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Abstract This paper surveys the state-of-the-art

of research in patch-based synthesis. Patch-based

methods synthesize output images by copying small

regions from exemplar imagery. This line of research

originated from an area called “texture synthesis,”

which focused on creating regular or semi-regular

textures from small exemplars. However, more recently,

much research has focused on synthesis of larger

and more diverse imagery, such as photos, photo

collections, videos, and light fields. Additionally, recent

research has focused on customizing the synthesis

process for particular problem domains, such as

synthesizing artistic or decorative brushes, synthesis

of rich materials, and synthesis for 3D fabrication.

This report investigates recent papers that follow these

themes, with a particular emphasis on papers published

since 2009, when the last survey in this area was

published. This survey can serve as a tutorial for

readers who are not yet familiar with these topics, as

well as provide comparisons between these papers, and

highlight some open problems in this area.

Keywords Texture, patch, image synthesis.

1 Introduction

Due to the widespread adoption of digital

photography and social media, digital images

have enormous richness and variety. Photographers

frequently have personal photo collections of thousands

of images, and cameras can be used to easily capture

high-definition video, stereo images, range images,

and high-resolution material samples. This deluge of
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Fig. 1 An illustration of texture synthesis. A texture synthesis

algorithm is given as input a small exemplar consisting of

a regular, semi-regular, or stochastic “texture” image. The

algorithm then synthesizes a large, seamless output texture

based on the input exemplar. Reproduced with permission from

Wei et al. [104], © The Eurographics Association 2009.

image data has spurred research into algorithms that

automatically remix or modify existing imagery based

on high-level user goals.

One successful research thread for manipulating

imagery based on user goals is patch-based synthesis.

Patch-based synthesis involves a user providing one or

more exemplar images to an algorithm, which is then

able to automatically synthesize new output images

by mixing and matching small compact regions called

patches or neighborhoods from the exemplar images.

Patches are frequently of fixed size, e.g. 8x8 squares.

The area of patch-based synthesis traces its

intellectual origins to an area called “texture synthesis,”

which focused on creating regular or semi-regular

textures from small examples. See Figure 1 for an

example of texture synthesis. A comprehensive survey

of texture synthesis methods up to the year 2009

is available [104]. Since then, research has focused

increasingly on synthesis of larger and more diverse

imagery, such as photos, photo collections, videos, and

light fields. Additionally, recent research has focused

on customizing the synthesis process for particular

problem domains, such as synthesizing artistic or

decorative brushes, synthesis of rich materials, and

synthesis for 3D fabrication.
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Fig. 2 An illustration of the patch-based synthesis method of

image quilting [36]. At left is an input exemplar. At right, in

(a), (b), and (c), output imagery is synthesized. In (a) and (b)

are shown what we call the matching stage, where patches are

selected according to different criteria: either random sampling

(a) or based on a patch similarity term with previously selected

patches (b). In (c) is shown what we call the blending stage,

which composites and blends together overlapping patches. In

this method, the “blending” is actually done based on a minimal

error boundary cut. Reproduced with permission from Efros and

Freeman [36], © Association for Computing Machinery 2001.

In this survey, we cover recent papers that follow

these themes, with a particular emphasis on papers

published since 2009. This survey also provides a gentle

introduction to the state-of-the-art in this area, so that

readers unfamiliar with this area can learn about these

topics. We additionally provide comparisons between

state-of-the-art papers and highlight open problems.

2 Overview

This survey paper is structured as follows. In

Section 3, we provide an gentle introduction to patch-

based synthesis by reviewing how patch-based synthesis

methods work. This introduction includes a discussion

of the two main stages of most patch-based synthesis

methods: matching, which finds suitable patches to

copy from exemplars, and blending, which composites

and blends patches together on the output image.

Because the matching stage tends to be inefficient,

in Section 4, we next go into greater depth on

accelerations to the patch matching stage. For the

remainder of the paper, we then investigate different

applications of patch-based synthesis. In Section 5-

Section 7, we discuss applications to image inpainting,

synthesis of whole images, image collections, and video.

In Section 8, we then investigate synthesis algorithms

that are tailored towards specialized problem domains,

including mimicking artistic style, synthesis of artistic

brushes and decorative patterns, synthesis for 3D and

3D fabrication, fluid synthesis, and synthesis of rich

materials. Finally, we wrap up with discussion and a

possible area for future work in Section 9.

3 Introduction to patch-based synthesis

There are two main approaches for example-based

synthesis: pixel-based methods, which synthesize

by copying one pixel at a time from an exemplar

to an output image, and patch-based methods,

which synthesize by copying entire patches from the

exemplar. Pixel-based methods are discussed in detail

by Wei et al. [104]. Patch-based methods have been in

widespread use recently, so we focus on them.

We now provide a review of how patch-based

synthesis methods work. In Figure 2, an illustration is

shown of the patch-based method of image quilting [36].

There are two main stages of most patch-based

synthesis methods: matching and blending.

The matching stage locates suitable patches to copy

from exemplars, by establishing a correspondence

between locations in the output image being

synthesized, and the input exemplar image. In

image quilting [36], this is done by laying down

patches in raster scan order, and then selecting out

of a number of candidate patches the one that has

the best agreement with already placed patches. This

matching process is straightforward for small textures

but becomes more challenging for large photographs or

photo collections, so we discuss in more depth different

matching algorithms in Section 4.

Subsequently, the blending stage composites and

blends patches together on the output image. See

Figure 3 for an illustration of the different patch

blending methods discussed here. For sparse patches

that have a relatively small overlap region, blending

can be done by simply compositing irregularly-shaped

patches [90], using a blending operation in the overlap

region [70], or using dynamic programming or graph

cuts to find optimal seams [36, 65] (see Figure 2(c)

and Figure 3(a-c)). In other papers, dense patches

are defined such that there is one patch centered at

every pixel. In this case, many patches simultaneously

overlap, and thus the blending operation is typically

done as a weighted average of many different candidate

“votes” for colors in the overlap region [7, 96, 106] (see

Figure 3(d)).

Synthesis can further be divided into greedy

algorithms that synthesize pixels or patches only once,

and iterative optimization algorithms that use multiple

passes to repeatedly improve the texture in the output

image. The image quilting [36] method shown in

Figure 2 is a greedy algorithm because it simply

places patches in raster order in a single pass. A

limitation of greedy algorithms is that if a mistake is
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(b) Blend in
Overlap Region

(c) Find Optimal
Seam

(a) Composite
Irregularly 

Shaped Patches

Sparse Patch
Blending Methods

Dense Patch
Blending Methods

(d) “Voting:” Average
of Overlapping Patches

Fig. 3 Blending methods for patch-based synthesis. On

the left are shown three methods for blending sparse patches,

which are defined as patches having a relatively small overlap

region: (a) irregularly-shaped patches can be composited [90];

(b) overlapping patches can be blended in the overlap region [70];

or (c) optimal seams can be found to make a hard “cut” between

patches. On the right (d) is shown a method for blending densely

overlapping patches, where a patch is defined around every pixel:

an average of all overlapping colors is computed by a voting

process [96, 106].

made in synthesis, the algorithm cannot later recover

from the mistake. In contrast, dense patch synthesis

algorithms [7, 59, 96, 106] typically repeat the matching

and blending stages as an optimization. In the

matching stage, patches within the current estimate for

the output image are matched against the exemplar

to establish potential improvements to the texture.

Next, in the blending stage, these texture patches are

copied and blended together by the “voting” process

to give an improved estimate for the output image

at the next iteration. Iterative optimization methods

also typically work in a coarse-to-fine manner, by

running the optimization on an image pyramid [18]: the

optimization is repeated until convergence at a coarse

resolution, and then this is repeated at successively

finer resolutions until the target image resolution is

reached.

4 Matching algorithms

In this section, we discuss algorithms for finding good

matches between the output image being synthesized

and the input exemplar image. As explained in

the previous section, patch-based synthesis algorithms

have two main stages: matching and blending. The

matching stage locates the best patches to copy from

the exemplar image to the output image that is being

synthesized.

Matching is generally done by minimizing a distance

term between a partially or completely synthesized

patch in the output image and a same-shaped region

in the exemplar image: a search is used to find the

exemplar patch that minimizes this distance. We call

the distance a patch distance or neighborhood distance.

For example, in the image quilting [36] example of

Figure 2, this distance is defined by measuring the

L2 norm between corresponding pixel colors in the

overlap region between blocks B1 and B2. For

iterative optimization methods [96, 106], the patch

distance is frequently defined as an L2 norm between

corresponding pixel colors of a pxp square patch in the

output image and the same-sized region in the exemplar

image. More generally, the patch distance could

potentially operate on any image features (e.g. SIFT

features computed densely on each pixel [73]), use any

function to measure the error of the match (including

functions not satisfying the triangle inequality), and

use two or more degrees of freedom for the search

over correspondences from the output image patch

and the exemplar patch (for example, in addition to

searching to find the (x, y) translational coordinates of

an exemplar patch to match, a rotation angle θ, and

scale s could also be searched over).

Typically, matching then proceeds by finding nearest

neighbors from the synthesized output S to the

exemplar E according to the patch distance. In the

terminology of Barnes et al. [8], for the case of two

(XY) translational degrees of freedom, we can define a

Nearest Neighbor Field (NNF) as a function f : S 7→ R2

of offsets, defined over all possible patch coordinates

(locations of patch centers) in image S, mapping to

the center coordinate of the corresponding most similar

patch in the exemplar.

Although search in the matching stage can be done

in a brute-force manner by exhaustively sampling the

parameter space, this tends to be so inefficient as to be

impractical for all but the smallest exemplar images.

Thus, much research has been devoted to more efficient

matching algorithms. Generally, research has focused

on approximation algorithms for the matching, because

exact algorithms remain slower [107], and the human

visual system is not sensitive to small errors in color.

We will first discuss different approximate matching

algorithms for patches, followed by a discussion of how

these can be generalized to apply to correspondence

finding algorithms in computer vision. In Figure 4 are

shown illustrations of the key components of a number

of approximate matching algorithms. We now discuss

five matching algorithms.

Matching using coherence. One simple technique

to find good correspondences is to take advantage

of coherence [3]. Typically, the nearest neighbor

field (NNF) used for matching is initialized in some

manner, such as by random sampling. However,

random correspondences are quite poor, that is, they

have high approximation error. An illustration of
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Fig. 4 The key components of different approximate matching algorithms. The goal of each matching algorithm is to establish

correspondences between patches in the output image and patches in the exemplar. Each algorithm proposes one or more candidate

matches, out of which is selected the match with minimal patch distance. See the body of Section 4 for a discussion of each algorithm.

coherence is shown in Figure 4(a). Suppose that during

synthesis, we are examining a current patch in the

output image (shown as a solid red square) and it has

a poor correspondence in the exemplar (shown as a

dotted red square, with the red arrow indicating the

correspondence), that is, the correspondence has high

patch distance. In this case, a better correspondence

might be obtained from an adjacent patch such as the

blue one to the left. However, the correspondence

from the adjacent left patch (in blue) must be shifted

to the right to obtain an appropriate correspondence

for the current patch. The new (shifted) candidate

correspondence is shown in green. The patch distance

is evaluated for this new candidate correspondence,

compared with the existing patch distance for the

red correspondence, and whichever correspondence has

lower patch distance is written back to the NNF. We

refer to this process of choosing the best correspondence

as improving a correspondence. Matching using

coherence is also known as propagation, because it has

the effect of propagating good correspondences across

the image. Typically, one might propagate from a

larger set of adjacent patches than just the left one:

for example, if one is synthesizing in raster order, one

might propagate from the left patch, the above patch,

and the above-left patch.

Matching using k-coherence. An effective

technique for finding correspondences in small,

repetitive textures is k-coherence [101]. This combines

the previous coherence technique with precomputed

k-nearest neighbors within the exemplar. The

k-coherence method is illustrated in Figure 4(b).

A precomputation is run on the exemplar, which

determines for each patch in the exemplar (illustrated

by a green square), what are the k most similar patches

located elsewhere in the exemplar (illustrated in green,

for k = 2). Now suppose that during synthesis,

similarly as before, we are examining a current patch,

which has a poor correspondence, shown in red. We

first apply the coherence rule: we look up the adjacent

left patch’s correspondence within the exemplar (shown

in blue), and shift the exemplar patch to the right by

one pixel to obtain the coherence candidate (shown in

green). The coherence candidate as well as its k nearest

neighbor candidates (all shown as green squares) are all

considered as candidates to improve the current patch’s

correspondence. This process can be repeated for other

coherence candidates, such as for the above patch.

Matching using PatchMatch. When real-world

photographs are used, k-coherence alone is insufficient

to find good patch correspondences, because it assumes

that the image is a relatively small and repetitive

texture. PatchMatch [6–8] allows for better global

correspondences within real-world photographs. It

augments the previous coherence (or propagation)

stage with a random search process, which can search

for good correspondences across the entire exemplar

image, but places most samples in local neighborhoods

surrounding the current correspondence. Specifically,

the candidate correspondences are sampled uniformly

within sampling windows that are centered on the

best current correspondence. As each patch is visited,

the sampling window initially has the same size as

the exemplar image, but it then contracts in width

4
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and height by powers of two until the it reaches 1

pixel in size. This random search process is shown

in Figure 4(c). Unlike methods such as locality-

sensitive hashing (LSH) or kd-trees, PatchMatch takes

less memory, and it is more flexible: it can use an

arbitrary patch distance function. The Generalized

PatchMatch algorithm [8] can utilize arbitrary degrees

of freedom, such as matching over rotations and scales,

and can find approximate k-nearest neighbors instead

of only a single nearest neighbor. For the specific

case of matching patches using 2D translational degrees

of freedom only under the L2 norm, PatchMatch

is more efficient than kd-trees when they are used

naively [7], however, it is less efficient than state-

of-the-art techniques that combine LSH or kd-trees

with coherence [46, 63, 87]. Recently, graph-based

matching algorithms have also been developed based

on PatchMatch, which operate across image collections:

we discuss these next in Section 6.

Matching using locality sensitive hashing.

Locality-sensitive hashing [29] (LSH) is a dimension

reduction and quantization method that maps from

a high dimensional feature space down to a lower-

dimensional quantized space that is suitable to use

as a “bucket” in a multidimensional hash table. For

example, in the case of patch synthesis, the feature

space for a pxp square patch in RGB color space could

be R3p2

, because we could stack the RGB colors from

each of the p2 pixels in the patch into a large vector.

The hash bucket space could be some lower-dimensional

space such as N6. The “locality” property of LSH

is that similar features map to the same hash table

bucket with high probability. This allows one to store

and retrieve similar patches by a simple hash-function

lookup. One example of a locality-sensitive hashing

function is a projection onto a random hyperplane

followed by quantization [29]. Two recent works on

matching patches using LSH are coherency-sensitive

hashing (CSH) [63] and PatchTable [9]. These two

works have a similar hashing process and both use

coherence to accelerate the search. Here we discuss

the hashing process of PatchTable, because it computes

matches only from the output image to the exemplar,

whereas CSH computes matches from one image to the

other and vice versa.

The patch search process for PatchTable [9] is

illustrated in Figure 4(d). First, in a precomputation

stage, a multidimensional hash table is created, which

maps a hash bucket to an exemplar patch location.

The exemplar patches are then inserted into the hash

table. Second, as shown in Figure 4(d), during patch

Fig. 5 Results from PatchMatch filter [77]. The algorithm

accepts a stereo image pair as input, and estimates stereo

disparity maps. The resulting images show a rendering from

a new 3D viewpoint. Reproduced with permission from [77],

© 2013.

synthesis, for each output patch, we use LSH to map

the patch to a hash table cell, which stores the location

of an exemplar patch. Thus, for each output patch, we

can look up a similar exemplar patch. In practice, this

hash lookup operation is done only on a sparse grid for

efficiency, and coherence is used to fill in the gaps.

Matching using tree-based techniques. Tree

search techniques have long been used in patch

synthesis [46, 70, 87, 96, 105]. The basic idea is to first

reduce the dimensionality of patches using a technique

such as principal components analysis (PCA) [35], and

then insert the reduced dimensionality feature vectors

into a tree data structure that adaptively divides up

the patch appearance space. The matching process is

illustrated in Figure 4(e). Here a kd-tree is shown as

a data structure that indexes the patches. A kd-tree

is an adaptive space-partitioning data structure that

divides up space by axis-aligned hyperplanes to conform

to the density of the points that were inserted into

the tree [85]. Such kd-tree methods are the state-of-

the-art for efficient patch searches for 2D translational

matching with L2 norm patch distance function [46, 87].

We now review the state-of-the-art technique of

TreeCANN [87]. TreeCANN works by first inserting

all exemplar patches that lie along a sparse grid into

a kd-tree. The sparse grid is used to improve the

efficiency of the algorithm, because kd-tree operations

are not highly efficient, and are memory intensive.

Next, during synthesis, output patches that lie along a

sparse grid are searched against the kd-tree. Locations

between sparse grid pixels are filled using coherence.

Correspondences in computer vision. The

PatchMatch [8] algorithm permits arbitrary patch

distances with arbitrary degrees of freedom. Many

papers in computer vision have therefore adapted

PatchMatch to handle challenging correspondence

problems such as stereo matching and optical

flow. We review a few representative papers here.

Bleyer et al. [14] showed that better correspondences
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can be found between stereo image pairs by adding

additional degrees of freedom to patches so they can

tilt in 3D out of the camera plane. The PatchMatch

filter work [77] showed that edge-aware filters on cost

volumes can be used in combination with PatchMatch

to solve labeling problems such as optical flow and

stereo matching. Results for stereo matching are

shown in Figure 5. Similarly, optical flow [22] with

large displacements has been addressed by computing

a NNF from PatchMatch, which provides approximate

correspondences, and then using robust model fitting

and motion segmentation to eliminate outliers. Belief

propagation techniques have also been integrated with

PatchMatch [12] to regularize the correspondence fields

it produces.

5 Images

The patch-based matching algorithms of Section 4

facilitate many applications in image and video

manipulation. In this section, we discuss some of

these applications. Patch-based methods can be used

to inpaint targeted regions or “reshuffle” content in

images. They can also be used to edit repeated elements

in images. Researchers have also proposed editing and

enhancement methods for image collections and videos.

These applications incorporate the efficient patch query

techniques from Section 4 in order to make running

times be practical.

Inpainting and reshuffling. One compelling

application of patch-based querying and synthesis

methods is image inpainting [43]. Image inpainting

removes a foreground region from an image by replacing

it with background material found elsewhere in the

image, or in other images. In [7], PatchMatch

was shown to be useful for interactive high-quality

image inpainting, by using an iterative optimization

method that works in a coarse-to-fine manner.

Specifically, this process works by repeatedly matching

partially completed features inside the hole region to

better matches in the background region. Various

subsequent methods took a similar approach and

focused on improving the completion quality for more

complex conditions, such as maintaining geometrical

information that can preserve continuous structures

between the hole to inpaint and existing content [19,

53]. To combine such different strategies into a uniform

framework, Bugeau et al. [17] and Arias et al. [2]

separately proposed variational systems that can choose

different metrics when matching patches to adapt to

different kinds of inpainting inputs. Kopf et al. [62]

also proposed a method to predict the inpainting

quality, which can help to choose the most suitable

image inpainting methods for different situations.

Most recently, deep learning has been introduced in

[88] to estimate the missing patches and produce a

feature descriptor. The patch-based approach has also

been used for Internet photo applications like image

inpainting for street view generation [115]. Image

“reshuffling” is the problem where a user roughly grabs

a region of an image and moves it to a new position.

The goal is that the computer can synthesize a new

image consistent with the user constraints. Reshuffling

can be treated as the extension of image inpainting

techniques, by initializing the regions to be synthesized

by user specified contents [26]. In Barnes et al. [7], the

reshuffling results are made more controllable by adding

user constraints to the PatchMatch algorithm.

Editing repeated elements in images. To

perform object level image editing, it is necessary

to deform objects, and inpaint occluded parts of the

objects and the background. Patch-based methods

can be used to address these challenges. One scenario

for object-level image manipulation involves repeated

elements in textures and natural images. The idea

of editing repeated elements was first proposed by the

work of RepFinder [23]. In their interactive system, the

repeated objects are first detected and extracted. Next,

the edited objects are composited on the completed

background using a PatchMatch-based inpainting

method. One result is shown in Figure 6. Huang et al.

[52] improve the selection part of RepFinder and also

demonstrate similar editing applications. In addition

to exploring traditional image operations like moving,

deleting and deforming the repeated elements, novel

editing tools were also proposed by Huang et al. In

the work of ImageAdmixture [110], mixtures between

groups of similar elements were created, as shown in

Fig. 6. To create natural appearance in the mixed

elements’ boundary regions, patch-based synthesis is

used to generate the appearance using the pixels from

boundaries of other elements within the same group.

Denoising. The Generalized PatchMatch work [8]

showed that non-local patch searches can be integrated

into the non-local means method [16] for image

denoising to improve noise reduction. Specifically, this

process works by finding for each image patch, the k

most similar matches both globally across the image,

and locally within a search region. A weighted average

of these patches can be taken to remove noise from the

input image patches. Liu and Freeman [71] showed that

a similar non-local patch search can be used for video,

where optical flow guides the patch search process. The

6
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Fig. 6 An illustration of editing repeated elements in an

image. Upper row: RepFinder [23] uses patch-based methods

to complete the background of the editing results before

compositing different layers of foreground objects. Lower row:

ImageAdmixture [110] uses patch-based synthesis to determine

boundary appearance when generating mixtures of objects.

Reproduced with permission from [23], © Associating for

Computing Machinery 2010, and [110], © IEEE 2012.

method of Deledalle et al. [30] showed that principal

components analysis (PCA) can be combined with

patch-based denoising to produce high-quality image

denoising results. Finally, Chatterjee and Milanfar [20]

showed that a patch-based Wiener filter can be used

to reduce noise by exploiting redundancies at the patch

level. In the closely related task of image smoothing,

researchers have also investigated patch-based methods

that use second order feature statistics [58, 72].

6 Image collections

In the scenario where a photographer has multiple

images, there are two categories of existing works on

utilizing patches as the basic operating units. In

the first category, researchers extended patch-based

techniques that had previously been applied to single

images to multi-view images and image collections as

Tong et al. did in [100]. In the second category, patches

are treated as a bridges to build connections between

different images. We now discuss the first category of

editing tools. For stereo images, patch-based inpainting

methods have been used to complete regions that have

missing pixel colors caused by dis-occlusions when

synthesizing novel perspective viewpoints [28, 60, 103].

In the work of Wang et al. [103], depth information is

also utilized to aid the patch-based hole filling process

for object removal. Morse et al. [84] proposed an

extension of PatchMatch to obtain better stereo image

inpainting results. Morse et al. complete the depth

information first and then add this depth information to

Fig. 7 Results of reshuffling and re-layering the content in

a light field by PlenoPatch [111]. Reproduced with permission

from [111], © IEEE 2016.

Fig. 8 Matching regions (right) by NRDC [44] of the two

input images (left and middle) with different color theme.

Reproduced with permission from [44], © Association for

Computing Machinery 2011.

PatchMatch’s propagation step when finding matches

for inpainting both stereo views. Inspired by the

commercial development of light field capture devices

like PiCam and Lytro, researchers have also developed

editing tools for light fields similar to existing 2D image

editing tools [112]. One way to look at light fields is as

an image array with many different camera viewpoints.

Zhang et al. [111] demonstrated a layered patch-

based synthesis system which is designed to manipulate

light fields as an image array. This enables users to

perform inpainting, and re-arrange and re-layer the

content in the light field as shown in Fig. 7. In

these methods, patch querying speed is a bottleneck

in the performance. Thus, Barnes et al. [9] proposed

to use a fast query method to accelerate the matching

process across all the image collections. The proposed

patch-based applications, such as image stitching using

a small album and light-field super-resolution were

reported to be significantly faster.

In the second category, patches are treated as a

bridge to build connections between contents from

different images. Unlike previous region matching

methods which find similar shapes or global features,

these methods focus on matching contiguous regions

with similar appearance. This allows a dense, non-

rigid correspondence to be estimated between related

regions. Non-rigid dense correspondence (NRDC) [44]

is a representative work. Based on Generalized

7
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Fig. 9 PatchNet [51] can be used to find a graph that connects local regions, where each local region has an internal repeating

texture. PatchNet can be used for library-driven editing applications such as image composition. Reproduced with permission from

Hu et al. [51], © Association for Computing Machinery 2013.

PatchMatch [8], the NRDC paper proposed a method

to find contiguous matching regions between two

related images, by checking and merging the good

matches between neighbors. NRDC demonstrated good

matching results even when there is a large change in

colors or lighting between input images. An example is

shown in Fig. 8. The approach of NRDC was further

improved and applied to matching contents across an

image collection in the work of HaCohen et al. [45].

For large image datasets, Gould et al. [41] proposed a

method to build a matching graph using PatchMatch,

and optimize a conditional Markov random field to

propagate pixel labels to all images from just a small

subset of annotated images. Patches are also used as

a representative feature for matching local contiguous

regions in PatchNet [51]. In this work, an image region

with coherent appearance is summarized by a graph

node, associated with a single representative patch,

while geometric relationships between different regions

are encoded by labelled graph edges giving contextual

information. As shown in Fig. 9, the representative

patches and the contextual information are combined to

find reasonable local regions and objects for the purpose

of library-driven editing.

7 Video

Here we discuss how patch-based methods can be

extended for applications on videos, by incorporating

temporal information into patch-based optimizations.

We will start by discussing a relatively easier

application to high-dynamic range video [57], and

then proceed to briefly discuss two works on video

inpainting [42, 86], followed by video summarization

by means of “video tapestries” [5]. The method of

Kalantari et al. [57] reconstructs high-dynamic range

(HDR) video. A brief definition of HDR imaging

is that it extends conventional photography by using

computation to achieve greater dynamic range in

luminance, typically by using several photographs

of the same scene with varying exposure. In

Kalantari et al. [57], HDR video is reconstructed

by a special video camera that can alternate the

exposure at each frame of the video. For example,

the exposure of frame 1 could be low, frame 2 could

be medium, and frame 3 could be high, and then this

pattern could repeat. The goal of the high-dynamic

range reconstruction problem then is to reconstruct

the missing exposure information: for example, on

frame 1 we need to reconstruct the missing medium

and high exposure information. This will allow us

to reconstruct a video that has high-dynamic range

at every frame, and will thus allow us to take high-

quality videos that simultaneously include both very

dark and bright regions. One solution to this problem

is to use optical flow to simply guide the missing

information from past and future frames. However,

optical flow is not always accurate, so better results

are obtained by Kalantari et al. [57] by formulating

the problem as a patch-based optimization that fills

in missing pixels by minimizing both optical-flow like

terms and patch similarity terms. This problem is fairly

well-constrained, because there is one constraint image

at every frame. Results are shown in Figure 10. Note

that Sen et al. [94] also presented a similar patch-based

method of HDR reconstruction where the goal is to

produce a single output image rather than a video.

The problem of video inpainting, in contrast,

is very unconstrained. In video inpainting, the

user selects a spacetime region of the video to

remove, and then the computer must synthesize an

entire volume of pixels in that region that plausibly

removes the target objects. The problem is further

complicated because both the camera and foreground

objects may move, and introduce parallax, occlusions,

disocclusions, and shadows. Granados et al. [42]

developed a video inpainting method that aligns

other candidate frames to the frame that is to

be removed, selects among candidate pixels for the

8
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Fig. 10 Results for high-dynamic range (HDR) video

reconstruction from Kalantari et al. [57]. On the top row

are shown frames recorded by a special video camera that

alternates exposure at each frame (between high, low, and middle

exposure). At bottom is shown the HDR reconstruction, which

has both light and dark areas well-exposed. See discussion in

Section 7. Reproduced with permission from [57], © Association

for Computing Machinery 2013.

inpainting using a color-consistency term, and then

removes intensity differences using gradient-domain

fusion. Granados et al. assume a piecewise planar

background region. Newson et al. [86] inpaint video by

using a global, patch-based optimization. Specifically,

Newson et al. introduce a spatio-temporal extension

to PatchMatch to accelerate the search problem, use

a multi-resolution texture feature pyramid to improve

texture, and estimate background movement using an

affine model.

Finally, the video tapestries [5] work shows that

patch-based methods can also be applied to producing

pleasing summaries of video. Video tapestries are

produced by selecting a hierarchical set of keyframes,

with one keyframe level per zoom level, so that a

user can interactively zoom in to the tapestries. An

appealing summary is then produced by compacting or

summarizing the resulting layout image so that it is

slightly smaller along each dimension: this facilitates

the joining of similar regions, and the removal of

repetitive features.

Deblurring. Here, we discuss the application of

patch-based methods to one hard inverse problem in

computer vision, deblurring. Recently, patch-based

techniques have been used to deblur images that are

blurred due to say camera shake. Cho et al. [24]

showed video can be deblurred by observing that some

frames are sharper than others. The sharp regions

can be detected and used to restore blurry regions

in nearby frames. This is done by a patch-based

synthesis process that ensures spatial and temporal

Lit Sphere Stylized Sphere Stylized Sphere

Direct Diffuse Result Result

Fig. 11 Results for StyLit [39]. A sphere is rendered using

global illumination (upper left), and decomposed into different

lighting channels such as direct diffuse channel (lower left) by

light path expressions [48]. An artist stylizes the sphere in the

desired target style (upper row, middle and right), and this

can be transferred on to a 3D rendered model automatically

using patch-based synthesis (bottom row, middle and right).

See Section 8 for discussion. Reproduced with permission

from [39] © Association for Computing Machinery 2016.

coherence. Sun et al. [98] showed that blur kernels can

be estimated by using a patch prior that is customized

towards modeling corner and edge regions. The blur

kernel and the deblurred image can both be estimated

by an iterative process by imposing this patch prior.

Sun et al. [99] later investigated whether the deblurring

results could be improved by training on similar images.

Sun et al. [99] showed that deblurring results could be

improved if patch priors that locally adapt based on

region correspondences are used, or multi-scale patch-

pyramid priors are used.

8 Synthesis for specialized domains

In this section, we investigate synthesis algorithms

that are tailored towards specialized problem domains,

including mimicking artistic style, synthesis of artistic

brushes, decorative patterns, synthesis for 3D and

3D fabrication, fluid synthesis, and synthesis of rich

materials.

Mimicking artistic style. Patch-based synthesis

can mimic the style of artists, such as oil paint style,

watercolor style, or even abstract styles. We discuss an

early work in this area, image analogies [49], followed

by two recent works, Bénard et al. [11] and StyLit,

which perform example-based stylization using patches.

The image analogies framework [49] gave early results

showing the transfer of oil paint and watercolor styles.

This style transfer works by providing an exemplar

photograph A, a stylized variant of the exemplar A′,

and an input photograph B. The image analogies

9
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Source Result Source Result

Fig. 12 Results for painting by feature [79]. See

Section 8 for discussion. Reproduced with permission from [79],

© Association for Computing Machinery 2013.

Fig. 13 Results from RealBrush [74]. At left: physically

painted strokes are captured with a camera to create a digital

library of natural media. At right: an artist has created a digital

painting. RealBrush synthesizes realistic brush texture in the

digital painting by sampling from the oil paint and plasticine

exemplars in the library. Reproduced with permission from [74],

© Association for Computing Machinery 2013.

framework then predicts a stylized version B′ of the

input photograph B. Image parsing was shown by [109]

to improve results for such exemplar-based stylization.

The method of Bénard et al. [11] allows artists to paint

over certain keyframes in a 3D rendered animation.

Other frames are automatically stylized in the target

style by using a temporally coherent extension of image

analogies to the video cube. The StyLit method [39]

uses the “lit sphere” paradigm [97] for transfer of

artistic style. In this approach, a well-lit photorealistic

sphere is presented to the artist, so that the artist

can produce a non-photorealistic examplar of the same

sphere. In StyLit [39], the sphere is rendered using

global light transport, and the rendered image is

decomposed into lighting channels such as direct diffuse

illumination, direct specular illumination, first two

bounces of diffuse illumination, and so forth. This is

augmented by an iterative patch assignment process,

which avoids producing bad matches while also avoiding

excessive regularity in the produced texture. See

Figure 11 for example stylized results.

Synthesis of artistic brushes and decorative

patterns. Patch-based synthesis methods can easily

generate complex textures and structures. For this

reason, they have been adopted for artistic design. We

first discuss digital brush tools, and then discuss tools

for designing decorative patterns.

Research on digital brushes includes methods

for painting directly from casually-captured texture

exemplars [78, 79, 92], RealBrush [74], which

synthesizes from carefully captured natural media

exemplars, and “autocomplete” of repetitive strokes in

paintings [108]. Ritter et al. [92] initially developed

a framework that allows artists to paint with textures

on a target image by sampling textures directly from

an exemplar image. This approach works by adapting

typical texture energy functions to specially handle

boundaries and layering effects. Painting by feature [79]

further advanced the area of texture-based painting.

They improved the sampling of patches along boundary

curves, where humans are particularly sensitive to

misalignments or repetitions of texture, and then filled

other areas using patch-based inpainting. Results are

shown in Figure 12. Brushables [78] also improved

upon the example-based painting approach by allowing

the artist to specify a direction field for the brush,

and simultaneously synthesized both the edge and

interior regions. RealBrush [74] allows for rich natural

media to be captured with a camera, processed with

fairly minimal user input, and then used in subsequent

digital paintings. Results from RealBrush are shown

in Figure 13. The autocompletion of repetitive painting

strokes [108] works by detecting repetitive painting

operations, and suggesting an autocompletion to users

if repetition is detected. Strokes are represented

in a curve representation which is sampled so that

neighborhoods matching can be performed between

collections of samples.

Decorative patterns are frequently used in illustrated

manuscripts, formal invitations, web pages, and interior

design. We discuss several recent works on synthesis

of decorative patterns. DecoBrush [75] allows a

designer to synthesize decorative patterns by giving the

algorithm examples of the patterns, and specifying a

path that the pattern should follow. See Figure 14

for DecoBrush results, including the pattern exemplars,

a path, and a resulting decorative pattern. In cases

where the pattern is fairly regular and self-similar,

Zhou et al. [114] showed that a simpler dynamic

programming technique can be used to synthesize

patterns along curves. Later, Zhou et al. [113]

showed that decorative patterns can be synthesized

10
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Fig. 14 Results from DecoBrush [75]. See discussion in

Section 8. Reproduced with permission from [75], ©Association

for Computing Machinery 2014.

with better controls over topology (e.g. number of

holes and connected components), by first synthesizing

the topology using a topological descriptor, and then

synthesizing the pattern itself. This latter work also

demonstrated design of 3D patterns, which we discuss

next.

3D synthesis. We first discuss synthesis of

3D structures that do not need to be physically

fabricated. Early texture synthesis works focused on

synthesizing voxels for the purposes of synthesizing

geometry on surfaces [13] or synthesizing 3D volumetric

textures [33, 61]. For volumetric 3D texture synthesis,

Kopf et al. [61] showed that 3D texture could be

effectively synthesized from a 2D exemplar by matching

2D neighborhoods aligned along the three principal

axes in 3D space. Kopf et al. [61] additionally showed

that histogram matching can make the synthesized

statistics more similar to the exemplar. Dong et al. [33]

showed that such 3D textures can be synthesized in a

lazy manner, such that if a surface is to be textured,

then only voxels near the surface need be evaluated. A

key observation in their paper is to synthesize the 3D

volume from precomputed sets of 3D candidates, each

of which is a triple of interleaved 2D neighborhoods.

This reduces the search space during synthesis. See

Figure 15 for some results. In a similar manner,

Lee et al. [66] showed that arbitrary 3D geometry

could be synthesized. In their case, to reduce the

computational burden, rather than synthesizing voxels

directly, they synthesized an adaptive signed distance

field using an octree representation.

A separate line of research focused on the synthesis

of discrete vector elements in 3D [81, 82]. In

Ma et al. 2011 [82], collections of discrete 3D elements

are synthesized by matching neighborhoods to a

reference exemplar of 3D elements. Multiple samples

can be placed along each 3D element, which allows

Fig. 15 Lazy solid texture synthesis [33] can be used to

synthesize 3D texture from a 2D exemplar. This is done in

a lazy manner, so that only voxels near the surface of a 3D

model need be synthesized. At left is the exemplar. (a) a

result for a 3D mesh, (b) a consistent texture can be generated

even if the mesh is fractured. Reproduced with permission

from [33], © The Author(s) Journal compilation 2008, © The

Eurographics Association and Blackwell Publishing 2008.

for synthesis of oblong objects such as a bowl of

spaghetti or bean vegetables. Constraints can be

incorporated into the synthesis process, such as physics,

boundary constraints, or orientation fields. Later,

Ma et al. 2013 [81] extended this synthesis method

to handle dynamically animating 3D objects, such as

groups of fish or animating noodles.

Synthesis for 3D fabrication. Physical artifacts

can be fabricated in a computational manner by

using subtractive manufacturing, such as computer-

numerical control (CNC) milling and laser cutters, or

using additive manufacturing, such as fused deposition

modeling (FDM) printing and photopolymerization.

During the printing process, it may be desirable to

add fine-scale texture detail, such as ornamentation

by flowers or swirls on a lampshade. Researchers have

explored using patch-based and by-example methods in

this direction recently. Dumas et al. [34] showed that

a mechanical optimization technique called topology

optimization can be combined with an appearance

optimization that controls patterns and textures.

Topology optimization designs 2D or 3D shapes so

as to have structural properties such as supporting

force loads. Subsequently, Mart́ınez et al. [83] showed

that geometric patterns including empty regions can

be synthesized along the surfaces of 3D shapes such

that the printed shape is structurally sound. The

method works by a joint optimization of a patch-based

appearance term and a structural soundness term. The

synthesized patterns follow the input exemplar, as

shown in Figure 16 (left). Recently, Chen et al. [21]

demonstrated that fine filigrees can be fabricated in

an example-driven manner. Their method works by
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Fig. 16 Synthesis for 3D fabrication. At left are results

from Mart́ınez et al. [83]. At right are shown filigrees from

Chen et al. [21]. Subtle patterns of material and empty space

can be created along the surface of the object, such that they

resemble 2D exemplars. See the paper body for more discussion.

Reproduced with permission from [21, 83], © Association for

Computing Machinery, 2015 and 2016, respectively.

reducing the filigree to a skeleton that references

the base elements, and they also relax the problem

by permitting partial overlap of elements. Example

filigrees are shown in Figure 16 (right).

Fluids. Texture synthesis has been used to texture

fluid animations in 2D and 3D. The basic idea is to

texture one frame of an animation, then advect the

texture forward in time by following the fluid motion,

and then re-texture the next frame if needed by starting

from this initial guess. Some early works explored

these ideas for synthesizing 2D textures directly on 3D

fluids [4, 64]. More recently, patch-based fluid synthesis

research has focused on stylizing and synthesizing

fluid flows that match a target exemplar [15, 55, 80].

Ma et al. [80] focused on synthesizing high-resolution

motion fields that match an exemplar, while the low-

resolution flow matches a simulation or other guidance

field. Browning et al. [15] synthesized stylized 2D fluid

animations that match an artist’s stylized exemplar.

Jamrǐska et al. [55] implements a more sophisticated

system of transfer from exemplars, including support

for video exemplars, encouraging uniform usage of

exemplar patches, and improvement of the texture

when it is advected for a long time. Figure 17

shows a result for fluid texturing with the method of

Jamrǐska et al. [55].

Rich materials. Real-world materials tend

to have complex appearance, including varying

amounts of weathering, gradual or abrupt transitions

between different materials, varying normals, lighting,

orientation, and scale. Texture approaches can be

used to factor out or manipulate these rich material

properties. We discuss four recent works: the

first two focus on controlling material properties [1,

27], the third focuses on controlling weathering [10],

and the last focuses on capturing spatially varying

Fig. 17 Results from Jamrǐska et al. [55]. At left is an exemplar

of a fluid (in this case, fire is modeled as a fluid). At bottom

is the result of a fluid simulation, used to synthesize a frame

of the resulting fluid animation shown at top. See discussion in

Section 8. Reproduced with permission from [55], © Association

for Computing Machinery 2015.

BRDFs by taking two photographs of a textured

material [1]. Image melding [27] permits an artist to

create smooth transitions between two source images in

a way that gradually transitions between inconsistent

colors, textures, and structural properties. This

permits applications in object cloning, stitching of

challenging panoramas, and hole filling using multiple

photographs. Diamanti et al. [32] focuses on a

similar problem of synthesizing images or materials

that follow user annotations, such as the desired

scale, material, orientation, lighting, and so forth.

In cases that the desired annotation is not present,

Diamanti et al. [32] performs texture interpolation to

synthesize a plausible guess for unobserved material

properties. A result from Diamanti et al. [32] is shown

in Figure 18. The recent work by Bellini et al. [10]

demonstrates that automatic control over degree of

weathering can be achieved for repetitive, textured

images. This method finds for each patch of the

input image a measure for how weathered it is, by

measuring its dissimilarity to other similar patches.

Subsequently, weathering can be reduced or increased

in a smooth, time-varying manner by replacing low-

weathered patches with high-weathered ones, or vice

versa. The method of Aittala et al. [1] uses a flash,

no-flash pair of photographs of a textured material to

recover a spatially varying BRDF representation for the

material. This is done by leveraging a self-similarity

observation that although a texture’s appearance may

vary spatially, for any point on the texture, there exist

many other points with similar reflectance properties.

Aittala et al. fit a spatially varying BRDF that models

diffuse and specular, anisotropic reflectance over a

12
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Fig. 18 Results for complex material synthesis from Diamanti et al. [32]. The target image (a) is used as a backdrop and the

source (b) is used as an exemplar for the patch-based synthesis process. The artist creates annotations for different properties of

the material, such as large vs small bricks, the normal, and lit vs shadow. A result image (d) is synthesized. Here about 50% of

desired patch annotations were not seen in the exemplar, and were instead interpolated between the known materials. See discussion

in Section 8. Reproduced with permission from [32], © Association for Computing Machinery 2015.

detailed normal map.

9 Discussion

There have been great advances in patch-based

synthesis in the last decade. Techniques that originally

synthesized larger textures from small ones have been

adapted to many domains, including editing of images

and image collections, video, denoising and deblurring,

synthesis of artistic brushes, decorative patterns,

synthesis for 3D fabrication, and fluid stylization.

We now discuss one alternative approach that could

potentially inspire future work: deep learning for

synthesis of texture.

Deep neural networks have recently been used for

synthesis of texture [31, 40, 102]. Gatys et al. [40]

showed that artistic style transfer can be performed

from an exemplar to an arbitrary photograph by means

of deep neural networks that are trained on recognition

problems for millions of images. Specifically, this

approach works by optimizing the image so that feature

maps at the higher levels of a neural network have

similar pairwise correlations as the exemplar, but the

image is still not too dissimilar in its feature map to the

input image. This optimization can be carried out by

back-propagation. Subsequently, Ulyanov et al. [102]

showed that such a texture generation process can be

accelerated by pre-training a convolutional network to

mimic a given exemplar texture. Denton et al. [31]

showed that convolutional neural networks can be

used to generate novel images, by training a different

convolutional network at each level of a Laplacian

pyramid, using a generative adversarial network loss.

Although neural networks are parametric models

that are quite different from the non-parametric

approach commonly used in patch-based synthesis, it

may be interesting in future research to combine the

benefits of both approaches. For example, unlike

neural networks, non-parametric patch methods tend

to use training-free k-nearest neighbor methods, and so

they do not need to go through a training process to

“learn” a given exemplar. However, neural networks

have recently shown state-of-the-art performance on

many hard inverse problems in computer vision such as

semantic segmentation. Thus, hybrid approaches might

be developed that take advantage of the benefits of both

techniques.
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