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Abstract—How to efficiently tag the emotional experience of multimedia contents is an important and challenging problem in the field

of affective computing. This paper presents an EEG-based real-time emotion tagging approach, by extracting inter-brain features from

a group of participants when they watch the same emotional video clips. First, the continuous subjective reports on both the arousal

and valence dimensions of emotion were obtained by employing a three-round behavioral rating paradigm. Second, the inter-brain

features were systematically explored in both spectral and temporal domain. Finally, regression analyses were performed to evaluate

the effectiveness of inter-brain amplitude and phase features. The inter-brain amplitude feature showed significantly better prediction

performance than the inter-brain phase feature, as well as another two conventional features (spectral power and inter-subject

correlation). By combining the four types of features, regression values (R2) were obtained for the prediction of arousal (0:61� 0:01)

and valence (0:70� 0:01), corresponding to prediction errors of 1:01� 0:02 and 0:78� 0:02 (unit on 9-point scales), respectively. The

contributions of different electrodes and frequency bands were also analyzed. Our results show promising potentials of inter-brain EEG

features in real-time emotion tagging applications.

Index Terms—Emotion, inter-brain, EEG, implicit tagging
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1 INTRODUCTION

THE ever-growing volume of multimedia resources avail-
able to us brings an increasing need for effective techni-

ques to manage and retrieve multimedia contents. Among
diverse approaches, tags have been widely used as an effec-
tive form. In industry, commercial web systems (e.g., You-
tube, Last.fm and Flickr) have successfully introduced a
variety of toolkits based on tags to assist different users in
discovering, exploring and sharing media contents [1]. It is
essential to annotate multimedia items with accurate
semantic tags. In particular, tags involving emotion infor-
mation play an important role, since multimedia contents,
such as videos and music, are primarily valued for their
ability to induce specific emotional experiences from people
[2]. Emotion tagging of multimedia resources has been uti-
lized to improve the retrieval and recommendation of mul-
timedia items such as music (e.g., [3], [4]), images (e.g., [5],
[6], [7]), and videos (e.g., [8], [9]).

Among affective retrieval or recommendation systems,
there’re mainly two kinds of multimedia emotion tagging
methods: multimedia content analysis methods and human
annotation methods. The multimedia content analysis meth-
ods extract low-level physical features from visual or audio
streams (e.g., the color, motion and lighting features from
videos. and the pitch, formant, and energy features from
audios) and train machine-learning classifiers with certain
ground truth emotion labels. Despite the explosive growth
of content analysis methods, automatic tagging technologies
still can hardly achieve satisfactory performance on real-
world multimedia data that vary widely in genre, quality,
and content [10], [11], [12].

Meanwhile, the human annotation methods have been
demonstrated to be capable of generating tags which are
directly derived from human behavioral or neural response
[2], [13]. The human annotation methods can be further
divided into two categories: explicit tagging and implicit
tagging. The former means that users manually assign tags
for the delivered multimedia contents, and the latter refers
to autonomously generating tags from people’s spontane-
ous responses when consuming multimedia contents.
Although users’ explicit tagging is widely used in some
popular social media websites (e.g., Twitter, Instagram,
YouTube, etc.) for data retrieving and recommending pur-
poses, manual tagging is very time consuming and labor-
intensive for the ever-expanding online multimedia con-
tents [14], [15]. More importantly, when it comes to emotion
tagging for those continuous media streams like audios and
videos, the explicit tagging approach is inadequate in track-
ing the fast-changing temporal dynamics of human emotion
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experiences. Users usually tag their emotions in a post hoc
manner. Performing real-time emotion tagging is difficult
and very challenging, as it requires frequently reporting of
emotion tags, which would severely interfere with users’
experiencing behavior. Therefore, various implicit tagging
methods have been proposed as an alternative or comple-
mentary approach, such as autonomously generating affec-
tive tags from people’s facial expression [16], [17], [18], eye
gaze [19], [20], physiological signals [21], [22], and neural
signals [23], [24], [25]. Among these possible measurements,
neural signals have increasingly attracted interest in this
field in recent years because they provide a direct measure-
ment of human emotion responses [26], [27].

Electroencephalography (EEG) is one of the most popu-
lar and accessible neural signal measurement techniques.
EEG has been widely used in the field of affective comput-
ing due to its fine temporal resolution, relatively low cost
and high portability, as compared to functional magnetic
resonance imaging (fMRI) and magnetoencephalography
(MEG) techniques. [13], [28]. To date, emotion experiences
such as the valence and arousal dimensions, or typical dis-
crete positive and negative emotions, have been reported to
be effectively recognized using EEGs [28], [29], [30]. Nota-
bly, nearly all studies extracted EEG features on the basis of
a single person’s brain responses, and consequently emo-
tion recognition models were trained and hereby applicable
specifically for each individual person. These individual-
ized designs are motivated by the high individual variabil-
ity in emotion experience [31].

Despite of the popularity of individual-based feature
extraction methods, some recent studies suggest analyzing
inter-brain neural features, which serves as a promising
approach to characterize a variety of cognitive functions
including emotions [32], [33], [34]. The majority of the inter-
brain studies have been focusing on fMRI responses and
their inter-subject correlation (ISC), which is calculated as
the average of pairwise Pearson correlations between the
time courses of the voxel-wise BOLD responses from all pos-
sible pairs of individuals exposed to identical complex and
continuous stimuli [32]. The ISC feature is considered to
reflect the consistency of neural responses across a group of
participants, rather than individual’s response magnitude.
fMRI studies have found that ISCs over sensory and higher-
order cortices were significantly correlated with auditory
and visual perception, speech engagement, as well as emo-
tional dimensions of arousal and valence [33], [34]. However,
the exploration on EEG-based inter-brain features is still very
rare; more details are summarized in Section 2.1).

The aim of the present study is to investigate the effec-
tiveness of different inter-brain EEG features for implicitly
tagging continuous emotions during video watching. Con-
tinuous subjective reports on emotion experience were
obtained by using a real-time behavioral rating paradigm.
Inter-brain EEG features were systematically explored in
both the spectral and the temporal domains, by filtering the
signals into different frequency bands and decomposing
into amplitude and phase components. In our study, the lin-
ear regression method was employed to evaluate the effec-
tiveness of these features. Our results suggest that inter-
brain EEG features are promising for affective computing
applications.

2 RELATED WORK

2.1 EEG-Based Inter-Brain Features

In single-brain emotion recognition models, EEG spectral
powers and their spatial distributions are possibly the most
widely used features. For instance, frontal asymmetry of
alpha power and beta-to-alpha ratio associated with valence
or approach-withdrawal level, occipital alpha power closely
related to arousal level, etc. [35], [36], [37]. Whereas response
magnitude is important for the features mentioned above,
inter-brain analysis focus on a completely different aspect,
i.e., consistency of neural responses across participants.
Hereby, it is necessary to systematically evaluate possible con-
tributions of different EEG features in the inter-brain context.

Researchers are beginning to employ EEG-based inter-
brain analysis to study different cognitive functions. Most
studies have followed the fMRI approach, i.e., by calculat-
ing the pairwise correlations between the time series of
EEGs in a channel-wise manner. A few studies working on
emotion have reported that such inter-brain correlations
could predict the participants’ preference and engagement
[38], [39]. The rich spectral and temporal information, how-
ever, has not been fully utilized. It is reasonable to assume
that inter-brain neural coupling at different frequency
bands of EEG signals may carry distinct cognitive functions.
In multi-person EEG studies on social interactions, it has
been reported that inter-brain correlation of the amplitudes
of theta and alpha over the right temporal-parietal junction,
the amplitudes of alpha and beta over frontal regions were
associated with the understanding of others’ intention and
high-level cooperative strategies [40], [41]. In another emo-
tion-related study [42], [43], the inter-brain consistency in
the delta band was shown to have a primary contribution to
behaviorally measured audience preference. Therefore,
extracting inter-brain features from different frequency
bands may help us to better reflect different cognitive com-
ponents that are important for emotion experience.

To further explore EEG signals in the temporal domain, it
is necessary to consider its phase and amplitude decompo-
sition. Separating amplitude and phase has been suggested
to provide distinct insights into the neural mechanisms of a
variety of cognitive functions [44], [45], [46]. Specifically,
phase synchronization has already been suggested to be
related to top-down control and reflecting the timing of neu-
ral populations for the exchange of information between the
global and local neuronal networks [47], [48], [49], whereas
amplitude responses have been related to the excitability of
local neural assemblies [50], [51]. While a number of previ-
ous studies have suggested the functional importance of
inter-brain phase synchrony in relatively low-frequency
bands, such as delta, theta, alpha, in a variety of social inter-
action paradigms [52], [53], [54], the possible contributions
of inter-brain phase and amplitude features for emotion rec-
ognition remain to be elucidated.

2.2 The Ground Truth for Emotion Tagging

Before developing an effective emotion tagging model for
tracking the fast-changing temporal dynamics of our emo-
tion experiences during video watching, it is important to
obtain reliable human annotated labels as the ground
truth for later training purpose. These labels were usually
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obtained by recruiting a group of participants to manually
report their subjective emotional experiences after the per-
ception of given emotional stimuli [28], [29]. The reports
could be multi-dimensional, including a set of discrete emo-
tion categories (e.g., joy, anger, sadness, fear) and they were
normally asked to give a numerical evaluation on each
dimension, e.g., by using a 7-point Likert Scale. In practice,
the majority of EEG-based emotion tagging studies have
employed a simplified version of the obtained labels, e.g.,
by translating the numerical reports into two levels to repre-
sent the high and low state of one specific emotion [55], [56],
[57]. While such a translation might be encouraged by the
popularity of the binary classification methods, a few stud-
ies have adopted the regression methods to take the full
advantage of the labels [58], [59].

Although the above-mentioned human annotation
method has been widely used, it might not be sufficient to
provide the ground truth labels for real-time emotion tag-
ging scenarios. Specifically, the participants were required
to report their emotional experiences in a post-hoc manner
and therefore they were assumed to experience a constant
magnitude of emotion throughout one elicitation procedure.
While such an assumption might be valid for the perception
of briefly presented emotional stimuli, complex and dynam-
ically changing stimuli (e.g., videos) requires further devel-
opment of the reporting method for obtaining the time
course of emotion experiences. Alternatively, a dynamic
annotation method has been proposed [34], [59], in which
the participants were asked to go through the emotion elici-
tation procedure a second time and performed the report in
a synchronized way with the stimuli. More repetition or
more participants would be needed, if more emotion
dimensions were to be labeled. While such a method could
be time consuming and increase the burden of the partici-
pants, it is believed to provide more accurate labels for
training emotion tagging models.

It is worth noting that the dynamic annotation method is
not designed for application-oriented scenarios, but mainly
for research purposes. The obtained real-time ratings can be
used to investigate feature extraction and machine learning
methods (as in the present study). The trained models can
then be applied to implement advanced real-time and auto-
matic emotion recognition systems, which do not need real-
time subjective reports.

3 METHOD

3.1 Participants

Thirteen undergraduates from Tsinghua University were
recruited (six females, mean age ¼ 21 years, ranging 19—23
years) as paid volunteers. All of them had normal hearing,
normal or corrected-to-normal vision. Informed consent was
obtained from all participants. The study was conducted in
accordance with the Declaration of Helsinki and approved
by the local Ethics Committee of TsinghuaUniversity.

3.2 Materials

Twenty clips of emotion eliciting videos from the MAH-
NOB-HCI dataset were used in the current study as the test-
ing stimuli, including video clips selected from commercial
movies like Hannibal, Mr. Bean’s holiday, Love Actually, as

well as from online resources like youtube.com and blip.tv.
All of the video clips have been validated to be able to
induce different emotional valence and arousal states (see
more descriptions about those videos in [29]). The durations
of those video clips ranged from 35 seconds to 117 seconds
(mean duration ¼ 81:4� 22:5 seconds). The emotional rat-
ings of these 20 video clips by the participants in the present
study are shown in Fig. 1B.

3.3 Procedure

The experiment was carried out in a regular laboratory envi-
ronment with ambient illumination from ceiling lights and
without any electrical shielding. The stimuli were displayed
on an LCD monitor (22-inch, DELL, USA) with a 60 Hz
refreshing rate. Stereo speakers (DELL, USA) were used, and
the sound volumewas set at a fixed and comfortable level.

The experiment consisted of three rounds, each with the
same 20 video clips presented as 20 trials (orders were inde-
pendently randomized within each round). Before the first
round, three practice trials were given to familiarize the par-
ticipants with the procedure.

The first round aimed to collect the EEG signals during
video watching. In each trial, the participants watched one
clip of emotional videos, and reported their overall subjec-
tive emotion experiences afterward on both the valence and
arousal dimensions on 9-point scales (0-8). Participants per-
formed the reports by moving red vertical bars along the
scales (Fig. 1A). Between every two sequential trials, the
participants were asked to watch a 19-second neutral video
(a color bar test pattern) in order to recover from the

Fig. 1. Experimental procedure. (A) Left: an illustration of the three-round
experiment; Right: the rating interfaces used in the three rounds. The
order of round 2 and round 3 was randomized across participants. (B) An
overview of the subjective ratings on arousal and valence. The colored
dots represent the overall ratings of each individual video clips, and the
three subplots depict the representative continuous ratings of the video
clips shown in the corresponding colors. The solid and dashed lines indi-
cate the continuous ratings on arousal and valence, respectively.
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previously induced emotional state as much as possible.
After the completion of all the 20 trials, participants took a
rest for 5 minutes.

The second and third rounds were designed to collect
people’s continuous real-time emotional experiences to the
same video stimuli presented in the first round. The partici-
pants performed a real-time report by moving a red vertical
bar while watching replays of videos presented in the first
round, using a computer mouse (Fig. 1A). They could move
the red bar freely in all trials and the bar would stop at one
of the two ends when the mouse moved beyond the range.
The bar could be moved continuously in real-time, and it
could be kept in a specific position as well, when reporting
a period of constant emotion experiences. They were
instructed to recall their real-time emotion experiences of
watching the video stimuli for the first time, and the replays
served as the memory clue to facilitate their recall and pro-
vided the temporal information for recording their real-
time reports. The subjective reports were finalized into 1-
second resolution time series for further EEG analysis, as a
second-level temporal resolution was deemed sufficient to
capture the temporal dynamics of human emotional experi-
ences. The participants reported their real-time emotion on
valence and arousal in the second and third round, respec-
tively. The order of the emotional dimensions was counter-
balanced across participants. There was a 5-minute rest
between the two rounds.

The purpose of such a design was to obtain more accu-
rate labels for evaluating the inter-brain features. The design
of our EEG experiment followed a previous fMRI study [34]
for the collection of continuous real-time subjective reports.
An overview of the experimental procedure is shown in
Fig. 1A. Presentation of the stimuli and the rating procedure
were programmed in MATLAB (The Mathworks, USA)
using the Psychophysics Toolbox 3.0 extensions [60].

3.4 EEG Recordings

EEG signals were recorded with the NeuSen.Uamp, system
(Neuracle, China) at a sampling frequency of 1000Hz. Fifteen
electrodes were arranged according to the international 10-20
system (F3/4, Fz, C3/4, T3/4, T5/6, P3/4, Pz, O1/2, Oz),
with reference at Cz and a forehead ground at FPz. Electrode
impedanceswere kept below 10 kOhm for all electrodes.

3.5 Signal Preprocessing and Feature Extraction

Due to personal issues, two participants’ behavioral data
were partly lost, therefore the continuous emotional rating
was averaged over the remaining 11 participants. For all the
13 participants, their EEG signals were first downsampled
to 200 Hz, notch filtered to remove the 50 Hz powerline
noise, and bandpass filtered to 0.5-50 Hz. Artifacts related
to eye-movement, muscle movement, and other possible
environmental noises were removed using independent
component analysis (ICA). On average, 1-2 independent
components were excluded per participant. The remaining
ICs were then back-projected onto the scalp EEG channels,
reconstructing the artifact-free EEG signals.

The preprocessed data were then band-pass filtered into
four bands, namely theta (4-7 Hz), alpha (8-13 Hz), beta (14-
29 Hz) and gamma (30-47 Hz). Similar with previous EEG

studies focusing on emotion dynamics [61], [62], [63], here
delta (1-4 Hz) band was not included as it could not be
effectively preserved and extracted with the chosen
1-second temporal dynamics (see below), according to the
signal processing theory. The data were further segmented
into trials according to the 20 video clips. All the band-pass
filtered segments were subjected to a Hilbert transform

�i tð Þ ¼ xi
m;n tð Þ þ jh xi

m;n tð Þ
� �

; (1)

where t is time, xi
m;nðtÞ represents EEG data from the m-th

channel, n-th trial (video clip) and the i-th participant and
hðxim;nðtÞÞ represents its Hilbert transform, and j is the imag-
inary unit. Hereby, the instantaneous amplitude Ai

m;nðtÞ and
the instantaneous phase fi

m;nðtÞ of the i-th participant are

Ai
m;n tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi
m;n tð Þ

� �2
þ hðxim;n tð Þ
� �2

r
(2)

fi
m;n tð Þ ¼ tan�1 hðxi

m;n tð Þ
� �

=xi
m;n tð ÞÞ: (3)

The above formulae are applied to the EEG data of all
channels from all participants, at all the four frequency
bands, for all video clips, respectively.

The inter-brain EEG features were then collected as fol-
lows. The inter-brain phase feature (termed as i-Phase) was
formed by averaging the phase-locking values (PLVs) over
a certain period of time, in which PLVs were calculated as
the consistency of phases across participants

PLVm;n tð Þ ¼
XN
i¼1

exp fi
m;n tð Þ

� �
=N; (4)

where N is the number of participants. PLV varies between
0 and 1: When PLV ¼ 1, the phases are completely locked
to a fixed phase angle; when the phases are uniformly dis-
tributed between 0 and 2p, PLV ¼ 0. Note that PLV is an
amplitude-independent measurement as it assigns constant
unit amplitude on each trial.

Inter-brain amplitude feature (termed as i-Amplitude),
however, was obtained by averaging the instantaneous
amplitudes across all participants over a certain period of
time, in which the averaged amplitude feature at one time
point is calculated as

Am;n tð Þ ¼
XN
i¼1

Ai
m;n tð Þ=N: (5)

A large amplitude value indicates a neural response of a
high magnitude. As phase information is separated out, the
i-Amplitude feature reflects a genuine response intensity.
Here a time period of 1 second was selected to extract both
the i-Phase and i-Amplitude features, following the selection
in previous studies [16], [58]

To compare the proposed inter-brain features to existing
methods, we also extracted two typical features which were
widely used in previous studies. The first feature was the
EEG spectral power feature (termed as Power), which was
probably the most popular individual-based feature [64],
[65]. In our study, we extracted the spectral power at the
four frequency bands (theta, alpha, beta, and gamma) as
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used in the inter-brain features by computing the square
of the intensity of the bandpass filtered signal. The power
feature used in the present study was the averaged spectral
power across the participants (therefore also an inter-brain
feature). The second feature was the inter-subject correla-
tion feature (termed as ISC), which is the most widely used
inter-brain feature to date [34], [46]. Here we calculated ISC
for each frequency band respectively, as follows

ISC kð Þ ¼ 1

N N � 1ð Þ=2
XN
i ¼ 1

XN
j ¼ 2; j > i

rij; (6)

whereN is the number of participants, and rij represents the
temporal (Pearson’s) correlation between participant i and j,
given one pair of epoched data at a specific channel from
the k-th 1-second epoch.

All of those extracted features (i-Phase, i-Amplitude,
Power, and ISC) had a maximal dimensionality of 60 (4 fre-
quency bands � 15 channels). In order to obtain maximal
emotional responses (following the procedure in [28]), the
EEG signals from the first round were used: the total num-
ber of 1611-second long video duration resulted in 1611
data samples (1-second non-overlapping time window).
Correspondingly, the continuous subjective emotion experi-
ences on both valence and arousal dimensions of these time
points were obtained as well, by calculating the averages of
the individual reports.

Before performing the regression analysis, the bivariate
correlations between each EEG feature and the subjective
emotion experiences of valance and arousal were calcu-
lated. Then the extracted feature data were used for the lin-
ear regression analysis, with continuous experiences on
either valence or arousal as the dependent variable and one
type of EEG features as the independent variables (4 fre-
quency bands � 15 channels for each type). Both the fitness
and the prediction error of the regression models were
taken as the indexes for evaluation, where the fitness was
the R2 statistic of linear regression, and the difference
between the actual real-time tagging and the regressed rat-
ing was the prediction error. To explore the possible best
performance and the most significant features, a LASSO
(least absolute shrinkage and selection operator) regression
was employed, taking all types of features as input and set
the number of output non-zero features as 60 (to make the
results best comparable with the other regression models).
When examining the influence of frequency bands and spa-
tial distribution, linear regression models were also built
with features from each frequency band as the independent
variables (4 extracted features � 15 channels). In order to
perform statistical tests on the prediction capability of the
EEG features, a bootstrap procedure was applied for all
regression analyses, with 1000 repetitions, and two-sample
t-tests were applied to compare the independently boot-
strapped samples. To control the influence of multiple com-
parisons, a false discovery rate (FDR) correction was
conducted on p values of all statistical tests [66].

Another question that we need to answer is whether
inter-brain features can outperform the best performing
individual’s single-brain features, rather than the grand-
average. Hereby, we performed a similar regression analy-
sis for each individual’s EEG data, using both the Power and

i-Amplitude feature (i-Phase and ISC features cannot be cal-
culated for individuals) and compared their effectiveness to
the inter-brain results.

Lastly, although we only had 13 participants’ data, we
preliminarily explored the influence of the number of par-
ticipants on the regression results. For each given number
of participants, all possible participant combinations were
included.

4 RESULT

4.1 Subjective Emotional Experience and
Correlations with EEG Features

The overall scores of the video clips were shown in the
valence/arousal space in Fig. 1B, where the continuous
explicit tagging traces of three videos from distinguished
three clusters were given as the examples for three classes:
neutral (average valence: 4:49� 0:63, low arousal: 0:55 �
0:54), positively excited (high valence: 6:10� 1:44, high
arousal: 3:56� 2:52) and negatively excited (low valence:
2:73� 1:58, high arousal: 4:05� 2:63).

Participants’ continuous explicit tagging was shown in
Fig. 2A, in which the 95 percent confidence interval
(shadow range in Fig. 2A) indicating the reliability of the
participants’ explicit tags. The range of the ratings also con-
firmed that the video clips we used were able to elicit strong
and temporally dynamic emotional reactions, with valence
ranging from 0.01 to 7.86 and arousal ranging from 0.86 to
7.80. The bivariate correlations were conducted to reveal the
relationship between the four extracted EEG features
(Power, i-Amplitude, i-Phase and ISC) and the real-time sub-
jective emotion experiences during video viewing. As
shown in Fig. 2B, for arousal, Power and i-Amplitude features
showed stronger correlations than the other two, especially

Fig. 2. Continuous explicit tagging and its correlation with inter-brain
EEG features. (A) Time series of explicit emotion tagging with the 95
percent confidence interval of the arousal (upper) and valence (lower)
scores across the 11 participants. Vertical lines denote breaks between
the video clips. In the valence plot, the horizontal line at 4 shows the neu-
tral valence. (B) Bivariate correlations between the inter-brain EEG fea-
tures and the emotion experiences. The correlations for arousal and
valence are shown in the left and right panels, respectively.

96 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2021



in alpha and gamma frequency bands (left panel, Fig. 2B).
For valence, the four features had a similar magnitude of
correlation strength, with stronger values for lower fre-
quency bands such as theta and alpha (right panel, Fig. 2B).

4.2 Regression Results

Fig. 3 shows the results of regression with the arousal rat-
ings as the dependent variable. Among all inter-brain EEG
features, i-Amplitude feature achieved the best fitted model
(R2 ¼ 0:59� 0:02, Mean � Standard Deviation calculated
from bootstrapping), and correspondingly the smallest
prediction error (1:04� 0:02, unit on the 9-point scales, see
green bar in Fig. 3A). The classical Power feature also
obtained a good performance (R2 ¼ 0:56� 0:02, prediction
error ¼ 1:08� 0:03, see red bar in Fig. 3A). The prediction
capabilities of i-Phase (R2 ¼ 0:09� 0:01, prediction
error ¼ 1:65� 0:03, see yellow bar in Fig. 3A) and ISC
(R2 ¼ 0:09� 0:01, prediction error ¼ 1:66� 0:03, see blue
bar in Fig. 3A), however, were significantly worse. When
combing all the inter-brain features, the best performance
(R2 ¼ 0:61� 0:01) with the smallest error (prediction error ¼
1:01� 0:02) was obtained (see black bar in Fig. 3A). The per-
formance of the combination of all the features significantly
surpassed all the individual features in terms of both R2
(V.S. Power: tð1998Þ ¼ �70:95, p < 0.001; V.S. i-Phase: tð1998Þ ¼
�896:88, p < 0.001; V.S. i-Amplitude: tð1998Þ ¼ �26:23,
p < 0:001; V.S. ISC: tð1998Þ ¼ �894:98, p < 0:001) and pre-
diction error (V.S. Power: tð1998Þ ¼ 61:98, p < 0:001; V.S.
i-Phase: tð1998Þ ¼ 582:91, p < 0:001; V.S. i-Amplitude:
tð1998Þ ¼ 21:76, p < 0:001; V.S. ISC: tð1998Þ ¼ 583:64, p <
0:001). The performance of i-Amplitudewas significantly bet-
ter than the other three features in terms of both R2 (V.S.
Power: tð1998Þ ¼ �45:71, p < 0.001; V.S. i-Phase: tð1998Þ ¼
�833:13, p < 0:001; V.S. ISC: tð1998Þ ¼ �831:75, p < 0:001)
and prediction error (V.S. Power: tð1998Þ ¼ 40:86, p < 0.001;
V.S. i-Phase: tð1998Þ ¼ 552:55, p < 0:001; V.S. ISC:
tð1998Þ ¼ 553:39; p < 0:001). There was no significant dif-
ference between i-Phase and ISC (R2: tð1998Þ ¼ 2:65;
p > 0:05; prediction error: tð1998Þ ¼ �2:28; p > 0:05), and
both of the two features’ performance was significantly
worse than Power in terms of R2 (V.S. i-Phase: tð1998Þ ¼

701:59; p < 0:001; V.S. ISC: tð1998Þ ¼ 701:15; p < 0:001)
and prediction error (V.S. i-Phase: tð1998Þ ¼ �484:87; p <
0:001; V.S. ISC: tð1998Þ ¼ 485:93; p < 0:001). When combin-
ing all the features, among the chosen 60 features in the
LASSO model, Power accounted for the largest portion
(40.00 percent), followed by i-Amplitude (30.00 percent),
while ISC contributed least (10.00 percent) (Fig. 3B). The
beta parameters of the regression model were taken to eval-
uate the contribution of each individual inter-brain feature:
as listed in Table 1, the top 10 significant features mainly
came from i-Amplitude and Power features in relatively high
frequency bands, with half of them from parietal-occipital
areas. The predicted real-time ratings by different types of
inter-brain features are shown in Fig. 3C, in which the mod-
els using i-Amplitude and Power features effectively followed
the behavioral ratings.

Fig. 4 shows the result of regression models with valence
as the dependent variable. Similarly, the i-Amplitude and
Power features showed better performances than the other
two features (Fig. 4A, Power: R2 ¼ 0:62� 0:02, prediction
error ¼ 0:87� 0:02; i-Amplitude: R2 ¼ 0:67� 0:01, prediction
error ¼ 0:82� 0:02; i-Phase: R2 ¼ 0:08� 0:01, prediction
error ¼ 1:41� 0:03; ISC: R2 ¼ 0:09� 0:01, prediction error ¼
1:41� 0:02). The model with combined feature also achieved
the smallest error and highest R2 (R2 ¼ 0:70� 0:01,
prediction error ¼ 0:78� 0:02), with more contribution from

Fig. 3. Regression results for arousal. (A) Model fitting R2 (bars with the
left scale) and model prediction error (gray lines with the right scale) of
the regression using the four inter-brain features and their combination.
Error bars indicate standard deviation. (B) The percentages of each type
of features in the chosen 60 features in the combined regression model.
(C) The predicted ratings using different types of features for all 20 video
clips. The gray lines represent the behavioral ratings.

TABLE 1
The Top 10 Significant Features of the Regression

Model for Arousal

Beta Feature Frequecy band Electrode

0.90 i-Amplitude Gamma F3
0.79 i-Amplitude Gamma Oz
�0.66 i-Amplitude Gamma Fz
�0.53 Power Gamma P4
0.48 i-Amplitude Gamma C4
�0.47 i-Amplitude Alpha T4
0.46 i-Amplitude Beta Oz
�0.44 Power Gamma Ol
0.38 Power Gamma 2
0.34 Power Alpha C3

Fig. 4. Regression results for valence. (A) Model fitting R2 (bars with the
left scale) and model prediction error (gray lines with the right scale) of
the regression using the four inter-brain features and their combination.
Error bars indicate standard deviation. (B) The percentages of each type
of features in the chosen 60 features in the combined regression model.
(C) The predicted ratings using different types of features for all 20 video
clips. The gray lines represent the behavioral ratings.
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Power (45.00 percent), and i-Amplitude (33.33 percent)
(Fig. 4B). As listed in Table 2, the top 10 significant features
mainly came from the i-Amplitude feature, with more than
half of them from parietal-occipital areas. The predicted real-
time ratings by different types of inter-brain features are
shown in Fig. 4C. Again, the models using i-Amplitude and
Power features effectively followed the behavioral ratings.

A complete overview of the contributions of each elec-
trode and frequency band within each inter-brain feature is
shown in Fig. 5. The contributions were reflected by the
beta coefficients from the regression models using the four

inter-brain features. In general, Power and i-Amplitude
(shown in the scale ranging from �1 to 1, see Fig. 5) had
larger beta coefficients than i-Phase and ISC (shown in the
scale ranging from �0.2 to 0.2, see Fig. 5). Distinct spectral
and spatial patterns were observed for the four features.
When regressing two emotional ratings and the Power fea-
ture, the beta band contributed the most, while the gamma
band contributed the most in the regression of two emo-
tional ratings and i-Amplitude, as well as the regression of
arousal ratings and Power. For the rest regression analyses,
the four bands contributed roughly similar. In general, a
larger contribution of the higher frequency bands (beta and
gamma) than the lower frequency bands was observed
from the topographic result as well as the linear regression
(Arousal: theta, R2 ¼ 0:31� 0:02; alpha, R2 ¼ 0:30� 0:02;
beta, R2 ¼ 0:45� 0:02; gamma, R2 ¼ 0:51� 0:02. Valence:
theta, R2 ¼ 0:37� 0:02; alpha, R2 ¼ 0:29� 0:02; beta, R2 ¼
0:55� 0:02; gamma, R2 ¼ 0:57� 0:02).

4.3 Inter-Brain Features versus
Single-Brain Features

The regression R2 for arousal and valence based on the indi-
vidual-based single-brain amplitude (Fig. 6A) and power
(Fig. 6B) features are plotted together with the results based
on inter-brain features. The R2 was significantly larger for the
inter-brain features (stars in Fig. 6), as compared to those from
all the single-brain features (circles in Fig. 6) by one-tail one-
sample t-test, for both Power (arousal: tð10Þ ¼ �12:39; p <
0:001; valence: tð10Þ ¼ �7:09; p < 0:001) and i-Amplitude
(arousal: tð10Þ ¼ �14:82; p < 0:001; valence: tð10Þ ¼ �7:24;
p < 0:001). Notably, inter-brain features outperformed the
single-brain features from the best individual participant.

4.4 The Number of Participants

The possible influence of regression results by the number
of participants was also explored. As shown in Fig. 7, there
were gradual increases of the regression R2 with increasing
number of participants, for both arousal (Fig. 7A) and
valence (Fig. 7B). Overall, the increases of the regression R2

were significant when the number of participants gradually
increasing from 1 to 2, 2 to 3, . . ., 8 to 9, but the increase
became non-significant, when the number of participants
exceeded 10 (one-tail two-sample t-test, p > 0.05, FDR cor-
rected), for both Power and i-Amplitude features.

5 DISCUSSION

The present study investigated the effectiveness of different
inter-brain EEG features for implicitly tagging real-time

TABLE 2
The Top 10 Significant Features of the Regression

Model for Valence

Beta Feature Frequency band Electrode

�0.88 i-Amplitude Gamma C4
�0.70 i-Amplitude Gamma O2
0.65 i-Amplitude Gamma T4
0.59 Power Beta Oz
�0.54 i-Amplitude Gamma P3
0.48 i-Amplitude Gamma P4
0.47 i-Amplitude Gamma Ol
0.45 i-Amplitude Theta Oz
�0.41 i-Amplitude Theta F4
0.40 Power Gamma P4

Fig. 5. The topographies of regression beta coefficients for the represen-
tation of the contributions of each electrode and frequency band. The
beta coefficients were taken from regression models based on the four
EEG features separately. The results for arousal and valence are shown
on the top and bottom panels.

Fig. 6. Regression results for arousal and valence based on the single-
brain Power (A) and i-Amplitude (B) features, each dot representing the
results of one individual participant. The results from inter-brain features
are also shown for comparison (shown as stars).
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emotions during video watching. Inter-brain EEG features
were calculated in different frequency bands, and the possible
contributions from amplitude and phase components were
separately explored. The inter-brain amplitude consistency (i-
Amplitude) and the averaged spectral power (Power) showed
significantly better prediction performances when compared
to inter-brain phase consistency (i-Phase) and inter-subject cor-
relation (ISC). The regression results were further enhanced
by combining all features. The significant electrodes and fre-
quency bandswere also investigated and reported.

In contrast to most previous EEG-based emotion tagging
studies, the exploration of these inter-brain features in the
present study was conducted on the basis of continuous
behavioral ratings rather than stimulus-wise ratings. As
shown in Fig. 1B, the continuous ratings provided rich tem-
poral information about human emotion experiences, and
fast changes of the emotion magnitudes were observed.
These data argued against the general assumption of a con-
stant emotion magnitude throughout the emotional video
clips, as used in most previous studies [14], [29]. Together
with the high consistency of the real-time ratings across par-
ticipants (Fig. 2A), these ratings were likely to be a better
choice as the labels of the multimedia contents, especially
for those with complex and mixed emotions.

By decomposing the inter-brain features into amplitude
and phase components, we found the inter-brain amplitude
consistency predicted the real-time emotion experiences
very well, while the inter-brain phase-locking yielded much
worse results. Such an observation may be quite surprising
at first glance, as single-brain inter-trial or inter-regional
phase-locking has been demonstrated as an effective indica-
tor for a variety of cognitive functions [67], [68], [69]. The sub-
stantially stronger predictive power of amplitude rather than
phase in the inter-brain context, however, may be explained
by the high inter-participant temporal variability in emotion
perception. Hereby, the EEG activities from different partici-
pants might not be precisely time locked as reflected by their
phase angles. Instead, there should be still a certain degree of
inter-brain ‘synchronization’ at a coarser time scale, revealed
by the amplitude responses with phase information dis-
carded. Nevertheless, phase responses also provided useful
information, as the regression performance based on com-
bined features were significantly better than using the ampli-
tude feature alone. Whether our findings can be extended
beyond the emotion tagging context remain to be elucidated.

Notably, the performance of the popular inter-brain ISC
feature only reached a similar level as the inter-brain phase-
locking features. ISC and i-Phasewere calculated using quite
different formulae: ISC captured the linear correlations
between pairs of EEG activities, in which their phase syn-
chrony might play an important role; i-Phase took the neural
activities from all participants simultaneously. The similar
poor performance of ISC and i-Phase may due to the com-
mon source of phase information being less functional in
identifying continuous emotion. Indeed, similar spatial pat-
terns of the bivariate correlation between the two features
and the emotion ratings were observed (Fig. 2B).

The complete overview of the frequency band and spatial
distribution revealed the major contribution of beta and
gamma bands, especially for the regression of Power and
i-Amplitude. The beta-power asymmetry at the parietal
regions [70], and the gamma spectral changes [71], [72] has
been reported as the indicators of emotional states in facial
expression perception, while the frontal electrical activity
was found to contribute much to musical emotions [73]. As
video clips consisted of both visual and auditory emotion
elements, it is reasonable to see a distributed brain region
involvement. As the inter-brain features has rarely been
investigated in previous studies, our findings provide possi-
bly the first piece of evidence on the neural response pat-
terns in the context of emotional experiences.

The inter-brain features outperformed the single-brain
features from the best-performing participant (Fig. 6), sug-
gesting its promising application potential for real-time
emotion tagging. The collective nature of the inter-brain fea-
tures could facilitate emotion tagging in continuous and
complex stimulation scenarios, probably in the following
manners. First, calculating the inter-brain features may
serve to enhance the signal-to-noise ratio of the features, as
all participants were perceiving the same audiovisual stim-
ulation [74]. Hereby data from each individual brain were
supposed to share similar stimulation related responses,
with different random noises that could be suppressed by
inter-brain integration. Second, the intra-participant varia-
tion in the participants’ mental states, such as fatigue, dis-
traction, etc., may deteriorate the quality of the single-brain
neural data. Collecting neural activities from multiple par-
ticipants may help to alleviate this problem, as the mental
state variations are likely to be randomly distributed over
time for different participants. Third and most importantly,
the inter-brain features were constructed from a collective
perspective, which was substantially different from the con-
ventional single-brain features. Therefore, completely new
information may be extracted by calculating the inter-brain
features, with more brains providing more robust informa-
tion. These explanations were preliminarily supported by
our regression analyses as the function of the number of
participants (Fig. 7). However, as the performance enhance-
ment did not reach a significant level when having more
than 10 participants, further investigations with more par-
ticipants and more varied stimulation materials are needed
to estimate the necessary number of participants precisely.

Although the difference inmethodology (regression versus
classification) made it difficult to have a direct comparison
between our results and those in previous studies, the high R2

values (>0.6) and the low prediction errors (approx. 1 in the 9-

Fig. 7. Performance (regression R2) as a function of participant number
for arousal (A) and valence (B). Error bars indicate standard error of the
mean derived from different samplings of the participants given a certain
participant number. Stars indicate significant differences at p ¼ 0:05
level with FDR correction.
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point scales) imply a good potential for practical applications.
Compared to the popular classification models (normally
binary for high versus low levels), our regression models can
yield fine-scale emotional experiences in real-time, thereby
providing a better description of human emotion experiences.

Admittedly, there was a possible confounding factor of
time for the regression results for arousal, as there was a
positive correlation between arousal and time in the major-
ity of the video stimuli (Fig. 2A). Controlling the factor of
time in the regression analysis, however, would severely
deteriorate the subjective reports on arousal, and inevitably
but unnecessarily weaken the regression results. As our
regression model also showed a good prediction perfor-
mance for the few video clips with no increase of arousal
with time (Fig. 3C), such a confounding might have limited
impact on our results. Nevertheless, studies with more
diversified stimuli (i.e., video clips with decreasing arousal
with time) are necessary to further clarify this issue.

Moreover, while the present study investigated the basic
units of inter-brain features from the spectral and temporal
perspectives, further explorations are needed, at least from
the following perspectives. First, while we empirically chose
a 1-second duration for data analysis, the optimal temporal
resolution for recognizing emotion experiences remains to be
examined. Delta band EEG activities, for instance, could be
actively involved, if a longer duration were found to be effec-
tive in capturing the emotion dynamics. Second, the inter-
brain features could be constructed using more complex and
advanced strategies. For example, when classifying different
emotion types, some advanced classification approaches
have been proposed, including using local temporal correla-
tion common spatial pattern to extract neural features from
response- and stimulus-locked EEG signals [75], and using
diverse ways to combine neural features, such as optimal lin-
ear combination of neural decision variables, neural majority
decision rule [74], and weighted majority or extreme vote
[74], [75], [76]. Third, investigations on discrete emotions
beyond the va-lence-arousal model are necessary as well, to
validate the generalization of the present findings. Explora-
tions in these directions are necessary and are expected to fur-
ther enhance the performance of real-time emotion tagging.

6 CONCLUSION

The present study for the first time systematically investi-
gated the possible contribution of different inter-brain fea-
tures for continuous emotion tagging. The inter-brain features
were explored in both the spectral and temporal domain. The
regression results suggest superior performance of the inter-
brain amplitude feature and the combination of all inter-brain
features outperformed the single-brain features from the best
participant. Our results advocate for the usage of inter-brain
features for emotion tagging and provide evidence to guide
selection of inter-brain features.
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