiza-
tion converges quickly after a few iterations. Our extract palette
has a higher degree of representativeness compared with [TLG17]
and still maintains a high reconstruction accuracy. Details are given
in Section 4.

For layer composition, we find that setting layer opacities as
mean value coordinates (MVCs) [FKR05, FKR05] with respect to
the polyhedron vertices provides a simple, efficient, and effective
solution. MVCs have many advantages: they have closed-form for-
mulas and low computation cost, and they are very smooth by def-
inition. Compared with other alternatives, MVC based decomposi-
tion is more efficient without precomputations and produces spa-
tially smoother layers. Details are given in Section 5.

Furthermore, we show how they could be used in image recolor-
ing. We demonstrated the superiority of our approach over state-of-

the-art methods on a variety of examples. Details are given in Sec-
tion 6.

4. Palette Extraction

In this section, we explain how to extract a color palette from an
image. Following [TLG17], we also employ a geometric approach
in the RGB space. Tan et al. [TLG17] uses a convex hull of all pixel
colors, whose vertices act as the palette. It ensures a low reconstruc-
tion error since only a few pixel colors lie outside the convex hull.
However, Tan’s method probably results in vertices which have low
degree of representativeness. As illustrated in Figure 2 (a), the red
vertex on the right side is far away from existing colors. In contrast,
as illustrated in Figure 2 (b), our method will move the red vertex
much closer to existing pixel colors, at the cost of slight increas-
ing reconstruction error (i.e., a few colors now become outside).
A higher degree of representativeness makes palette editing more
intuitive and predictable in recoloring applications.

4.1. Formulation

We formulate our palette extraction process as an optimization
problem. Given an image I, we project all pixels to the 3D RGB
color space, where each pixel (color) corresponds to a 3D point in
the RGB space. Besides, We use a polyhedron in the RGB space to
represent a color palette. The polyhedron is denoted as P = (V,F),
where V is the set of vertices and F is the set of faces. In the follow-
ing, since some terms are actually the same thing, i.e., a point and a
pixel color, a polyhedron and a color palette, a vertex and a palette
color, we use them interchangeably for simplicity of description.

Our goal is to generate a polyhedron P that minimizes the fol-
lowing energy function F(P):

argmin
P

F(P), F(P) = λ ·R(P,I)+S(V,I). (2)

Equation 2 includes a reconstruction loss R(·) and a representa-
tive loss S(·). λ is a parameter to control the relative contributions
between the two losses.

The reconstruction loss R(·) accounts for the accuracy of recon-
struction, and it is defined as:

R(P,I) = 1
|I|∑i∈I

‖i− iP‖, (3)

where i denotes a point (pixel color), iP denotes the projected point
from i to the polyhedron P, which is defined as the closest point
on (or inside) the polyhedron from point i. Note that the projected
point iP = i when i is inside the polyhedron. Equation 3 sums over
the distances from all points in I to their projected points. The re-
construction error only comes from those points lying outside the
polyhedron, which could not be accurately reconstructed. The in-
side points do not introduce any errors.

The representative loss S(·) accounts for the degree of represen-
tativeness of vertices. It is defined as:

S(V,I) = 1
|V| ∑

v∈V
‖v−vc‖, (4)
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where v denotes a vertex of the polyhedron, vc denotes the center
of the neighboring points of v, which is computed by:

vc =
1
M ∑

i∈N(v)
i, (5)

where N(v) is the set of M nearest neighbor points from v, and M =
|N(v)| is a parameter to control the size of neighborhood set. This
term enforces each vertex close to a reasonable number of existing
points, making it have a higher degree of representativeness.

Note that when computing the neighborhood set of each vertex,
we restrict that a point belongs to the neighborhood set of at most
one vertex. When a point is found to be close to multiple vertices,
we assign it to only one neighborhood set of the vertex which is
closest to the point. This constraint is added to avoid two vertices
move towards too close.

4.2. Iterative Optimization

It is non-trivial to solve the minimization problem defined in Equa-
tion 2. First, both the reconstruction loss and the representative loss
are highly non-linear. Secondly, since Equation 2 requires enumer-
ating over all points in the image, it is costly to evaluate.

Since the colors in natural images are usually smooth and coher-
ent, to reduce the cost of evaluating the minimization target, instead
of enumerating all points to compute an accurate energy function,
we could enumerate over a small set of randomly sampled points
for an approximated one. In this way, the energy function F(P) in
Equation 2 could be approximated by:

F(P)≈ λ ·R(P,Isample)+S(V,Isample), (6)

where Isample denotes the set of randomly sampled points. We will
evaluate the choice of sampling numbers K = |Isample| in Sec-
tion 6.1. In our implementation, we typically use K = 40k samples.

We then employ an iterative approach to efficiently solve for E-
quation 6, as below:

1. Initialization. We use the convex hull generated by [TLG17]
as the initialization of our polyhedron P. We automatically de-
termine the number of vertices (i.e., size of color palette) using
the scheme given by [TEG18]. Nevertheless, the users can also
manually specify the number of vertices, e.g., increase it for bet-
ter reconstruction accuracy. Note that during the optimization
process, the topology (i.e., the connectivity relation between
vertices) and the number of vertices are not changed. We on-
ly optimize for vertex positions.

2. Refinement of a vertex. We select a single vertex v for refine-
ment, and keep all other vertices fixed. Denote its initial position
before refinement as v0.

a. Compute the neighbor center point of v0 according to Equa-
tion 5, denoted as vc,0;

b. To reduce search space, we restrict the vertex v to be on the
line where v0 and vc,0 are located:

v = (1− k)v0 + kvc,0, (7)

where k is a scalar which we restricted in [−0.5,1].

c. To avoid falling into a local minimum, we first sample a cer-
tain number of k with equal intervals in the range [−0.5,1]
(in our implementation, we sample 10 values of k), and only
keep the k with the minimal energy function (Equation 6).
After that, we employ a conventional local optimization al-
gorithm [JDP98] to obtain the optimal k through local refine-
ment of the energy function.

3. Cycle through all vertices. We select another vertex that cycles
through all vertices, and then repeat Step 2 to refine the position
of the selected vertex. Typically, only 2 or 3 cycles are enough
to converge.

Our optimization process could be viewed as trading the re-
construction loss (Equation 3) with the representative loss (Equa-
tion 4). Initially, when the polyhedron is the convex hull, the recon-
struction loss is small but the representative loss is probably large.
After optimization, our generated polyhedron maintains a low rep-
resentative loss (i.e., a high degree of representativeness) as well
as a relative low reconstruction loss. Note that we do not guarantee
the generated polyhedron to be a convex shape. We believe that a
convex shape is not necessary, as long as the majority of the points
are tightly enclosed in polyhedron.

5. MVC based Decomposition

After obtaining the color palette (i.e., the polyhedron), the next step
is to decompose the image into additive layers. Let’s briefly review
state-of-the-art approaches to perform layer decomposition, which
could be classified into optimization-based ones and interpolation-
based ones. Optimization-based approaches [TLG17, AASP17]
could produce visually pleasing and smooth layers, however, they
are very slow, usually take minutes to even hours for a sin-
gle image. Interpolation based approaches include the ASAP (as-
sparse-as-possible) method proposed in [TLG17] and the RGBXY
method [TEG18]. The ASAP method is fast and produces sparse
layer opacities (i.e., each pixel has at most 4 non-zero layer opaci-
ties.), however, it has only C0 continuity and easily produces speck-
ling artifacts during recoloring. The RGBXY method [TEG18] ex-
tends the idea of ASAP interpolation to the 5D RGBXY space. Its
interpolation is also fast, and its results are much more smooth,
however, it requires a preprocessing step to construct a 5D convex
hull for each image, which take minutes and gigabytes memories to
process a single image with megapixels. Overall, we find that ex-
isting approaches are either not efficient enough, require additional
preprocessing, or have severe problem of spatial smoothness. The
limitations of existing approaches motivated us to find a new ap-
proach for layer decomposition.

Mean value coordinates (MVCs) [JSW05, FKR05] are widely
used for transfinite interpolation problems. They are designed to
construct harmonic-like interpolant. They have several nice mathe-
matical and geometric properties. First, they have analytic formu-
las and computing them are rather simple and efficient. Secondly,
they are continuous everywhere and are smooth inside the polyhe-
dron [JSW05].

Hence, we simply set the layer opacities of each inside pixel as
its MVCs with respect to the polyhedron vertices. For pixels out-
side the polygon, we project the pixel color to its closest point on
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the polyhedron and use the MVCs of the projected point as its layer
opacities instead. We utilize the pseudo-code provided by [JSW05]
to implement MVCs. The use of MVCs provides advantages in
aspects of high efficiency, ease of implementation, small memo-
ry consumption, and nice parallelizability. The computational time
and memory cost are both negligible. Thanks to its smoothness na-
ture, we also find MVC based decomposition produces fewer arti-
facts in recoloring applications, compared to state-of-the-art works.

As pointed out by [TLG17], MVCs do not guarantee the sparsi-
ty of layer opacities. However, it is not a big issue since our palette
extraction method largely improves the sparsity. This is because the
action of enforcing a palette color to be close to existing pixel col-
ors is equivalent to making those pixel colors have a higher opacity
value close to 1 with respect to the palette color. Overall, our gener-
ated layer opacities are more sparse compared with those obtained
by the RGBXY method [TEG18].

6. Evaluations and Results

We tested our method on a PC with a 3.6 GHz Intel Core i9-9900K
CPU and an RTX 2080 graphics card. Our method is implemented
in C++ and CUDA. We use the Python code provided by [TEG18]
to obtain the convex hull as the initial value of our polyhedron. In
the following, we first evaluate the parameters used in our method
(Section 6.1), then present results of our method and comparisons
to state-of-the-art works (Section 6.2).

6.1. Parameter Evaluation

There are four parameters in our palette extraction algorithm (Sec-
tion 4), including: parameter λ (in Equation 2), the number of ran-
domly sampled points K (in Equation 6), the size of the neighbor-
hood M (in Equation 5), and the number of iterations in optimiza-
tion.

Parameter λ controls the relative contributions between the recon-
struction loss and the representative loss. Intuitively, smaller λ will
produce tighter polyhedrons with higher degrees of representative-
ness, but introduces more reconstruction errors. A trade-off needs
to be made. Figure 3 shows the reconstructed images and the gen-
erated polyhedrons using different λ for two examples. The results
are consistent with our intuition. The convex hulls or polyhedrons
generated with a large value of λ (i.e., λ = 200) enclose a majority
of pixel colors and ensure very small reconstruction errors, but the
vertices may still be far from existing colors. A small value of λ

(i.e., λ = 1) provides nice representativeness, however, it leads to
higher reconstruction errors (i.e., 0.82% and 0.39%, respectively)
since more pixel colors will be outside the polyhedron. Overall, we
find that setting λ = 20 provides a good trade-off.

Sample point number K. In Table 1, we evaluate different choices
of the number of randomly sampled points K. Recall that we ran-
domly select K points, instead of using all points, to approximately
evaluate the energy function for optimization. Intuitively, larger K
provides better accuracy but requires a higher computational cost.
For each input image, we generate a ground truth polyhedron by
optimizing the accurate energy function considering all points (E-
quation 2). For each setting of K, we generate a polyhedron using

image res. vt. K = 10k K = 40k K = 160k K = 490k
shop 1.6M 5 1.5%/0.4s 0.79%/1.3s 0.62%/5.1s 0.49%/14.7s
roadsign 4.6M 5 0.96%/0.5s 0.72%/1.6s 0.42%/5.5s 0.22%/16.6s
fruit 0.27M 5 1.0%/0.3s 0.70%/1.2s 0.23%/5.0s 0.0%/8.3s
building 0.24M 7 0.46%/0.7s 0.18%/2.8s 0.13%/10.5s 0.0%/16.1s
rowboat 0.23M 6 1.2%/0.45s 0.46%/1.8s 0.27%/6.4s 0.0%/9.6s

Table 1: Evaluation of different choices of the number of randomly
sampled points K. From left to right, for each example, we provide
image name, image resolution, the vertex number of the generated
polyhedron, and the statistics for a different setting of K, respec-
tively. For each setting of K, we provide the RMSE difference of
the generated polyhedron with the ground truth polyhedron and the
optimization time. Setting K = 40k provides a good trade-off.

our approximated energy function (Equation 6) by randomly sam-
pling K points. When K is larger than the resolution of the image,
we use all points instead. We record the RMSE difference of the
generated polyhedron with the ground truth polyhedron (i.e., by
computing the difference of their vertices) and the time for opti-
mization (i.e., the time for generating the initial convex hull is not
included). We find that setting K = 40k provides a good trade-off,
maintaining a low difference to ground truth (≤ 1.0%) and high
computational efficiency (timing ≤ 3s).

Neighborhood size M and number of iterations. First, we find
that M could not be too small, i.e., ten or fewer. A too small num-
ber of neighbors may result in unstable results which can be easily
affected by outliers or noises. Second, we have tested different val-
ues of M on a variety of images, from 0.05% to 2% of the number
of sample points (K). In most cases, we do not notice big changes
in terms of reconstruction and representative errors. Hence, we em-
pirically set it equal to 0.1% of the number of sampled points, i.e.,
when we sample K = 40k points, we set the size of neighborhood
M = 40. As for the number of iterations, we find that our iterative
approach converges very quickly, setting the number of iterations
to 2 is enough to reach convergence in tested examples.

In the following, all results are generated using the suggested
parameter values.

6.2. Comparisons and Results

Extracted Palette and Layers. In Figure 4, we provide the extract-
ed color palettes and decomposed layers generated by our method
for 9 input images. Those generated by the RGBXY method are
also provided for comparison. For the majority of tested images,
our generated layers are more sparse than those generated by the
RGBXY method. The reason is that our extracted palette colors are
more representative and are closer to existing pixel colors hence
the pixels tend to have opacity values closer to one for the nearby
palette color and closer to zero for other distant palette colors. Full
resolution layer images could be found in the supplemental materi-
als. In the following, we further show a variety of recoloring results
using our method, and assess the quality of our color palettes and
layers by comparing with state-of-the-art methods through recolor-
ing applications, to see whether it is intuitive to edit and whether
artifacts are produced.
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Figure 3: Evaluation of parameter λ. From left to right, for each example, we provide the input image, the reconstructed images (top) and
the polyhedrons (bottom) generated by the convex hull method [TLG17, TEG18] and by our method using λ = 200,80,20,1, respectively.
For each setting, The L1 reconstruction errors are also given. Overall, setting λ = 20 provides a good trade-off between the accuracy of
reconstruction and the degree of representativeness.

Recoloring. We have used our method to recolor more than 40 im-
ages. Due to limited space, we only show some of them in Figure 5.
All the recolored images are given in the supplemental materials.
Our method is able to produce vivid recoloring results on a variety
of scenes.

Note that we have made improvements on two components. One
is an improved geometric palette extraction approach (Section 4),
the other is MVC-based layer decomposition (Section 5). We fur-
ther separately assess these two components and then compare our
overall method with state-of-the-art approaches.

In Figure 6, we compare our improved palette extraction method
(Section 4) and the original convex hull-based palette extraction
method [TLG17] for image recoloring. For a fair comparison, both
methods use the same layer decomposition scheme, i.e., MVC-
based decomposition. For each example, we use each method to
generate a palette and then use this palette to recolor the input im-
age by changing only one color of the palette. From the results, we
can see that the convex hull-based method may easily lead to ‘col-
or bleeding’ artifacts since its palette colors are usually far from
existing colors and are less representative. In the ‘postcard’ image,
changing the color of a yellow envelope leads to an apparent change
of another red envelope (as highlighted in a circle). In the ‘surf’
image, changing the color of the surfboard leads to a large scale of
background change. In contrast, our palette extraction method pro-
duces desirable recoloring results for all examples through intuitive
interactions.

In Figure 7, we compare our MVC-based decomposition method
(Section 5) with other layer decomposition methods in image re-
coloring, including the ASAP approach [TLG17], the RGB opti-
mization approach [TLG17], and the RGBXY approach [TEG18].
For a fair comparison, all methods use the same palette extraction

method, i.e., the convex hull-based method [TLG17]. For each ex-
ample, for each method, we perform the same palette edits to re-
color the image. From the results, we could find that all other ap-
proaches are likely to produce artifacts in areas where colors are
slowly changing, such as sky, fogs, and soft shadow areas. The AS-
AP and RGB optimization approaches sometimes produce undesir-
able sharp boundaries, as shown in the ‘bridge’ image and the ‘lake’
images. The RGBXY approach sometimes produces artifacts like
color bleeding (i.e., in the ‘roadsign’ image, the color of the road
sign is changed when editing the color of sky), noises in areas with
slow color changing (i.e., in the top right area of the ‘lake’ image),
and soft boundaries (soft shadows in the ‘toy’ image). In contrast,
our MVC based decomposition consistently produces smooth and
visually pleasant results.

In Figure 8, we compare our overall approach with existing ap-
proaches in image recoloring, including the unmixing based ap-
proach (Aksoy et al. [AASP17]), Chang et al. [CFL∗15], and the
RGBXY approach [TEG18]. Each approach uses its own palette
extraction and layer decomposition methods. From the results, we
could see that Chang et al. [CFL∗15] and the RGBXY approach are
easy to produce non-smooth results or color bleeding artifacts. The
results of the unmixing based approach are nice, however, it is very
slow (i.e., their paper reported that it takes 4 hours and 25G memo-
ry to process a 100M image) and its user interaction is complicated
and user-unfriendly (i.e., needs to export layers to Photoshop for
further adjustment due to the use of non-constant palette colors).
In comparison, our method generates comparable image recoloring
results in a more efficient way as well as provides a more conve-
nient interface for novice users to use.

Performance. The detailed timings are given in Table 2. For al-
l examples, our palette optimization algorithm takes only a few
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Figure 4: Comparison of our generated color palettes and layers with those generated by the convex hull-based RGBXY method [TEG18].
On a variety of examples, our generated layers are more sparse than those generated by the RGBXY method, since our palette extraction
method is able to select more representative colors to be the palette colors. Full resolution layer images could be found in the supplemental
materials.
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Figure 5: Image recoloring results of our approach. For each example, we show the input image on the left and the recolored image on the
right. Our method is able to produce vivid results on a variety of scenes.
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Figure 6: Comparisons of our improved palette extraction method (Section 4) and the original convex hull-based palette extraction
method [TLG17] in image recoloring. From left to right, we provide the input image, and the two recolored images (together with the
unmodified and modified palettes) using the two methods, respectively. The edited colors are marked using underlines. Some artifacts are
marked using red circles. From the figure shown above, we could easily find that our palette extraction method produces fewer artifacts.

seconds, while generating the initial palette using the convex hull
based algorithm takes more time. Due to the high efficiency and
nice parallelizability, the time for MVC-based layer decomposition
and image recoloring is almost negligible.

Failure case. If an image has distracting colors that encompass
much of the RGB space, our method would be less successful. In
such cases, our method may produce a palette with little difference
to the original palette generated by the convex hull based approach-
es. Figure 9 shows such a failure example. However, such cases do
not occur very often. Our method is robust for most cases includ-
ing natural images with complex textures, which usually still have
simple geometric structures in the RGB space.

7. Conclusion and Future works

This paper presents an improved geometric approach for palette-
based image decomposition and recoloring. We use a polyhedron
in the RGB space to represent a color palette. We then formulate

the palette extraction process as an optimization problem consid-
ering both degree of representativeness and reconstruction accura-
cy. The optimization could be efficiently solved in a few seconds.
We further propose to use mean value coordinates to compute lay-
er opacities, which is efficient, easy to implement and parallelize.
Overall, in comparison with state-of-the-art works, our approach is
generally more intuitive and efficient with fewer artifacts for image
decomposition and recoloring.

Our method could be further improved and extended in sever-
al ways. First, since one design goal of our palette extraction al-
gorithm is high efficiency, we only optimize for vertex positions
while do not change the topology. If more time budget (e.g., hours)
is allowed, it is worthwhile to investigate more sophisticated al-
gorithms such as genetic programming that simultaneously opti-
mize for vertex positions and polyhedron topology to find a global
minimum. Secondly, we currently follow the convex hull-based ap-
proaches which operate in the RGB space, however, it is also valu-
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Figure 7: Comparisons of our MVC based decomposition method (Section 5) with other layer decomposition methods for image recoloring,
including the RGB ASAP approach [TLG17], the RGB optimization approach [TLG17], and the RGBXY approach [TEG18]. For fair com-
parison, all methods use the convex hull-based method for palette extraction. For each example, for each method, we make the same palette
edits to the example and save the recolored image. From left to right, we provide the input images and the recolored images of all methods.
The edited colors are marked using black rectangles, and artifacts are marked using red arrows, circles, and rectangles. From the figure
shown above, we could find that our MVC-based decomposition method produces smoother results with fewer artifacts.
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Figure 8: Comparison of our approach and other image recoloring approaches, including Aksoy et al. [AASP17], Chang et al. [CFL∗15],
and the RGBXY approach [TEG18]. Artifacts are highlighted using red circles and arrows. Each approach uses its own palette extraction
and layer decomposition methods.

image res. vt. num init. tm. opt. tm.
fruit (Fig. 1) 0.27M 5 5.4s 1.2s
postcard (Fig. 6 (a)) 0.96M 7 7.5s 3.0s
roadsign (Fig. 6 (b)) 4.6M 5 11.6s 1.6s
surf (Fig. 6 (c)) 0.70M 6 8.0s 1.8s
gate (Fig. 6 (d)) 0.42M 7 10.4s 2.9s
bridge (Fig. 7 (a)) 0.22M 8 8.1s 3.9s
lake (Fig. 7 (c)) 5.4M 7 11.9s 3.0s
street (Fig. 7 (d)) 0.27M 6 6.0s 1.5s
building (Fig. 7 (e)) 0.24M 7 11.1s 2.8s
rowboat (Fig. 7 (f)) 0.23M 6 9.3s 1.8s
toy (Fig. 7 (g)) 0.92M 5 5.7s 1.3s
shop (Fig. 8 (a)) 1.6M 5 6.5s 1.3s
dog (Fig. 8 (b)) 1.0M 5 35.9s 1.3s

Table 2: Performance table for palette extraction. For each image,
from left to right, we provide the image name, image resolution,
palette size, the time to obtain the initial convex hull and the time
for palette optimization.

able to discover and analyze geometric structures in different color
spaces such as LAB. Besides, we are also interested in extending
our method to deal with videos. In video color editing applications,
our MVC-based decomposition method could support fast preview-
ing of a single frame.

input image convex hull method our method

Figure 9: A failure case. The input image has distracting colors
that encompass much of the RGB space. The palette generated by
our method (right) is almost the same as that generated by the con-
vex hull based method [TLG17, TEG18] (middle).
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