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Abstract— Convolution has been used for fast computation
of reachability maps, but it has high computational costs
when performing SE(3) convolution operations for general
joint arrangements in industrial robots and 3D workspace.
Its application is also limited to planar robots, 2D workspace,
or robots with special spatial arrangements for joints. In this
paper, we find that the SE(3) convolution can be decomposed
into a set of SE(2) convolutions, which significantly reduces
the computational complexity when computing the reachability
map of high-DOF robotic manipulators in the 3D workspace.
We also leverage GPU parallel computing and Fast Fourier
transform to further accelerate the computation procedure. We
demonstrate the time efficiency and quality of our approach us-
ing a set of numerical experiments for constructing reachability
maps and also present a multi-robot plant phenotyping system
that uses the computed reachability map for efficient viewpoint
selection and path planning.

I. INTRODUCTION
The reachability map provides a structured description of

a robot’s ability to grasp and manipulate objects by taking
into account the kinematic structure of a robotic arm [1].
The offline computed reachability map can help to save time
for many online queries such as grasp selection, path plan-
ning [2], obstacle avoidance [3], [4], robot Cooperation and
analysis [5], [6], and can also assist in determining the setup
parameters such as the robot base position for optimizing the
performance of predefined manipulation tasks [7], [8].

The reachability map is a 6-dimensional map indicating
whether the robot’s end-effector can reach a position (x, y, z)
with an orientation of (α, β, γ). The map is generally
implemented by dividing the 3D workspace into voxels,
and each voxel is associated with a rotational grid that
discretizes SO(3). Each grid cell has an associated quality
index counting the different joint configurations that allow
the robot’s end-effector to reach the pose (x, y, z, α, β, γ) [9].
A straightforward method for the reachability map generation
uses a combination of forward kinematics (FK) and sampling
in the joint configuration space. A brute-force uniform sam-
pling has an exponential complexity of KP , where K is the
sampling resolution for each joint and P is the number of
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Fig. 1. A 3D visual demo to show the reachability map which is generated
by UR manipulator. To facilitate visualization, reachability is added to 3-
dimensional position. Different colors represent different reachability which
is reduced in order of red, yellow, green and cyan.

joints. To reduce the computational cost, random sampling
can be used but it cannot guarantee that all the map cells can
be covered in finite time. Inverse kinematics (IK) can also
be used for the map generation and it guarantees a complete
exploration of the 6-dimension cells. However, the IK solver
takes longer time than the FK solver, and generally it only
provides a binary indication about whether a cell is reachable
or not, rather the set of all valid configurations satisfying the
kinematic constraint. A visual demo is shown in Figure 1.

To resolve the limitations of previous works, Chirikjian et
al. [9], [10], [1], [11] proposed to formulate the reachability
map computation as a series of convolutions on SE(D)
(where D = 1 or 2 is the dimension of the workspace),
which can be solved by an elegant and efficient numerical
algorithm. In this way, for a robot with P joints and K
different states per joint, they can reduce the computational
complexity of generating a reachability map from O(KP )
to O(P ) or even O(logP ), though they assume that the
convolution cost is constant event though it is exponential
with respect to K. One additional benefit of using convo-
lution as the fundamental element of the reachability map
computation is that we can use the fast Fourier transform
algorithm to further accelerate the map generation with small
approximation errors [12], [13].

Even though making a significant step towards efficient
reachability map generation, most previous works about
convolution-based reachability map focus on planar manipu-
lators and 2-dimensional Euclidean motion group SE(2) [9],
[10], or some special situations such as ball joint [1], [11]
and highly redundant manipulators [14], [15]. This is because
the Special Euclidean Group (SE(D)) describing the rigid
body rotation and translation in D-dimensional Euclidean



space has D(D + 1)/2 free parameters, which implies that
the computational cost of the convolution over SE(3) would
be significantly higher than the convolution over SE(2),
given the same resolution K for each dimension. As a result,
there exist few works about using convolution techniques to
construct the reachability map for typical industrial robots
(like KUKA or Universal Robots) working in 3-D workspace.

In this paper, we find that the serial convolution over
SE(3) can be replaced by a series of convolutions over
SE(2) and 1-dimensional integration. In this way, the com-
putational complexity of generating a 3D robot’s reachability
map can be reduced to nearly that of a 2D case, which is
further accelerated using the fast Fourier transform algorithm
and GPU parallel implementation. We use a set of numerical
experiments to demonstrate the efficiency of our method,
which can reduce the computational time by thousands of
times compared to state-of-the-art approaches while generat-
ing a map with a similar level of quality. In addition, we use
the computed reachability map for the Universal UR5 robot
to solve the next-best-view optimization and multi-robot
collaborative planning problem for a phenotyping system.

II. RELATED WORK

The concept of the convolution product over the Special
Euclidean group is introduced in [9] for numerically calculat-
ing the reachability map of discretely actuated manipulators.
In particular, for a manipulator consisting of P actuated
modules, each with K states, this approach can reduce the
computational complexity from O(KP ) to O(P ), or even
O(logP ). These complexity analysis results, however, hide
the timing cost of the convolution calculation in the constant
factor, which actually is exponential to the resolution K and
is the main bottleneck for efficient map generation.

Some recent works started to apply the convolution tech-
nique to the reachability map related robotics problems.
Some early methods only consider the reachability maps
of planar manipulators with revolutional joints [10], [3].
After that, Dong et al. [1], [11] used reachability maps
generated via convolution to perform the inverse kinematics
computation first for a robot with discretely actuated ball-
joints and then for a robot with active rotation ball-joints.
Wang et al. [14] generated the reachability map for a
hyper-redundant manipulator by explicitly solving diffusion
equations over the motion groups. The convolution technique
can also be applied to compute the distribution for joint errors
that accumulate from the base to the distal end of kinematic
chains, which is a problem closely related to the reachability
map generation [16]. By formulating the error propagation
as a diffusion process on the motion group (which can not
be done for the reachability map), Wang et al. [17] further
used a recursive method with second-order accuracy to make
the computation feasible for a PUMA industrial robot.

The convolution technique can be accelerated by the fast
Fourier transform (FFT). In particular, techniques from the
non-commutative harmonic analysis are used to develop fast
algorithms for calculating convolution integrals on motion
groups [12]. Based on the integral form of the Fourier

transform matrix elements, FFT methods are developed for
R3, S2, and SO(3) and significantly accelerate the convolu-
tions on SE(3). Kim et al. [13] compared the performance
of Bayesian filtering on motion groups using the Gaussian
approach and the Fourier approach respectively, and demon-
strate the advantages of the Fourier approach, especially in
situations with large error covariances.

Besides the convolution technique, some other approaches
exist for the reachability map computation. For instance, Cao
et al. [18] used a Monte Carlo approach to generate the
boundary of the 3D workspace region that is reachable for a
manipulator. Guan et al. [19] also computed and visualized
the reachable workspace for a multi-fingered hand, which is
then used for designing manipulation policies.

III. BACKGROUND

A. Convolution

A general convolution between the scalar functions α and
β has the following form:

(α ∗ β) =

∫ +∞

−∞
α(ξ)β(x− ξ) dx. (1)

According to [9], the reachability map of a high-DOF
manipulator is equal to the convolution product of the lower-
dimensional reachabilty map of each DOF on special Eu-
clidean group. Supposing f1 and f2 are the reachability maps
of a lower segment and an upper segment of the manipulator,
the reachability for the composite of two segments will be:

(f1 ∗ f2)(g) =

∫
f1(h)f2(h−1g) dh, (2)

where g and h are elements of the special Euclidean
group SE(D), which is a D(D+1)/2 dimensional Lie group
describing translation and rotation in the D-dimensional Eu-
clidean space. Each element of SE(D) can be parameterized
as: (

R v

0
T

1

)
, (3)

where R ∈ SO(D) is a D × D matrix representing the
rotation on the group and v is a D × 1 vector representing
the translation.

Given a robot arm with N different segments, we can
generate the reachability map fi for the i-th segment, and
then convolve them together to get the final reachability map
for the entire robot:

f1...N = (f1 ∗ f2... ∗ fN ). (4)

We use a voxel map to represent the reachabilty map and
to perform the convolution operation where each dimension
of SE(D) is discretized into segments with equal sizes. In
particular, for SE(2), we will divide the x, y and θ axes into
N1, N2 and N3 segments, respectively and the total number
of voxel cells is N1×N2×N3. In this way, the convolution



Fig. 2. We denote these 6 DOFs and 7 links of the UR manipulator.
The description of each link of the UR manipulator in the following text is
consistent with this figure.

on SE(2) can be implemented as:

(f1 ∗ f2)(x, y, θ)

=

N1∑
l=0

N2∑
m=0

N3∑
n=0

f1(x1, y1, θ1)

· f2
(

(x− x1) cos θ1 + (y − y1) sin θ1,

− (x− x1) sin θ1 + (y − y1) cos θ1,

(θ − θ1)mod2π
)

∆x∆y∆θ.

(5)

B. Comparison of Convolution on SE(3) and SE(2)

Convolution on SE(3) is much more complicated than
that on SE(2). First, because SE(2) is a 3D space while
SE(3) is 6D, the computational complexity of SE(3) is at
least squared of SE(2). In addition, SE(3)’s topology also
makes the convolution more challenging. In particular,

SE(3) ∼= SO(3) oR3 (6)

and thus SE(3) is not a Cartesian product but a semi-
direct product of SO(3) and R3. To implement this semi-
direct product, we have to appropriately parameterize SO(3).
Unlike SO(2) can be represented easily as a rotation angle,
SO(3) consists of three rotations around three axes and it is
a difficult parameterization approach that Euler angles can-
not well characterize SO(3)’s topological structures, which
results in the difficulty of discretizing SO(3) finely and
uniformly and also the convolution on SE(3).

Due to aforementioned reasons, existing approaches are
limited to planar robots or tasks on SE(2) or some special
subset of SE(3). Thus there exists few methods using
convolution to compute the reachability map for a high-DOF
manipulator like KUKA or Universal robotic arms. In this
paper, we can bypass the difficulty of SE(3) convolution
when computing the reachability map for a many high-DOF
manipulator by leveraging the fact that the calculation can be
achieved alternatively by only using the SE(2) convolution.

IV. METHOD

A. Interplanar Integration of Intra-planar Convolution
(I3C)

We propose a general approach that reduces the com-
putational complexity of reachability map computation and
is applicable to general high-DOF manipulators. In the
following part, we will use the Universal UR robot as one
example to describe our method.

Our method consists of three steps. First, we divide the
manipulator joints into several groups where links in each
group move in the same plane. In particular, we find all
joints that are always coplanar and group them together.
And each of the remaining isolated joints is also treated as
an individual group. Second, for joints in the same group,
we perform convolution on SE(2) according to Equation 5,
because their links are restricted to move in the correspond-
ing plane. Finally, we perform convolution between adjacent
planes to obtain the final reachability map. Thus, we name
our new solution the Interplanar Integration of Intra-planar
Convolution (I3C).

(a) (b)

(c) (d)

Fig. 3. Illustration for the intra-planar convolution: (a-c): the local
reachability map of each link in the group of shoulder-lift, elbow and wrist-
1. (d): the coplanar links in x− y plane.

1) Intra-planar Convolution: According to I3C, the UR
robot arm can be divided into three groups.

As shown in Figure 2 and Figure 3, the Shoulder-lift, El-
bow, Wrist-1 of the UR manipulator will always move on the
same plane and thus their convolution can be fully expressed
on SE(2). We can get the convolution result f23 of Shoulder-
lift and Elbow directly by Equation 5. The subscript of f
represents the indices of joints involving in the convolution.
In the same way, f23 and f4, the reachability map of the
wrist-2, can be convolved together using Equation 5 to get
f234.

All the other joints, including the shoulder-pan and wrist-
2, are not moving in the same plane and thus a single-element
group will be made for each of them.



2) Interplanar Integration: In this step, we need to per-
form the convolution between the reachability maps between
adjacent groups.

For UR robotic arm, the plane of Wrist-2 and the plane of
Shoulder-lift, Elbow and Wrist-1 are vertical to each other
as shown in Figure 4, and the reachability map for the union
of these groups can be computed as:

f2345(x, y, z, θ, ϕ) = χ{L sinϕ′=z}f234(x′, y′, θ′), (7)

where

χ{L sinϕ′=z} =

{
1, if L sinϕ′ = z

0, otherwise
(8)

and

θ′ = − arctan(tanϕ sin θ)

ϕ′ = arcsin(sinϕ cos θ)

x′ = x− L sinϕ sin θ

y′ = y − L cosϕ.

(9)

Here ϕ′ represents the angle of the wrist-2 joint. Although we
have added an angle axis ϕ and a coordinate axis z for rep-
resenting the reachability map on SE(3), the computational
complexity is even lower than the convolution on SE(2).

(a) (b)

(c)

Fig. 4. Illustration for the inter-planar convolution: (a): the local reacha-
bility map of Wrist-2. (b): the local reachability map of Shoulder-pan. (c):
the convolution in x − y − z coordinates with the illustration of θ and φ
used in Equation 7 and Equation 10.

Next, we model the integration towards the base link to
compute the entire reachability map, in which the rotation
of the Shoulder-pan must be taken into account:

f12345(x, y, z, θ, ϕ) =
1

2π

∫ 2π

0

f2345(x, (10)

y cosψ′ + z sinψ′, z cosψ′ − y sinψ′, θ − ψ′, ϕ) dψ′

where ψ represents the joint angle of Shoulder-pan.

B. Applications for Reachability Map

To facilitate understanding, we start from a real applica-
tion scenario to illustrate how to apply a reachability map
generated by I3C. We apply the reachability map in an

updated multi-manipulator plant phenotyping system [20] for
improving the efficiency of motion planning. This system
was designed to provide fast, precise, and non-invasive
measurements for robot-assisted high-throughput plant phe-
notyping. To achieve this goal, this system was equipped with
three UR5 robotic arms that can be moved simultaneously in
each round of phenotyping data acquisition, using the depth
camera (Intel RealSense D435) mounted at each robotic arm.
Under ideal conditions, the cycle of this system is shooting-
image processing and modeling-motion planning-selecting
the next best viewpoint. Repeat this cycle until a high-quality
reconstruction model is obtained.

It is challenging to implement this ideal cycle. The next
best viewpoint selected usually fail to plan, and it is often
necessary to repeatedly select viewpoints, which makes the
real-time performance of the system unable to ensure. The
solution currently used is to pre-select a large number
of reachable viewpoints and then calculate the best from
these viewpoints’ combinations. This scheme discretizes the
infinite continuous space, limiting the choice of the best
viewpoint. To ensure both the real-time performance and
continuous viewpoint space, we introduce our reachability
map into the system.

(a) Rendered system de-
sign

(b) A snapshot of real system

Fig. 5. An updated multi-robot plant phenotyping system [20].

1) base placement: In this scenario, the perspective cov-
erage should be guaranteed while the best location cannot be
found solely from the coverage rate. It is also necessary to
consider the factor of high reachability by setting a threshold
on reachability map. To achieve both higher coverage and
higher reachability, we try to find the optimal base placement.
For each manipulator, we discrete all its possible placement
spaces. Suppose that each manipulator has N possible base
positions, there are N3 kinds of all possible combinations.
To simply calculate the coverage rate, we randomly sample
three-dimensional orientations. The calculation process is as
Algorithm 1.

2) sample by the reachability map: Spending a lot of
time repeatedly selecting the best viewpoint and trying to
plan is the reason why real-time preformance cannot be
achieved. In other words, if the selected viewpoint has a
higher planning success rate, the real-time performance will
be relatively guaranteed. Therefore we apply the reachability
map by selecting the best viewpoint from high-reachability
voxels. We set a threshold to divide voxels into sampleable
and non-sampleable part, and the best viewpoint will only
be selected from the sampleable voxels.



Algorithm 1 Coverage rate(A,B,M,O, threshold)

1: A: N three-dimensional orientations
B: 6D position of three manipulators
M : Reachability map
O: Shooting origin

2: Find all reserved voxels by B,M, threshold
3: Express ten thousand rays by O and A
4: n=the number of rays passing through reserved voxels
5: Result=n/N

However, the pure map does not take into account the
continuity of motion. In addition to the reachability, the
planning success rate is also related to the start and target
position. The start position (home position) is shown in
Figure 5(b), calculated by finding the mean joint value of
random samples without collision. To express reachability
more objectively, the reachability map M should be adjusted
from the home state:

M ′ = M/Dk (11)

where D represents the Euclidean distance between voxels
and home state voxel. k is a constant which is used to adjust
the reachability and movement continuity.

V. EXPERIMENTS

A. Time Efficiency

As aforementioned in Section I, convolution calculations
can be accelerated by deploying on GPUs, as well as apply-
ing FFT algorithms. Compared to brute force method (FK)
and traditional convolution on SE(3), it is advantageous to
get reachability maps through our I3C.

All experiments about time efficiency are deployed on
a server with Intel E5-2600-v3 CPU, 256 GB RAM, and
NVIDIA RTX2080Ti. To control the variables, we only used
a single GPU and CPU. The experimental data is as Table I.

TABLE I
TIME EFFICIENCY COMPARISON OF INTRA-PLANAR CONVOLUTION.

THE IMPACT FACTORS TAKEN INTO CONSIDERATION ARE: CPU, GPU,
INTERPLANAR INTEGRATION OF INTRA-PLANAR CONVOLUTION (I3C),

FFT. THE DATA UNITS IN THE TABLE ARE SECONDS AND 2n, 2m

DETERMINES THE DATA SIZE (2n FOR POSITION, 2m FOR

ORIENTATION). THE REACHABILITY MAP WILL BE DIVIDED INTO

2n × 2n × 2m VOXELS FOR I3C IN SE(2), WHILE IT WILL SQUARE

WITHOUT I3C ON SE(3). / INDICATES EXCEEDING MEMORY SPACE.

method 27, 25 27, 26 28, 25 28, 26 28, 27 29, 26

CPU >500000 / / / / /
GPU / / / / / /

CPU+I3C 29.5 117.89 469.65 1856.31 7516.45 29699.38
GPU+I3C 1.06 4.10 16.35 67.07 273.52 1099.89

CPU+FFT+I3C 0.34 0.649 1.75 4.89 13.58 30.26

The fast Fourier transform (FFT) has been proposed for
SE(3) in previous work, though most of them only provide
theoretical descriptions with limited details about how to
implement SE(3) FFT in practice. By I3C, we avoid the
difficulty of SE(3) FFT implementation and only need to

focus on SE(2) FFT. The computation of convolution inte-
grals on SE(2) has been modeled by G. S. Chirikjian[12].

Usually, the convolution kernel is relatively small (such
as deep learning), and the FFT has almost no acceleration
effect. But for our scenario, the two convolved reachability
maps are almost of the same size, which means that the
acceleration effect of FFT can be better utilized. Assuming
the size of both sides of the convolution are N (total number
of voxels), the complexity of the convolution calculation will
be O(N2). After the introduction of FFT, the complexity will
be reduced to O(N logN).

TABLE II
TIME EFFICIENCY COMPARISON OF INTERPLANAR INTEGRATION.

method 27, 25 27, 26 28, 25 28, 26 28, 27 29, 26

CPU >500000 / / / / /
GPU / / / / / /

CPU+I3C 42.83 174.89 701.96 2464.12 10225.60 42369.43
GPU+I3C 1.26 5.27 21.08 84.97 340.96 1370.38

FFT cannot be applied to Interplanar Integration. From
Table I and Table II, we can draw three conclusions. Firstly,
I3C greatly reduces both time and space complexity. Sec-
ondly, if we apply FFT to Intra-planar Convolution, the
Interplanar Integration will become the time bottleneck.
Thirdly, GPU parallel and FFT acceleration can significantly
speed up the calculation time.

To prove the accuracy of I3C, we have to find a bench-
mark for comparison. However, the brute force method
cannot guarantee the accuracy in the case of high DOF and
the convolution on SE(3) for manipulator even cannot be
modeled directly. In desperation, we compare I3C with the
brute force method.

TABLE III
FROM THE CONVOLUTION RESULT OF TWO JOINTS TO ALL JOINTS. THE

SUBSCRIPT REPRESENTS THE JOINT OF THE CONVOLUTION.

f23 f234 f2345 f12345
Similarity 0.9943 0.9876 0.8661 0.8402

We uniformly sample the value of each joint and obtain
the end poses of the manipulator through FK. Then voxelize
these end poses to obtain data in the same form as the
convolved reachability map. Calculate the mean reachability
value of the two maps, and then select all voxels with a
reachability higher than the mean reachability value. The
similarity is defined as the proportion of these voxels overlap.
We believe that the decrease in similarity of f2345 and
f12345 is mainly caused by the growth of voxel dimensions,
distortion of brute force method and discretization error.

B. Test in Application Scenario

As aforementioned in Section IV.B, we use a reachability
map in base placement and viewpoint collection to ensure
both the real-time performance and continuous viewpoint
space. Our reachability map can express the reachability of
a certain end pose when the base’s position and orientation
are determined.

All experiments in this part are deployed on the same
server in V-A and ROS with the open motion planning library
(OMPL) [21].



We use a 6D reachability map with a size of 103×83 (10
for position, 8 for orientation) for each manipulator, and the
total number of voxels is 512, 000. We select k = 1, 1.5, 2
in the experiment. Since different k will lead to a different
reachability of M ′, we set a dynamic threshold expressed by
n× p.

1) Base placement: We discrete all its possible placement
spaces in units of 10 cm in a plane for each manipulator.
Suppose that each manipulator has N possible base positions,
there are N3 kinds of all possible combinations. To find the
best base position, N3 coverage rate calculation should be
done. For each k and n, the calculation of Algorithm 1 has
to be repeated. The best coverage rate of each k and n are
shown in Table IV.

TABLE IV
COVERAGE RATE FOR EACH k, p AND n. WHILE FINDING THE BEST

BASE POSITION, IT ALSO FOUND THE BEST COVERAGE RATE.

n = 0 n = 1 n = 2 n = 3 n = 5
k = 2, p = 1 1 0.919 0.648 0.500 0.363
k = 1.5, p = 3 1 0.990 0.914 0.799 0.551
k = 1, p = 10 1 1 0.993 0.956 0.859

2) Sample by the reachability map: As usual, the higher
the reachability, the higher the success rate of path plan-
ning. For the multi-manipulator plant phenotyping system
mentioned in Wu [20], the point of view only needs to be
selected in part of the area instead of the entire workspace
(Wu [20] is only selected on a ball). In this case, we set
a threshold for filtering voxels from the reachability map
and then only collect viewpoints from the reserved voxels.
Collect viewpoints and get the joint value of the manipulator
corresponding to each viewpoint by inverse kinematics.
Repeat this sampling process until the resulting three sets
of joint values pass the collision detection. Finally, calculate
the planning success rate, which is shown in Table V.

TABLE V
PLANNING SUCCESS RATE. THE DYNAMIC REACHABILITY THRESHOLD

WAS SET TO n× p. THE VOXELS IN M ′ WILL BE SET TO 0 IF THE

REACHABILITY IS LOWER THAN n× p. FOR EACH RANDOM SAMPLING

PROCESS, WE FIRST RANDOMLY SAMPLE A VOXEL ACCORDING TO THE

REACHABILITY, AND THEN RANDOMLY SAMPLE A 6D POSE IN THE

SPACE OF THE VOXEL. FINALLY, CALCULATE THE PLANNING SUCCESS

RATE OF 1, 000 COLLISION-FREE SAMPLES.

n = 0 n = 1 n = 2 n = 3 n = 5
k = 2, p = 1 0.646 0.699 0.718 0.729 0.760
k = 1.5, p = 3 0.604 0.654 0.667 0.671 0.714
k = 1, p = 10 0.596 0.601 0.624 0.659 0.679

The planning success rate of the random sample is about
0.55. Briefly summarize Table V, we can firstly find that the
success rate will be higher when the k becomes larger, which
is in line with the law (the closer the voxel, the easier it is to
plan). Secondly, a high dynamic reachability threshold will
lead to a high planning success rate.

To make the threshold work better, the selection basis of
the p value: when n = 1, more than half of the voxels are
screened out. A higher k value and a higher threshold setting
can improve the planning success rate, but the coverage rate

will decrease. There needs to be a trade-off between k, n,
and p. According to our experience, when the coverage rate
is above 0.9, only some low-value viewpoints at the bottom
cannot be covered. So we set k = 2, p = 1, n = 1, and
the success rate is still 15% higher than the case without
reachability map. The optimal base position is shown in
Figure 6.

Fig. 6. The red dot indicates the best position of the base.

3) Verify the new base: To verify the effectiveness of the
new base in the Next Best View (NBV) of our multi-system,
we find 10,000 viewpoints by NBV and do inverse dynamics
on three UR5.

TABLE VI
COMPARISON OF THE EFFECTIVENESS OF THE ORIGINAL AND NEW

BASE. 0,1,2,3 REPRESENT THE NUMBER OF UR5 THAT SUCCESSFULLY

SOLVED INVERSE DYNAMICS.

0 1 2 3
Original base 3.35% 80.88% 15.72% 0.05%

New base 0.89% 12.3% 25.28% 61.53%

After changing the base, there is no significant increase in
the motion planning success rate for the specific end poses
of three UR5. However, for more than 60% of viewpoints,
all the UR5 manipulators can obtain inverse kinematics solu-
tions, which means more groups of end pose will correspond
to a groups of viewpoints (3 viewpoints) and we can try
multiple sets of end poses to get a plan for a groups of
viewpoints. For a group of viewpoints given by NBV, the
planning success rate of the new base can reach 60%, while
the original base is only 28%.

VI. CONCLUSIONS

In this paper, we propose I3C to reduce the computational
complexity of obtaining reachability maps for high-DOF
manipulators in 3D workspace. GPU parallel computing and
Fast Fourier transform are also leveraged to further accelerate
the computation procedure. Experiments show that we have
greatly improved computational efficiency and still keep a
high quality. A real application of the reachability map in a
multi-robot system using three UR5 robotic arms is presented
to show the high practical value. With the help of reachability
map, the planning success rate of our multi-robot system
has increased by 15% and a best base placement has also
been found to further improve the system. For a group of
viewpoints, the planning success rate of the best base has
increased by 32%.
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