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PPR-Net++: Accurate 6-D Pose Estimation
in Stacked Scenarios

Long Zeng, Member, IEEE, Wei Jie Lv , Zhi Kai Dong, and Yong Jin Liu , Senior Member, IEEE

Abstract— Most supervised learning-based pose estimation
methods for stacked scenes are trained on massive synthetic
datasets. In most cases, the challenge is that the learned network
on the training dataset is no longer optimal on the testing dataset.
To address this problem, we propose a pose regression network
PPR-Net++. It transforms each scene point into a point in the
centroid space, followed by a clustering process and a voting
process. In the training phase, a mapping function between the
network’s critical parameter (i.e., the bandwidth of the clustering
algorithm) and the compactness of the centroid distributions is
obtained. This function is used to adapt the bandwidth between
centroid distributions of two different domains. In addition,
to further improve the pose estimation accuracy, the network
also predicts the confidence of each point, based on its visibility
and pose error. Only the points with high confidence have the
right to vote for the final object pose. In experiments, our method
is trained on the IPA synthetic dataset and compared with the
state-of-the-art algorithm. When tested with the public synthetic
Siléane dataset, our method is better in all eight objects, where
five of them are improved by more than 5% in average precision
(AP). On IPA real dataset, our method outperforms a large
margin by 20%. This lays a solid foundation for robot grasping
in industrial scenarios.

Note to Practitioners—Our work is motivated by industrial
product assembly based on robot grasping. The industrial parts
are usually manufactured by numerical machines and piled
in bins. Our method can estimate the poses of visible parts
accurately. A pose of a part includes its centroid and spatial
orientations. Combined with a depth camera, this algorithm
allows an industrial robot to understand complex stacked scenes.
We improve the pose estimation accuracy in order to assemble
parts with robot grasping, without an additional pose adjuster.
Our network can learn from a synthetic dataset and apply it
to real-world data, without a significant accuracy drop. The
synthetic dataset can be obtained easily by computer simulation
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programs, so the training data are sufficient. Experiments demon-
strate that our method outperforms the state-of-the-art pose
estimation approaches.

Index Terms— 6-D pose estimation, bin-picking, point-wise
regression, robot grasping, stacked scenario.

I. INTRODUCTION

ACCURATE 6-D object pose estimation (OPE) is a cru-
cial prerequisite for vision-guided robot grasping from

stacked scenarios. A stacked scene is a pile of objects which
are randomly dropped in a bin. It is universal in real indus-
trial applications, such as part assembly or part loading for
computerized numerical control (CNC). If the pose estimation
is accurate enough, a product can be assembled directly with
robot grasping, i.e., without pose adjuster [1]. The OPE task
is challenging due to parts’ variety and heavy occlusion in a
stacked scene. Thus, an accurate 6-D OPE method for real
stacked scenes is needed.

Recent 6-D OPE algorithms are dominated by convolutional
neural networks (CNNs)-based approaches. The recent OPE
methods optimize the instance segmentation and pose estima-
tion jointly, such as [2]–[4]. They are faster and more accurate
compared with multistage estimation methods [5]. Our group
previously proposed a point-wise regression network PPR-
Net [2] for parts in stacked scenarios. Similar to VoxelNet [6],
PPR-Net assumes that if points belong to the same part
instance, their predicted centroids will be close to each other in
the centroid space.1 Thus, it first maps cluttered scene points to
points in the centroid space, followed by a clustering process
and a voting process. PPR-Net outperformed the state-of-the-
art approaches at that time by a large margin of 15%–41% on
the benchmark Siléane dataset. However, two major problems
are found based on our extensive experiments (detailed in
Section III). First, the hyperparameter, i.e., the bandwidth
of the mean-shift clustering [7], from the training dataset is
not optimal anymore for the testing dataset, since they have
different noise distributions. The selection of bandwidth is
critical, which affects the clustering results seriously. This
reality gap is often denoted as Sim-to-Real (simulation-to-real)
problem. As Sim-to-Real is universal in practical scenarios,
it is desirable if there is a method that can automatically
transfer the optimal bandwidth (i.e., the bandwidth correspond-
ing to highest pose accuracy) from synthetic dataset to the

1A 6-D pose is described by 3-D translations, i.e., centroid, and 3-D
rotations, so the centroid space (3-D) belongs to the pose space (6-D). The
clustering and the visualization given in this article are performed only on
centroid space.
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Fig. 1. PPR-Net++ overview: pose regression network is trained with synthetic data, followed by a mean-shift clustering [7] and voting process for pose
estimation. In the training phase, the grid-searched optimal bandwidth and compactness of centroid distributions are recorded, where the mapping function
between them is learned and used to compute optimal bandwidth for real testing data.

real dataset. Second, the final pose prediction is the average
of point-wise predictions in a cluster. In fact, some points’
prediction are more accurate than others. The predicted pose
would be improved if unreliable points are screened out.

This article proposes a Sim-to-Real learning network for
accurate 6-D pose estimation. As shown in Fig. 1, it is trained
on synthetic data and adapted to real data. It consists of
a point-wise pose regression network, a clustering process,
and a voting process. It is extended from PPR-Net [2] with
two import improvements. First, the optimal bandwidth is
transferred from synthetic data to real data by a mapping
function. We find that the optimal bandwidth is a function of
the compactness of the centroid distributions, although they
are affected by many factors, such as a part’s shape, size,
and the environment’s noise patterns. We believe that this
mapping function is common to centroid distributions of all
kinds of stacked scenarios, whether synthetic or real dataset.
Thus, we first design a simple metric of second-order statistic
to describe the compactness of a centroid distribution. Then,
the mapping function between the compactness value and
bandwidth is learned in the training phase. This makes the
transfer of optimal bandwidths from synthetic domain to real
domain possible. It saves our manual parameter adjustment
work significantly, too. Second, the PPR-Net is extended with
a confidence learning module to predict the confidence of each
point in the point cloud. PPR-Net screened out less reliable
points with visibility only, whereas our confidence module also
considers the pose error. Only the points with high confidence
are selected as voted points, which improves the prediction
accuracy of the 6-D pose of objects. This improved PPR-Net
method is denoted as PPR-Net++.

In our experiments, PPR-Net++ is trained on the IPA
synthetic dataset, whereas the Siléane dataset [8] and IPA real
dataset [9] are selected as the test sets. Compared with PPR-
Net, the experimental results show that the average precisions
(APs) [8] of our methods are better in all eight objects of
the Siléane dataset, and the prediction for Bunny and Pepper

object is improved by more than 10%. Compared with the
state-of-the-art algorithm OP-Net with Lori1 and PP [3], our
method is better in all ten objects, too. In particular, the APs
of five in ten objects are improved more than 5%. Compared
with OP-Net with Lori2 and PP [3], the APs of seven in ten
objects are significantly better, one is worse, and the other two
objects are basically the same. Therefore, compared with our
previous work PPR-Net [2] and the state-of-the-art method
OP-Net [3], the performance of our new method exceeds a
large margin on both Siléane dataset and IPA real dataset.

In summary, we substantially improve our previous work
PPR-Net [2] and the major contributions are as follows.

1) We design an accurate 6-D pose regression network
PPR-Net++ with a bandwidth computation and a con-
fidence learning module.

2) We propose an effective optimal bandwidth adaptation
method for PPR-Net++, allowing the transfer of opti-
mal bandwidth parameter from synthetic data to real
data.

II. RELATED WORK

We first review the most related work on 6-D OPE methods
and then the Sim-to-Real methods.

A. 6-D Object Pose Estimation

6-D OPE methods in the literature can be roughly clas-
sified into three categories: template-based, feature-based,
and learning-based methods. In template-based methods [10],
a rigid template and a similarity score are two necessary
components. Templates are usually obtained by rendering the
corresponding 3-D model in different viewpoints, and then are
used to scan different location points to compute similarity
scores for each location. The best match is obtained by
comparing these similarity scores [11]. However, the sim-
ilarity computation deteriorates when objects have severe
occlusions.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZENG et al.: PPR-Net++: ACCURATE 6-D POSE ESTIMATION IN STACKED SCENARIOS 3

The feature-based methods can handle the severe occlusion
problem well. They extract local features on the 3-D models
and save them in an efficient data structure in prior, such as
VFH [12] and LINEMOD [13]. When necessary, the local
features from points of interest in the scene are computed
by using the same computational procedure and matched
to pre-computed features of those 3-D models. Once the
correspondences are established, from which 6-D poses can be
recovered [14]. The seminal work on a local descriptor is point
pair feature (PPF) [15]. Many variant versions of PPF have
been proposed, like [16]. However, their performance drops
significantly under complex scenarios with similar-looking
objects or instances of the same object exhibit similar features.

Recently, research studies in 6-D OPE have been dom-
inated by deep CNN approaches. The instance-level seg-
mentation of point cloud is needed before pose estimation,
since a stacked scene usually contains multiple instances
of objects. Deep learning has shown remarkable perfor-
mance on segmentation tasks such as Mask R-CNN [5]
and its extension [17] on depth images for robot grasping.
Recent learning progress on point cloud, e.g., PointNet [18],
PointNet++ [19] and PoinSIFT [20], allows us to extract
task-specific features directly from 3-D sensor scenarios data.
With this progress, Wang et al. [21] proposed SGPN which
is an instance segmentation architecture. It generates group
proposals by similarities between point pairs in embedded
feature space.

There is a trend to consider instance segmentation and
pose estimation simultaneously. SSD-6-D [22] extended clas-
sical image detector SSD by regressing object poses for
estimated object bounding boxes. Xiang et al. [23] presented
a pixel-wised network with three prediction branches. The
semantic branch predicts the type of each pixel. The translation
branch outputs translation of each pixel for voting in Hough
space, and the rotation branch directly regresses quaternion for
each instance. He et al. [4] applied point-wise regression to
simultaneously achieve semantic segmentation, instance seg-
mentation, and keypoint prediction from the RGB-D features,
and then estimated pose by least-squares fitting based on
3-D models. Our previous work PPR-Net [2] extended the
idea of Hough voting from approaches [24] to point clouds
using a point-wise regression learning framework. It estimated
6-D pose with point cloud containing only camera coordinate
information and outperformed the previous methods by a large
margin in the public benchmark Siléane dataset for bin-picking
scenarios at that time.

However, there is a reality gap between the simulated data
and physical data, i.e., synthetic data and real data, due to
visual and dynamic differences [25]. That is, the learned
network on synthetic training data is not optimal anymore
on the testing data. This problem bothered us a lot in our
experiments, details can be found in Section III.

B. Sim-to-Real Methods

In 6-D OPE methods, it requires significant human effort
to collect and annotate a large number of real samples for
training. Instead, massive simulation data generated by physic

simulation engine Bullet and V-REP [26] is an alternative solu-
tion, e.g., IPA datasets [9]. Commonly used physics simulation
engines are V-REP / CoppeliaSim, PyRep, MoJuCo, Blender,
Gazebo, and so on [27]. Previous work has explored several
strategies to bridge this gap.

One strategy is to understand the noise pattern in the real
depth data and mimic this pattern in synthetic depth data or to
make the simulator closely match the physical conditions by
using realistic rendering techniques [28]. This technique can
be easily integrated with other techniques.

Another strategy is domain randomization [29]. For exam-
ple, when a deep CNN is trained, it is common to augment
training data to prevent over-fitting on a small dataset, e.g.,
3-D object recognition [30]. Kleeberger and Huber [3] pro-
posed an end-to-end object pose network that was trained
completely on the simulated dataset. They randomize various
aspects of the simulation, such as the pose and size of
distractor objects, adding noise, blurring, elastic transforma-
tion, dropout, and so on. They obtained the state-of-the-art
performance on the Siléane dataset and the real-world dataset.

The third important strategy is domain adaptation.
Tzeng et al. [31] proposed to learn a correspondence between
domains that allows the real images to be mapped into a space
that is understandable by the model. Bousmalis et al. [32]
proposed a generative adversarial network (GAN) that learned
a transformation in the pixel space from one domain to the
other, in an unsupervised manner. James et al. [33] translated
simulated images to a canonical simulation version which were
then used for policy training, and then the trained system can
be used to translate real-world images to canonical images to
achieve a sim-to-real transfer.

In this article, we map the point cloud with heavy occlusion
into an understandable centroid space, where the centroid dis-
tributions of different parts or domains have a simple relation
to the bandwidth parameter of the mean-shift algorithm. This
function is explored by experiments and adapts our network
from synthetic training data to real testing data.

III. PROBLEM IDENTIFICATION

This section revisits PPR-Net and analyzes its limitations to
identify the research problem of this article.

A. Revisit of PPR-Net

PPR-Net [2] is an efficient point-wise 6-D pose regression
network. It converts the complex 6-D OPE problem into a
clustering and voting problem in centroid space, instead of
a complex and unstable instance segmentation process in the
point cloud with severe occlusion. The basic idea of PPR-Net
is based on a simple observation: if points belong to the same
part instance, their predicted centroids will be close to each
other in the centroid space.

As shown in Fig. 2, the proposed regression network con-
sists of two stages. In the first stage, the points are mapped
to the centroid space with three branches, which share the
common backbone module A. This backbone usually is a deep
CNN f ({x1, . . . , xNp }) that consumes unordered point cloud
directly, where xi ∈ R3+C , 3 + C is the number of coordinate
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Fig. 2. PPR-Net components and their loss functions.

dimensions and additional point properties. It extracts global
feature vectors of size Np × Ne for an input point cloud
Np × (3 + C), Np is the number of original points, and Ne is
the dimensionality of the global feature vector.

The semantic branch B recognizes object categories by
a shared full connected layer. The input of this branch is
Np × Ne feature vectors and its output size is Np × NC ,
where NC is the predefined total number of object categories
in the scene. This point-wise semantic information is helpful
for other learning tasks. Thus, it is concatenated to the point
feature into a new feature vector Ne + Nc , which is the input
of pose prediction branch C. Branch C outputs a point-wise
vector Np × 12, which is the 6-D pose of an object described
by a 12-D vector (transformed by 3-D translation and 3-D
Euler angle). It is noted that normalization is not required
for rotation estimation since it is estimated as an Euler angle.
Meanwhile, the concatenated feature is also inputted to the
visibility prediction branch D, which outputs a visibility value
of how much the object can be saw. It is useful to determine
whether the estimated pose is reliable for robot grasping.

B. Bandwidth Selection Problem

The second stage is a clustering algorithm performed in
the centroid space. The centroid space is first converted
into a density field by mean-shift clustering algorithm [7].
It supposes that each point is a source with highest density
and is propagated outside described by a kernel function K (·),
e.g., normal kernel. Thus, the density of a specific point x is

f (x) = Cd

N · hd

N∑
i=1

K

(
x − xi

h

)
(1)

where h is the bandwidth and [(x − xi)/h] is the normalized
distance between point xi and x ; Cd is normalization constant;
N is the number of points in the centroid space; d is the
dimensionality of the point in centroid space.

From (1), we know that the density of a point is the
summation of density effects of all other points, and the
influence range of each point is controlled by the bandwidth
parameter h. The center of a cluster is a local maximum in
the density field and can be obtained by a density gradient
method. This parameter is critical to PPR-Net and it is adjusted
manually. After extensive experiments, three major problems
are identified as detailed below.

Fig. 3. Effects of bandwidth parameter: the dashed circle in (b) are classified
as one centroid cluster, i.e., under-segmentation, whereas the dashed circle
shown in (d), many centroids are overlapped and has two different centroid
clusters, i.e., over-segmentation. (a) Point cloud. (b) Under-segmentation with
large bandwidth. (c) Predicted centroids. (d) Over-segmentation with small
bandwidth.

Fig. 4. Optimal bandwidth is affected by part geometry. (a) Objects. (b) AP
curves.

First, the bandwidth selection will affect the number of
clusters. Bandwidth is the only parameter that needs to be
adjusted in the clustering stage [refer to (1)] and controls the
influence range of each point. Take the five stacked ring screws
shown in Fig. 3(a) for example, their centroids are visualized
in Fig. 3(c). If the bandwidth is too large, the clusters will be
under-segmented, i.e., the number of clusters is less than the
real object number. As the dashed circle in Fig. 3(b) shown,
the centroids are classified as one cluster. If the bandwidth
is too small, the results will be over-segmented. For example,
the dashed circle shown in Fig. 3(d) has two different centroid
clusters.

Second, the optimal bandwidth is affected by part geometry.
Fig. 4(a) shows three objects, i.e., Bunny, Brick, and T-Less22.
They have different geometric shapes and Fig. 4(b) shows their
corresponding AP curves, i.e., value pairs of bandwidth and
corresponding APs. The optimal bandwidth can be obtained
from an AP curve (see Section V-C). From these curves,
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Fig. 5. Optimal bandwidths are different for synthetic and real data.
(a) Comparison of prediction. (b) AP curves.

we know the optimal bandwidths for different parts are quite
different, too. That is, the optimal bandwidth for one part is
not optimal anymore for another part in most cases.

Third, the optimal bandwidth also depends on the noise pat-
terns in centroid distributions. In general, real-world data have
more noise than synthetic data. As shown in Fig. 5(a), when
both point clouds are mapped to centroid space, the difference
between their centroid distributions is significant. Fig. 5(b)
shows their AP curves. From Fig. 5, we know that the optimal
bandwidth learned from synthetic training data cannot be
applied to real training data directly, in most cases.

C. Accuracy Loss From Improper Voting Rule

In PPR-Net, the predicted pose of the j th cluster P j is equal
to the pose average of all its points, i.e.,

P j = 1

N j

N j∑
i=1

pi (2)

where N j is the number of points in the j th cluster.
This formula means that all points in the cluster votes to

its object’s final pose equally. However, we argue that if more
accurate points have higher voting rights, the pose accuracy
will be better. The error of i th point contains a translational
error Lti and a rotational error L Ri [8], which are computed
by

Lti =
∥∥∥tpred

i − t gt
∥∥∥

L Ri = min
r1∈R

(
Rpred

i

)
,r2∈R(Rgt ),

�r2 − r1�. (3)

Fig. 6(a) shows the Bunny object and its predicted centroids,
and Fig. 6(b) shows its translational and rotational error
statistics. From these statistics, we know that most points are
near the mean error. It is intuitive that if points with large
errors are selected to vote, their pose errors will deteriorate
the part’s final pose. Thus, it is reasonable to filter out those
points with large errors.

PPR-Net has a filter mechanism based on the point’s visi-
bility. However, based on our observation, a point with high
visibility does not necessarily mean its predicted pose has
higher accuracy. Therefore, to solve this problem, we improve
PPR-Net network to assign a point-wise confidence value,

Fig. 6. Translational and rotational errors. (a) Centroids. (b) Error statistics.

considering both point’s visibility and pose error, which is
detailed in Section IV.

IV. PPR-NET++: ACCURATE POSE

ESTIMATION NETWORK

To solve the aforementioned problems, a new point-
wise pose regression architecture, denoted as PPR-Net++,
is designed. As shown in Fig. 7, different to PPR-Net, it also
contains pose and visibility prediction branches. Similarly,
it consumes unordered point clouds with Np points. The global
point-wise feature vectors Fe = { f e

i }Np

i=1 of size Np × Ne are
extracted by the backbone network. Then, the pose branch and
visibility prediction branch consume Fe with shared MLPs
to obtain the predicted point-wise centroid offset of pred

i =
[δxi, δyi , δzi ], rotation in Euler angles anglepred

i = [αi , βi , γi ],
visibility v

pred
i ∈ [0, 1].

Compared with PPR-Net, PPR-Net++ has two additional
modules, i.e., bandwidth computation and confidence learning
modules, which are detailed in Sections IV-A and IV-B,
respectively.

A. Bandwidth Computation Module

From Section III-B, we know that the optimal bandwidth
is affected by many factors, such as bandwidth configuration,
part geometry, and noise patterns. They are coupled together
in an unknown and complex way, so we treat them together
as a black box and consider the relations between varying
parameters and optimal bandwidth as a function. Specifically,
our strategy for bandwidth selection is to use small bandwidth
for centroid distribution with high compactness to prevent
under-segmentation, and large bandwidth for data distribution
with small compactness to prevent over-segmentation.
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Fig. 7. Architecture of PPR-Net++, where the blue arrows are to illustrate the improvements of PPR-Net++ based on PPR-Net, including bandwidth
computation module and confidence learning module.

Fig. 8. Geometric meaning of r80%. (a) r80% of the Bunny. (b) Error
distribution chart.

Compactness, σ , describes how tight the points are distrib-
uted around its ideal center. It is similar to the standard devi-
ation of the normal distribution, which describes the average
deviation from its mass center. Thus, compactness is also a
second-order statistic variable. Its geometric meaning can be
explained by the error distribution chart, as shown in Fig. 8(b),
which is the error distribution chart of the Bunny object
in Fig. 8(a). In this chart, the horizontal axis is the deviation

error, i.e., radius distance from points to their geometric center.
The vertical axis is the number of points with this error
value. Thus, it is reasonable to approximate the compactness
with the radius of a sphere surrounding all centroids. The
smaller the radius is, the greater the compactness of centroid
distribution is.

We found that the optimal bandwidth is a function of the
compactness of the centroid distribution, i.e.,

hoptimal = g(σ ) (4)

where hoptimal is the optimal bandwidth, σ is the compactness,
and g(·) is the mapping function.

From Fig. 8(b), we know most points have their deviation
errors less than 10 mm, only small proportion of points have
errors greater than 10 mm. Thus, in order to eliminate the
interference of outliers, we usually take the radius of the
surrounding sphere to include 80% points, denoted as r80%.
In a stacked scene, the r80% is the average value of all clusters
in this scene. Fig. 8(b) shows the r80% on the error distribution
chart of the Bunny object. Based on the previous analysis,
the larger the r80% is, the smaller the compactness of centroid
distribution is and the larger the bandwidth is.

We hope to learn a specific mapping function during the
training phase. In the testing phase, once the compactness of
centroid distribution is obtained, we can compute the optimal
bandwidth via this mapping function. The specific mapping
function g(·) is obtained experimentally in Section V-C.

B. Confidence Learning Module

The confidence value represents the accuracy confidence of
the point’s predicted object pose. We argue that if the points
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Fig. 9. Confidence learning module architecture.

of a cluster are selectively allocated voting rights, the pose
accuracy can be further improved. Thus, a confidence learning
module is designed to predict the point-wise confidence from
point-wise feature and prediction error.

The confidence learning module’s architecture is detailed
in Fig. 9, consisting of MLPs and a softmax layer. Its input
confidence feature vector is a concatenation of four elements
as {[ f e

i , of pred
i , anglepred

i , v
pred
i ]}Np

i=1. Its output is a binary clas-
sification vector pi = [pi_cls0 , pi_cls1] for each point, where
pi_cls0 ∈ [0, 1] and pi_cls1 ∈ [0, 1] are the binary classification
probability. Then, the pi_cls1 is taken as point-wise confidence,
i.e., confpred

i = pi_cls1 ∈ [0, 1]. Finally, the cross-entropy loss
function is adopted to compute the module error

Lconf =− 1

Np
·

Np∑
i=1

[
yi · lg confpred

i +(1−yi) · lg
(

1−confpred
i

)]
(5)

where {yi}Np

i=1 is the point-wise label of the binary classification
and {confpred

i }Np

i=1 is the probability of the positive sample cls1

in the binary classification.
In (5), the binary classification labels {yi}Np

i=1, are computed
on-fly during the training phase, by bitwise operation of the
translation and rotation confidence labels, i.e., {labelti }Np

i=1 and
{labelRi }Np

i=1, respectively,

{yi}Np

i=1 = {
labelti

}Np

i=1 &
{
labelRi

}Np

i=1 (6)

where labelti and labelRi are computed by

labelti =
{

1, if Lti < t�,

0, if Lti ≥ t�,
labelRi =

{
1, if L Ri < r�

0, if L Ri ≥ r�

where Lti , L Ri , t� , and r� are translational error, rota-
tional error, translational error threshold, and rotational error
threshold.

From the cross-entropy loss function in (5), we know the
probability value of cls1 is trained to learn yi = 1, which

Fig. 10. Centroids distribution of the Bunny object and confidence screening.
(a) Without confidence screening. (b) With confidence screening.

TABLE I

IPA BIN-PICKING DATASET AND SILÉANE DATASET

represents both the translational error and rotational error
are small. Therefore, it is reasonable to treat the point-wise
confidence as a criterion to screen out points. The higher
confidence of a point is, the smaller the translational error and
rotational error of the regression pose of the point is, so the
confidence learning module can eliminate lots of unreliable
points. Thus, it can further improve the accuracy and stability
of the OPE. Fig. 10 is the centroid distribution of the Bunny
object before and after screening points with less confidence
value.

V. EXPERIMENTS

In this section, the benchmarked datasets and results are
given in Sections V-A and V-B. Then, the optimal bandwidth
computation and architecture are analyzed in Sections V-C
and V-D, respectively.

A. Datasets and Evaluation Metrics

To evaluate the performance of the PPR-Net++, the public
Siléane dataset [8] and Fraunhofer IPA bin-picking dataset [9]
are evaluated. Their contents and formats are summarized
in Table I. The Siléane dataset contains eight objects:
Brick, Bunny, Candlestick (C.Stick), Gear, Pepper, T-Less20,
T-Less22, and T-Less29. Each object only has 2–4 test cycles,
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TABLE II

POSE ESTIMATION RESULTS ON SILÉANE DATASET, EVALUATION METRIC IS 10% × D

with no training cycles. A cycle means the object model is
dropped to a bin randomly one by one, starting from one to
its drop limit. Each drop configuration is a scene. Taking the
Bunny object in the test cycles of Siléane dataset, for example,
its drop limit is 80, thus it has 80 scenes with stacked objects
(from 1 to 80) and a 1 background scene with an empty
bin. Thus, there are 81 scenes for one cycle and four test
cycles, so the total number of scenes of the Bunny object
is 324 = 81 × 4. The test cycles of the Siléane dataset have
unknown noise patterns to mimic real-world point clouds. The
Fraunhofer IPA synthetic dataset extends the Siléane dataset
with plenty of cycles for training, where both training and
testing datasets are simulated data. In IPA real dataset, two
industrial parts, i.e., ring screw and gear shaft, are added. The
training set is simulation data, while the test set is real-world
data, with real labels. Fraunhofer IPA bin-picking dataset is
the first public industrial dataset for instance segmentation
and 6-D pose estimation. Different from the Siléane dataset,
the training set in the IPA dataset has no noise data.

The evaluation metric proposed by Brégier et al. [8] is
adopted, which defines the distance as the minimum Euclidean
distance between the equivalent pose sets

Dist(R(P1), R(P2)) = min
p1∈R(P1),p2∈R(P2)

�p2 − p1� (7)

where R(P) is an equivalent set of poses. Each pose is
vectorized into up to 12-D vector.

This formula considers the object’s symmetry and is easy
to compute. Generally, when the minimum distance between
the predicted pose and the ground truth pose is less than 10%
of the diameter of the object’s minimum bounding sphere,
i.e., 10% × D denoted as distance threshold, the result of
pose prediction is considered to be correct. The smaller the
distance threshold is, the stricter the evaluation standard is,
the more difficult the object’s 6-D pose recognition is, and the
higher recognition accuracy is required. In our experiments,
three distance thresholds, i.e., 10%× D, 5%× D, and 2%× D,
are used.

B. Pose Estimation and Comparison

We train our network PPR-Net++ on the IPA synthetic
dataset, where a random Gaussian noise between −2 and 2 mm
is added to each point. Then, it is tested on both synthetic

Siléane dataset and IPA real dataset. Their optimal band-
widths are computed via the gS2R(r single

80% ) function obtained
experimentally in Section V-C since their noise patterns are
different to IPA synthetic dataset (S2R represents Sim-to-Real).
The pose accuracy is evaluated under the 10% × D distance
threshold, same with previous methods. Table II lists the
performance of our method against the state-of-the-art OPE
methods. Obviously, compared with learning methods, these
traditional non-learning methods have inferior performance on
the Siléane dataset, such as PPF [8], [15], PPF PP [8], [15],
LINEMOD+ [8], [34], and LINEMOD+ PP [8], [34].

On the synthetic Siléane dataset, our new method is better
in all eight objects than that of PPR-Net. More specifically,
the APs of the Bunny and Pepper objects are improved by
about 10%. Other objects have certain improvements at a
different level. For Sim-to-Real experiments, we trained on
IPA synthetic dataset and tested on both Siléane dataset and
IPA real dataset, with ten objects. Our results are compared
with the state-of-the-art algorithm OP-Net [3], which has two
versions. Compared with OP-Net with Lori1 and PP, our
method is better in all ten objects. In particular, the APs of
seven in ten objects are improved by at least 5%. Compared
with OP-Net with Lori2 and PP, the APs of seven in ten objects
are significantly better, one is worse, and the other two objects
are basically the same.

On the IPA real dataset, there are only two labeled objects.
PPR-Net++ and OP-Net have approximately the same perfor-
mance on the Gear shaft object since its geometry is simple.
For the complex ring screw, the AP of our method is improved
by 5%, compared with OP-Net with Lori1 and PP. When
compared with OP-Net with Lori2 and PP, this improvement
is 23%, which is quite a large margin.

The qualitative comparison of PPR-Net and PPR-Net++
is shown in Fig. 11 with the same scene. PPR-Net uses an
empirical bandwidth for the clustering algorithm and thus
results in under-segmentation, which further leads to instance
segmentation error and 6-D pose estimation error, as the dotted
red circle line shown. However, PPR-Net++ uses the optimal
bandwidth computed from the mapping function for clustering
and the confidence to filter the unreliable point predictions.
It overcomes previous under-segmentation problem automati-
cally.

Therefore, compared with PPR-Net and the state-of-the-art
method OP-Net, the performance of our new method surpasses
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Fig. 11. Qualitative comparison of PPR-Net and PPR-Net++, where PPR-Net uses empirical bandwidth (35 mm) for clustering, while PPR-Net++ uses
optimal bandwidth (17 mm) calculated by our mapping function for clustering and the confidence to filter the unreliable point predictions.

a large margin on both synthetic Siléane dataset and IPA real
dataset.

C. Analysis on Optimal Bandwidth Computation

The Sim-to-Real problem between a train and a testing
dataset actually considers whether they have the same noise
distribution. Its content can be generalized. Sim-to-Sim has
similar noise patterns for source and target datasets. This
usually happens when point clouds are generated from the
same virtual camera configurations. Sim-to-Real has different
noise patterns for source and target datasets. The IPA synthetic
training dataset and IPA real testing dataset in Table I belong to
Sim-to-Real type, since their noise patterns are quite different.

The procedure to compute the mapping function for both
types is similar. That is, a specific mapping function is
learned by fitting a set of discrete points (r80%, hsearch) with a
template function, such as polynomial or exponential function.
hsearch is an optimal bandwidth obtained manually from three
10% × D, 5% × D, and 2% × D AP curves, as the Brick
object shown in Fig. 12. We first choose a small range near
the optimal bandwidth for each AP curve. Then, the global
optimal bandwidth is a value selected from the intersection
ranges of the three AP curves.

The computation of the compactness r80% is different for
the above two types. There is no way to directly compute the
compactness of a testing scene’s centroid distribution since
we do not know which points belong to which instances in
advance, different from a training scene where we have the
point-wise labels. For the Sim-to-Sim type, since the training
dataset has the same distribution as the testing dataset, it is
reasonable to directly use the learned r80% in the training
phase to the testing phase. It is denoted as r stacked

80% since the
compactness is the average of all instances in a stacked scene.
For the Sim-to-Real type, we cannot apply the learned r80%

in the training phase to the testing phase, since the training
dataset has the different distribution with the testing dataset.
Alternatively, we found we can easily compute the r80% of the
scene with only one single object in a cycle, denoted as r single

80% .

Fig. 12. Optimal bandwidth obtained from 10%, 5%, and 2% AP curves.

Fig. 13 shows the eight discrete points (r stacked
80% , hsearch)

experimented on the eight objects of IPA synthetic dataset.
From this figure, we guess there is a linear relationship
between the optimal bandwidth and r stacked

80% . Based on the
principle of Occam razor, in order to ensure the generalization
ability of the mapping function, we use the linear function to
fit the given points and obtain

hoptimal = gS2S
(
r stacked

80%

) ≈ 1.17 × r stacked
80% + 0.57. (8)

Similar to the Sim-to-Sim type, we can obtain eight discrete
points (r single

80% , hsearch) experimented on the eight objects of IPA
synthetic dataset. The linear function to fit the given points is

hoptimal = gS2R

(
r single

80%

)
≈ 1.45 × r single

80% + 1.35. (9)

D. Analysis on Architecture Design

Compared with PPR-Net, the bandwidth computation
module and confidence learning module are newly added
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Fig. 13. Mapping function fit from eight discrete points (rstacked
80% , hsearch).

TABLE III

EFFECTS OF BANDWIDTH COMPUTATION AND CONFIDENCE MODULES

EXPERIMENTED ON IPA SYNTHETIC DATASET (OURS AND W/O MEANS
PPR-NET++ AND WITHOUT, RESPECTIVELY)

Fig. 14. AP improvements with respect to distance threshold compared with
PPR-Net.

modules. To test their effects, one cycle of the four objects,
i.e., Brick, Bunny, Candlestick, Pepper from the Fraunhofer
IPA bin-picking synthetic dataset, are selected for evaluation.
The optimal bandwidths are computed via the gS2S(r stacked

80% ),
since the centroid distributions of training and testing dataset
are the same. The compared methods include PPR-Net and
PPR-Net++, while PPR-Net++ without confidence and PPR-
Net++ w/o hoptimal are the PPR-Net++ without confidence
and bandwidth computation module, respectively. The band-
width of PPR-Net++ w/o hoptimal is the same as that of
PPR-Net.

Their results are summarized in Table III. From this table,
we know that their APs are very close to each other, under a

Fig. 15. AP curves of the bunny with PPR-Net and PPR-Net++ without
hoptimal.

Fig. 16. AP-distance threshold curves.

larger threshold, e.g., 10%× D. However, when the evaluation
metric is stricter, e.g., 2% × D, the bandwidth computation
module, and confidence learning module have an obvious
improvement on APs.

Fig. 14 shows the AP improvement under different distance
thresholds. The vertical axis is the AP improvement values of
PPR-Net++ over PPR-Net. From this figure, we know that
there are about 3%–9% AP improvements when we apply a
stricter evaluation metrics.

From Table III, we also know that the improvements of
PPR-Net++ may not be greater than the cumulative effect of
the two modules used alone. Their effects are coupled together.
The bandwidth computation module can effectively improve
the clustering results by filtering the outliers, i.e., the points far
away from the center of the cluster. These outliers usually have
a high probability that they also have higher prediction errors,
which will lead these outliers to have lower confidence values.
Therefore, they are coupled together. However, the combined
effect of the two modules is generally better than that only a
single module is used.

In Fig. 15, we plot the trend of AP with bandwidth, for the
Brick object under the distance threshold of 2%× D. It shows
that the confidence learning module can help to maintain
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(a) (b) (c)

(d) (e) (f)

Fig. 17. Experiment on real-world robot bin-picking. (a) Scene point clouds. (b) Processed point clouds. (c) Predicted centroids. (d) Instance segmentation.
(e) Pose estimation. (f) Grasp experiments.

high accuracy in a certain range, reduce the dependence
on bandwidth, and make the pose prediction more stable.
Therefore, the comprehensive use of the bandwidth computing
module and the confidence learning module can not only
reduce the workload of manual parameter adjustment but also
improve the accuracy and stability.

In Fig. 16, we further plot the trend of AP with distance
threshold, for Brick, Bunny, Candlestick, and Pepper in the
IPA synthetic dataset. And we know that with even more
stringent evaluation metrics, such as 2%× D, the performance
of our method is still satisfied for most objects. However, there
is a threshold below which accuracy drops sharply, for each
part.

E. Real-World Experiments on Robot Bin-Picking

The PPR-Net++ was integrated into our robot grasping
pipeline. To demonstrate its effectiveness in the real-world
scenarios, we printed the ring screw object and put them in
a box randomly. In the experiment, the point clouds were
captured by a fixed Ensenso N35 range camera. The goal
was to correctly pick all object instances and place them in
the target positions. For this experiment, we trained PPR-
Net++ on the IPA ring screw synthetic dataset and tested
with 3000 annotated synthetic scenes with noise (200 cycles,
1–15 instances in a scene). These testing data were generated
by setting the virtual camera the same as our real Ensenso
N35 camera configuration. We adopted the same evaluation
method as Section V-A to calculate AP for the ring screw.
The quantitative evaluation showed that PPR-Net++ achieves
AP of 0.99 for ring screw on the test set.

Our grasping pipeline is shown in Fig. 17. We locate a
predefined box in the point clouds to get scene point clouds as

shown in Fig. 17(a), and followed by a background subtraction
and furthest point sampling, as shown in Fig. 17(b). The
filter points are fed into PPR-Net++ to predict centroids with
hoptimal computed via the gS2R(r single

80% ) and confidence filter
[Fig. 17(c)]. The segmented instances and estimated poses are
shown in Fig. 17(d) and (e), respectively.

We deployed the aforementioned pipeline on a UR3 robotic
arm with Robotiq 2-Finger 85 gripper as end-effector as shown
in Fig. 17(f). The grasping trajectory was generated with
motion planning software MoveIt! We evaluated PPR-Net++
in the grasping trials and our pipeline was able to pick and
place all graspable object instances in all trials, including in
heavily cluttered scenes with significant occlusion.

In the near future, we will integrate advanced grasping
affordance [36] and grasping point computation methods [37],
to improve the stability of our grasping system.

VI. CONCLUSION

To address the Sim-to-Real problem, we designed a point-
wise 6-D pose estimation network PPR-Net++ that maps
points into centroid space, followed by a clustering and voting
process. We also explored the function between the optimal
bandwidth and compactness of the centroid distribution. The
learned function can not only save lots of manual parameter
adjustment work, but also allow to adapt the learned optimal
bandwidth from the training dataset to the testing dataset.
In addition, a confidence module was inserted to compute a
point-wise confidence value based on its visibility and pose
error, to screen out unreliable points. This further improved the
object pose prediction accuracy. The accuracy of PPR-Net++
exceeds a large margin on the public benchmark dataset,
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compared with the state-of-the-art methods. The code is avail-
able at https://github.com/lvwj19/PPR-Net-plus.
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