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GPU-Based Supervoxel Generation With a Novel
Anisotropic Metric
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Abstract— Video over-segmentation into supervoxels is an
important pre-processing technique for many computer vision
tasks. Videos are an order of magnitude larger than images. Most
existing methods for generating supervovels are either memory-
or time-inefficient, which limits their application in subsequent
video processing tasks. In this paper, we present an anisotropic
supervoxel method, which is memory-efficient and can be exe-
cuted on the graphics processing unit (GPU). Therefore, our
algorithm achieves good balance among segmentation quality,
memory usage and processing time. In order to provide accurate
segmentation for moving objects in video, we use the optical
flow information to design a brand new non-Euclidean metric
to calculate the anisotropic distances between seeds and voxels.
To efficiently compute the anisotropic metric, we adjust the classic
jump flooding algorithm (which is designed for parallel execution
on the GPU) to generate anisotropic Voronoi tessellation in
the combined color and spatio-temporal space. We evaluate
our method and the representative supervoxel algorithms for
their capability on segmentation performance, computation speed
and memory efficiency. We also apply supervoxel results to
the application of foreground propagation in videos to test the
performance on solving practical problems. Experiments show
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that our algorithm is much faster than the existing methods, and
achieves good balance on segmentation quality and efficiency.

Index Terms— Supervoxels, video segmentation, anisotropic
metric, jump flooding algorithm, GPU.

I. INTRODUCTION

AS AN efficient pre-processing technique, superpixel seg-
mentation [1], [11], [12], [24], [26] technology had

been widely used in image processing. By stacking the
image frames along time axis, many over-segmentation algo-
rithms have been extended from image to video. Video
over-segmentation aims to group perceptually similar spatio-
temporal (3D) voxels into meaningful atomic patches called
supervoxels. Supervoxels well preserve the important structure
of video content and can greatly reduce the number of com-
putational units for downstream computer vision applications
(e.g., [13], [22], [27]). Furthermore, the design principle of
supervoxels can also inspire the hardware design of new cam-
era [30] and the new methodology in video visualization [4].

The quality of supervoxels directly affects the results of
subsequent processing task. To well preserve the video content,
supervoxels are usually expected to have good performance on
multiple aspects [42], such as segmentation accuracy, color
homogeneity, shape compactness, processing efficiency and
so on. The supervoxel boundaries should adhere well to the
object, and every supervoxel should overlap with only one
object, which encourages a high-degree of color homogeneity
within supervoxels. Meanwhile, the supervoxels are expected
to be compact and uniform in the space-time domain, espe-
cially on the flat background. The above properties should be
maintained with as few supervoxels as possible. In addition,
Supervoxel generation should be efficient on running time
and memory cost, and should not reduce the achievable
performance of its downstream applications.

Many methods have been proposed for computing video
over-segmentation in recent years. Except for the temporal
superpixel methods, most offline supervoxel methods load all
the voxels of video into the memory at once. Considering
the limitation of memory, the streaming version [43], [45] are
proposed to handle long videos by allowing a small number
of frames to be loaded into the memory at any given time.

By meeting the requirement of segmentation quality, recent
researches focused on solving the problem of insufficient
memory by proposing the streaming version of supervoxel
algorithms. However, time consuming is another problem that
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Fig. 1. Segmentation results of representative algorithms, such as GB [16], GBH [20], steamGBH [43], SWA [10], [35], [36], TSP [8], FCSS [46] and ours.
The magnified details in the third row show that our method is sensitive to color changes and achieves better boundary adherence. For 500 supervoxels, our
processing speed is at least 20 times faster than FCSS and 100 times faster than TSP. See Section V for detailed comparison results.

needs to be solved with great demand. In fact, the longtime
consumption hinders the wide application of supervoxels as
a pre-processing technology in many video processing fields,
especially for some tasks that require real-time performance.
Usually, the segmentation quality, processing time and mem-
ory usage are conflicting requirements, and in our work we
hope to achieve a good compromise between these targets.
We propose an anisotropic supervoxel algorithm based on
GPU implementation to over-segment the video with good
quality, while greatly improving the processing speed. For
a video with 51 frames and 7 million pixels, our method
produces the result in 2 seconds, while the advanced methods
such as TSP [8] and FCSS [46], producing results with similar
quality, require more than one minute. Other supervoxel meth-
ods such as SLIC [1] have similar processing speed, however,
our method generates much better segmentation results as
compared to them (see Sec. V for more comparison details).

Our method is a seed-based supervoxel segmentation, and
we design an anisotropic distance metric for each seed to
classify the voxels. Fig. 1 shows supervoxel results of different
methods. For most existing methods [8], [44], [46], supervox-
els are costly to obtain on memory and time. We show that
it’s possible to design a parallel algorithm executed on GPU
for supervoxel segmentation, which makes our algorithm far
ahead in efficiency. The main contributions of our work are
as follows:

• For accurate segmentation of objects in motion, we design
a new anisotropic distance metric to calculate the dis-
tances between seeds and voxels, which uses the motion
information to compensate for the prolonged distance of
moving objects’ pixels between frames, thus provides
more accurate object capturing capability for supervoxel.

• We propose a simple yet effective seed initialization
strategy that places more seeds in object area to segment
the object more accurately.

• In order to ensure the segmentation quality and processing
efficiency at the same time, we design an anisotropic
supervoxel algorithm that can be implemented in paral-
lel on the GPU, by extending the jump flooding algo-
rithm [33], [34]. While most existing algorithms are
difficult to be implemented on the GPU.

II. RELATED WORK

Many methodologies have been proposed to compute
superpixels and supervoxels. For image segmentation, main-
stream theories include graph theory [12], clustering based
on seeds [24], [37], [38], etc. Most superpixel algorithms can
quickly and accurately generate over-segmentation results, and
some seed-based superpixel algorithms [1], [38] even achieve
real-time processing speed. These methods can be naturally
extended to video segmentation, but as the number of pixels
increases, the processing speed and memory footprint also
increase substantially. We will mainly focus on the current
research status of video over-segmentation in this section.

The supervoxels for video over-segmentation can be classi-
fied into two categories: supervoxels and temporal superpixels.
Supervoxel methods [16], [20], [29], [36], [43], [44] treat the
video as a volume and over-segment it in 3D space. Temporal
superpixel methods [7], [8], [32] first generate superpixels on
one frame and build the temporal correspondences between
adjacent frames.

Supervoxel methods can be developed based on multi-
ple principles, such as mode-seeking, graph cut, seed-based
clustering and so on. Mean shift is a mode-seeking method.
Paris and Durand [29] applied Morse theory to interpret mean
shift to decompose the feature space into density modes.
Paris et al. [28] proposed the hierarchical mean shift by a
streaming approach to improve the efficiency of isotropic
mean-shift methods. Felzenszwalb and Huttenlocher [16] pro-
posed a graph-based segmentation method (GB), which is suit-
able for the extension to spatio-temporal video segmentation.
Based on GB, Groundmann et al. [20] proposed a hierarchical
graph-based method (GBH), which constructs a bottom-up
hierarchical tree structure of the region graphs. Xu et al. [43]
extended GBH to a streaming version (streamGBH) to handle
arbitrarily long videos, by allowing a small number of frames
to be loaded into memory. Nyström Normalized Cut (NCut)
was proposed by Fowlkes et al. [17], [18], which is based on
a technique for the numerical solution of eigen function prob-
lems known as the Nyström approximation. SWA [10], [35],
[36] is another normalized cut approach that integrates the
model-aware affinities into the multilevel segmentation by the
weighted aggregation algorithm. SWA produces a hierarchy of



DONG et al.: GPU-BASED SUPERVOXEL GENERATION WITH NOVEL ANISOTROPIC METRIC 8849

segmentations and can be extended to a supervoxel method in
3D. Achanta et al. [1] proposed a popular seed-based clus-
tering algorithm, SLIC, which adopts the Lloyd iteration
to optimize the Voronoi tessellation in the combined color
and spatio-temporal space. Inspired by SLIC, Yi et al. [45]
proposed the Yi-CSS method that maps the video to a
3-dimensional manifold embedded in the R6 space. They also
proposed qd-CSS [44] which adopts a fast queue-based graph
distance to compute the geodesic centroidal Voronoi tessella-
tion, and FCSS [46] that tries to find a uniform tessellation
whose cell boundaries well align with objects among all pos-
sible centroidal Voronoi tessellations on the video manifold.

Temporal superpixel methods compute a segmentation on
the first frame, and propagate it to the subsequent frames.
Chang et al. proposed the TSP [8] algorithm that adopts
a Gaussian process to model the motion for the streaming
segmentation. Inspired by SLIC method, Reso et al. [32]
proposed an energy-minimizing clustering method by utilizing
a hybrid clustering strategy working in a global color subspace
and local spatial subspaces. Wang et al. proposed a superpixel
method based on geodesic distance [41], and conducted the
superpixel flow on video based on Lucas–Kanade algorithm
to find stable correspondent centers between adjacent frames.
Cai et al. [7] proposed a bottom-up merging superpixel
method (GGM) which first generates a coarse image seg-
mentation and then swaps the boundary pixels to improve
the compactness. GGM can be extended to generate temporal
superpixels. Among the above methods, TSP achieves the
state-of-the-art performance and we choose it as the repre-
sentative temporal superpixel method in this paper.

The temporal superpixel methods are able to process arbi-
trarily long videos as they load a small number of frames into
memory at once. On the contrary, most of the supervoxel
methods are off-line methods that need to load all frames at
first. To solve this problem, some streaming versions [43], [46]
were proposed to deal with long videos. In this paper, we pro-
pose a seed-based anisotropic supervoxel method. We make
use of the optical flow information to design the anisotropic
metric for supervoxels, which are consistent with the motion
direction of the object. The anisotropic metric can compensate
for the prolonged distance (by making them shorter) for pixels
in the motion direction, thus the label of moving object will
remain the same in several consecutive frames. We also extend
our method to the streaming version to handle long videos that
cannot be loaded into memory at once.

III. PRELIMINARIES

Our algorithm is based on a variant of SLIC [1] method
and the jump flooding method [33], [34] on the GPU, which
we briefly summarize below.

A. SLIC for Videos

SLIC method is a classic image segmentation algorithm that
can efficiently generate compact superpixels. Given a video I

with n voxels, SLIC can be easily extended to handle 3D
supervoxels by introducing the time dimension to the spatial
term. Denote the spatio-temporal term of a voxel v as p(v) =
[x(v), y(v), t (v)]�, where [x(v), y(v)] are the 2D coordinates

Fig. 2. Jump flooding to propagate the content of a seed at the lowest left
corner by halving step length [33].

in a frame and t (v) is the frame index. Denote the color term
of v as c(v) = [l(v), a(v), b(v)]� in the CIELAB space.
The basic information of a voxel is a 6-dimensional vector
v(v) = [p(v)�, c(v)�]�. The desired number of supervoxel
is k. Starting from k uniformly sampled seeds S = {si }k

i=1,
SLIC uses an adaptation of k-means algorithm to optimize the
segmentation. SLIC measures the distance between a voxel
v and a seed si in the combined space using a normalized
Euclidean distance defined as:

D(v, si ) =
√(

dp

Np

)2

+
(

dc

Nc

)2

, (1)

where Np and Nc are two weights to balance the relative
importance between the color factor and the spatio-temporal
factor, and

dp = ‖p(v) − p(si )‖2

=
√

(x(v) − x(si ))2 + (y(v) − y(si ))2 + (t (v) − t (si ))2,

dc = ‖c(v) − c(si )‖2

=
√

(l(v) − l(si ))2 + (a(v) − a(si ))2 + (b(v) − b(si ))2.

Different from the conventional k-means method, SLIC
computes the distances from the seed si to voxels within a
local search range 2L × 2L × 2L, where Np = L = 3

√
n/k.

Once each voxel has been associated to the nearest seed in one
iteration, we get the segmentation I = {Ci }k

i=1. Then it updates
the seed si to be the mean vector of the voxels belonging to
that supervoxel Ci as shown below:

v(si ) = v̄(Ci ) =
∑
v∈Ci

v(v)/|Ci |. (2)

The assignment and update steps can be applied iteratively,
and computational results show that the SLIC method con-
verges in several iterations and generates compact supervoxels.

B. Jump Flooding Algorithm on the GPU

Jump flooding algorithm (JFA) [33] and its variants [34]
are an algorithmic paradigm for computing discrete Voronoi
diagrams on the GPU. Fig. 2 is an illustration that shows the
main idea of JFA. Given an image of size r × r with a seed
located at the lowest left corner, JFA shows an efficient way to
flood the content of seed in log r rounds to all the other grid
points, by halving the step length in each round. Here, r = 8,
and there are log r rounds with step lengths of r/2, r/4, . . . , 1.
At the beginning, each point with a seed s records < s, f (s) >
to indicate its closest seed found so far is s, whereas the other
points record < null, null >. Here f (s) can be the position
or other information of the seed s. In a round with step length
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of l, each point [x, y] queries the information of other points at
[x + i, y + j ], where i, j ∈ {−l, 0, l}. Among these 8 received
(plus its current closest seed), the point [x, y] decides which
seed, say s∗, is its closest seed found so far, and updates its
record as < s∗, f (s∗) > if needed.

JFA can be implemented using OpenGL GLSL with frag-
ment program support. It adopts a so-called ping-pong buffer
with two buffers alternating as input and output in consecutive
rounds. At the end of log r rounds, the buffer records the
closest seed for each point, which is the approximation of
Voronoi diagram. The errors due to the differences between
the approximation and the actual Voronoi diagram are hardly
noticeable to the naked eye in experiments.

In this paper, we extend the JFA framework for our
anisotropic supervoxel segmentation, by introducing a new dis-
tance metric in information passing of seeds. The experiments
show that our method generates more accurate results with
much faster speed than existing methods. Please see Sec. IV-E
for the extension of JFA for superpixels and supervoxels.

IV. GPU-BASED ANISOTROPIC SUPERVOXEL

In this section, we present the proposed supervoxel method
using a motion-based anisotropic distance metric, and its
parallel implementation on the GPU.

A. Motivation

Our idea is to introduce the motion information into
the seed-based clustering framework of SLIC [1], so that
the object segmentation quality can be further improved.
The supervoxel generated by SLIC can achieve uniform seg-
mentaion, but it is not accurate enough in object detection.
A supervoxel Ci consists of voxels that satisfy the following
condition: Ci = {v ∈ I|D(v, si ) < D(v, s j ),∀ j = 1, . . . k,
j �= i}. Here SLIC only makes use Euclidean distance of
the color and position between voxels and seeds, discarding
the motion information, which is not optimal due to the non-
negligible motions and occlusion/disocclusion. SLIC is unable
to segment the objects in motion very well, especially for
the cases that the color difference between moving objects
and background is not obvious. Using Fig. 3 as an example,
the pseudo-color images are superpixels induced by clipping
supervoxels on a frame. We generate both the isotropic super-
voxels and anisotropic supervoxels using JFA technique on the
GPU with the same initialization of seeds, without enforcing
the connectivity of supevoxels. Let us focus on the skating man
in white clothes, which is magnified in the second column. The
color difference between the man’s clothes and the background
is small, making it difficult to accurately segment the object
from the background. The images in the third column show
results of isotropic supevoxels using the Euclidean distance
defined in Eq. (1). From the magnified details in the fourth
column we observe that the isotropic supervoxels fail to detect
the neck and shoulders of the man. On the other hand, the
optical flow technique is able to detect the motion of objects,
which helps the anisotropic supervoxels to distinguish objects
from background as shown in the last column.

In order to capture the motion of objects, we make use
of the optical flow field to design a non-Euclidean metric to

measure the distances between voxels and seeds. Suppose the
object is in motion for several consecutive frames, and in the
current frame the nearest seed of the voxel v is s. Due to
the motion of v, the Euclidean distance D(v, s) in the next
frame is getting larger. However, we hope that the seed s could
capture the object longer within its search range. That is to find
a non-Euclidean metric to keep the distance between the seed
s and v rather short, so that the nearest seed for v is still s in
subsequent frames. We design a specific anisotropic metric for
each seed according to the motion information around it, and
the seeds are able to capture the motion of different objects
with the aid of anisotropic distance metric.

B. Objective Function

Using the Euclidean metric to calculate the distance between
seeds and voxels is equivalent to having a spherical iso-
distance surface centered at the seed point, and all voxels
intersecting the spherical surface are equidistant from the seed.
In terms of the non-Euclidean metric, the iso-distance surface
becomes an ellipsoidal surface centered at the seed. If the
long axis direction of the ellipsoid could be consistent with the
direction of the motion around the seed, the seed could capture
objects much easier. Motivated by this idea, we modified the
distance based on a metric tensor defined per supervoxel:
DM (v, si ) = λc‖c(v) − c(si )‖2

+λp((p(v) − p(si ))
�Mi (p(v) − p(si ))). (3)

Here, Mi is a positive definite matrix which stretches or
compresses the equidistant sphere according to the motion,
so that the main direction of the deformed equidistant surface
is consistent with the motion direction. In our formulation,
each supervoxel Ci is defined by a center si and a metric tensor
Mi ∈ R

3×3. The seeds S = {si }k
i=1 and metrics M = {Mi }k

i=1
are themselves variables of the functional:

E({si }k
i=1, {Mi }k

i=1, {Ci }k
i=1) =

k∑
i=1

∑
v∈Ci

DM (v, si ). (4)

We constrain the matrix Mi to be a positive semidefi-
nite (PSD) matrix, so our objective function is:

min E({si }k
i=1, {Mi }k

i=1, {Ci }k
i=1),

s.t. Mi ∈ PSD. (5)

C. Anisotropic Supervoxel Algorithm

We demonstrate the workflow of the anisotropic supervoxel
segmentation in Fig. 4. First, we load video data to GPU,
and calculate the forward and backward optical flow fields,
which are utilized to calculate the anisotropic metric of the
seed. Then we adopt an optimization strategy similar to the
classic Lloyd method [25] to obtain the segmentation result.
The anisotropic supervoxels will be optimized by iterating
following two steps:

1) By fixing the seeds S and metrics M , compute the
supervoxel segmentation by jump flooding.

2) For each supervoxel Ci , update its seed si to be the
centroid and compute the corresponding metric Mi .
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Fig. 3. Comparison of isotropic (SLIC) and anisotropic (our method) supervoxels on moving objects with same initialization. (a): original frames;
(b): magnified details of object (the man in white clothes); (c): isotropic supervoxels (SLIC); (d): magnified details of object in (c), the isotropic supervoxels
fail to detect the boundaries of the shoulders and neck; (e): anisotropic supervoxels (ours); (f): magnified details of object in (e), the anisotropic supervoxels
detect the object more accurately.

Fig. 4. The workflow of our method. (a) Frame sequences; (b) forward and backward optical flow fields; (c) seed information, including position (red points
in the figure), color and anisotropic metric; (d) anisotropic supervoxels on GPU; (e) final result. We optimize the supervoxels by iterating steps (c) and (d) until
it converges.

Fig. 5. Metric computation based on optical flow. v0 is the position of a seed
si , v1 is its upper right neighbor, and the vector n1 is the optical flow vector
at v1. To solve the matrix, we construct the polynomial by constraining n2
to be of the expected length.

Suppose we have determined the initial position of seeds,
we first calculate the metrics M for the seeds, then optimize
the segmentation by Lloyd method. In the iteration, the algo-
rithm computes the anisotropic supervoxel segmentation using
the jump flooding algorithm (Sec. IV-E). After generating new
segmentation, the algorithm updates the seed v(si ) to be the

centroid of superpixel Ci , and calculates the metric at new
position. The algorithm will terminate after several iterations.
For the high efficiency, we implement the algorithm on GPU,
and we set the maximum number of iterations i term to be 20.

1) Computation of Metrics M: During the optimization,
one important step is to solve for the non-Euclidean metrics
of seeds. We prepare the forward and backward motion
fields of all frames using a 2-frame stencil [15] (OpenCV’s
GPU FarnebackOpticalFlow routines) for the computation of
metrics.

For each seed, the anisotropic distance metric redefines the
distance between the seed and a voxel by neglecting its motion
along the optical flow direction. Thus the iso-distance surface
of the matrix is consistent with the moving direction of the
object. Fig. 5 is an illustration to show how to construct
polynomials to solve the metric based on motion vectors.
Suppose the seed si is located at v0 on frame t , and v1 is
its upper right neighbor voxel. Assuming that the distance
between voxels adjacent in the x , y and t dimensions is of
unit length, then vector n0 is of length

√
2. The green vector

n1 denotes the optical flow of voxel v1. If the motion vector
is accurate, v∗

1 can be treated the same as v1 in the next
frame. For a vector n, we denote the squared anisotropic length
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to be:
‖n‖Mi = n�Mi n = b. (6)

Taking vectors n0, n1 and n2 in Fig. 5 for example, the
3D vector and corresponding deformed squared length are as
follows:

n0 = (1, 1, 0)�, ‖n0‖Mi = 2,

n1 = (i, j, 1)�, ‖n1‖Mi = 1,

n2 = n0 + n1, ‖n2‖Mi = (
√

2)2 + 12 = 3. (7)

where (i, j) is the optical flow vector of v1. ‖n1‖Mi is
constrained to be 1 under the anisotropic metric Mi because
that the length of n1 is redefined by neglecting its movement
along the optical flow direction.

We take the non-Euclidean squared length ‖n2‖Mi as one
polynomial equation for computing the metric Mi . There are
total 18 vectors like n2 for seed si to its neighbors on the
previous and next frames. By constructing 18 equations in
the following:

n�
p Mi np = bp, p = 1, 2, . . . , 18, (8)

we construct a overdetermined system to solve the Matrix Mi .
Here, np is a 3 × 1 vector, Mi is a 3 × 3 positive semidefinite
matrix, and bp is the expected value of the anisotropic length.

In our objective (Eq. (5)), we constrain the matrices M to
be positive semidefinite (PSD). PSD is a strong constraint
for Mi , which is not always satisfied in the optimization
process. In our algorithm, we first guarantee that the matrix
is symmetric, denoted as M̃i . For those that do not satisfy the
PSD constraint, we find a closest positive semidefinite matrix
M̄i as an alternative. Since the matrix M̃i is symmetric, there
will be 6 unknown variables. We denote it as vector m̃ =
[m1, m2, m3, m4, m5, m6]. Then transform the overdetermined
system (Eq. (8)) to the following equations to solve for the 6
variables of symmetric matrix:

Am̃ = b, (9)

where A is a 18×6 matrix and b is the vector [b1, b2, . . . , b18].
The overdetermined system can be solved with pseudo-inverse
of A.

Having calculated the symmetric matrix M̃i for each seed
si , we check if the matrix is positive semidefinite. For the
computation of the anisotropic metric, it only needs rough
motion information around the seed, and utilizes the optical
flow information of 18 neighbors in forward and backward
directions, reducing the risk of influences from some prob-
lematic flow vector at some pixels. In our implementation,
we do not place any seeds at the first or last frame. If the
seeds are moved to the first frame during the optimization, our
algorithm can construct nine polynomials to solve the variables
of the matrix. The matrix M̃i is usually positive semidefinite in
most cases. We have tested two optical flow methods in experi-
ments: PyrLKOpticalFlow [5] and FarnebackOpticalFlow [15],
and observed that the results are almost independent of the
method utilized. We adopt the classic FarnebackOpticalFlow
method in our implementation.

Fig. 6. Toy model of anisotropic distance matrix. (a): 3 sampled frames in a
video and the corresponding optical flow fields. The green masks on football
are the superpixels generated by a seed located on it; (b): the ellipsoid is iso-
distance surface of the seed matrix, the blue line is the optical flow at the seed,
and the green points are voxels of the supervoxels on sampled frames. The
main direction of iso-distance surface is consistent with the object motion.

Algorithm 1 Seed Initialization

Here we demonstrate a toy example of the computation of
anisotropic metrics. Fig. 6(a) shows 3 sampled frames of a
rolling football and its corresponding optical flow fields [3].
The background is also in motion due to the movement of the
camera. The green masks on the football denote a supervoxel
located on it. The red point in figure (b) is the seed, the blue
vector denotes the direction of optical flow at the seed point,
and the yellow ellipsoid represents the iso-distance surface of
anisotropic matrix. It is clear that the main direction of the
iso-distance matrix is consistent with the direction of optical
flow. With the aid of motion, it is easier for the seed to capture
the object in several consecutive frames.

In practice, there may be a few matrices that do not satisfy
the PSD constraint. Experiments show that in the scene where
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the motion of object is relatively fast, optical flow cannot
accurately detect the motion of all relative pixels, resulting
in a small percentage of the matrices not satisfying the PSD
constraint. The failure case usually occurs at a pixel that has
similar color and similar motion with its surroundings. Based
on the local consistency of the motion, we calculate the PSD
matrix of the seed’s neighbors that have the same moving
direction, and replace the seed matrix with the average matrix
of its neighbors. The average of several neighboring PSD
matrices is still a PSD matrix. This strategy can solve most
of problematic seed matrices. In the worst case, the optical
flow method cannot provide an accurate motion field for a
local region around the seed, causing the above method failing
to find a good alternative to the matrix of the current seed.
In this case, we calculate the nearest symmetric PSD matrix
of M̃i [21] by the following transformation. First, we take a
singular value decomposition of M̃i :

M̃i = UDU� (10)

Then we form the diagonal matrix D+ by taking the
element-wise maximum:

D+ = max(D, 0) (11)

Finally, we get the closest symmetric PSD matrix M̄i :

M̄i = UD+U�. (12)

Now we can ensure the PSD nature of the seed matrices,
and the distance between seeds and voxels can be calculated
with Eq. (3). In addition, We provide further analysis in the
supplementary document to show the influence of optical flow
on the PSD constraint and the effectiveness of the above
strategies.

D. Seed Initialization

The optimization of anisotropic supervoxel algorithm will
converge to a local optimal solution. Similar to the Lloyd
refinement, the optimization is sensitive to initial conditions.
We observe that initialization consistent with the video content
is able to generate better results than sampling seeds at regular
grids. In the following, we introduce an adaptive initialization
strategy that adjusts the density of seeds based on video
content.

Our initialization strategy is based on the following idea:
placing more seed points around the objects is helpful for
obtaining more accurate segmentation results. First, suppose
we have k uniform grids I = {Gi }k

i=1 to represent the
video in 3D space, and the centers of grids are treated as
candidate initial seeds. Notice that in our implementation, the
JFA algorithm generates segmentation by propagating seed
information to its neighboring voxels at a fixed step length,
thus if there is no seed in a large area, the voxels in that area
may not receive any seed information. Considering this, we use
the following adaptive scheme that adjusts the candidate seeds
according to the information richness in each grid.

The information richness of a grid contains two aspects:
the gradient information and the motion information. For the
gradient information, usually the gradients around the object

Fig. 7. Seed initialization based on object information. (a): first frame of
a video; (b): supervoxels based on uniform seed initialization (in SLIC);
(c): first frame with object information masked in green. Normalize the value
of Ai to 0-255 as the value of the green channel in corresponding grid.
(d): supervoxels based on our seed adjustment strategy, more seeds are located
in the area with rich object information.

Fig. 8. Sample k seeds based on the information richness Ai of each grid.
The value of Ai is proportional to the grid length. More seeds are placed in
the grid Gi with higher Ai value.

in x and y directions are more obvious than the background;
and the gradient of moving objects in t direction shows the
trajectory of the motion. To quickly generate a good initial-
ization, we place more seeds in the grid which contains rich
information. As described in Algorithm 1, we first calculate
the gradient information g(Gi ) in each grid, where the gx(v)
is the gradient of pixel v in x direction, and ε is an empirical
constant value, preventing the gradient in the grid from being
zero. In addition, we measure the motion information at the
seed by calculating its anisotropic matrix Mi . We denote the
difference between Mi and the identity matrix as m(Gi ) =
||Mi − I||F , and it represents the amplitude of movement.
We use Ai = λg(Gi ) + m(Gi ) to represent the information
richness of objects in each grid. Then, we generate an array F
with k values, with each element storing the grid information,
i.e., Fi = ∑i

j=1 A j . At last, we sample k uniform values
between 0 and Fk , as shown in Fig. 8. More seeds are located
in the grids with richer object information. In our experiments,
we set ε = 0.1 and λ = 1.

We show the illustration of seed initialization in Fig. 7.
Given the video of hummingbirds, we split the video into k
uniform grids, then calculate the object information in each
grid. The object information stored in Ai is normalized to
0-255, and it is taken as the value of the green mask in corre-
sponding grid. Fig. 7(c) shows the first frame covered with the
green mask, the area with obvious green is the trajectory of
flying hummingbirds. Fig. 7(b) shows supervoxels generated
by the SLIC method with uniform initialization, and Fig. 7(d)
shows the supervoxels based on our seed initialization strategy.
It can be clearly observed that our algorithm places more seeds
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Fig. 9. Procedure of generating Voronoi tessellation on image by 1+JFA with halving step length. (a): original image; (b): initial position of seeds;
(c)-(i): flooding results by 7 rounds with step length {1, 18, 9, 5, 3, 2, 1}; (j): superpixels with boundaries.

Algorithm 2 Anisotropic Supervoxel Generation

in the motion area, thus is able to achieve more accurate object
segmentation results.

E. Supervoxel Generation on GPU

As introduced in the preliminaries, JFA can generate a good
approximation of Voronoi tessellation on GPU. Integrating
the JFA framework into Lloyd’s iteration gives a centroidal
Voronoi tessellation (CVT). There are several variants [34] of
JFA, among them 1+JFA gives best results with smallest error
rate, which performs a pass with step length of 1 before the
standard JFA.

Recall that the classic SLIC method [1] clusters pixels
in a 5-dimensional Euclidean space combining colors and
positions, and iteratively updates the cluster center. First,
we implement the SLIC for image superpixels using 1+JFA

framework. In SLIC, the local search range of each seed is
2L × 2L, we set the maximum step length of JFA to be L,
where L = √

n/k. Here, n is the total number of pixels in
image and k is the desired number of superpixels. By perform-
ing 1+JFA algorithm once, we get a Voronoi tessellation using
Euclidean distance metric. The maximum step length is L,
and the first step length is 1. In Fig. 9, given about 100 seeds,
the procedure of seeds flooding information is illustrated (in
this example, L = 18). The second image in the first row
shows the initial position of seeds, then followed by 7 rounds
of flooding with step lengths {1, 18, 9, 5, 3, 2, 1}, respectively.
The last image shows the boundary adherence of superpixels.
These results show that the Voronoi tessellation implemented
by the jump flooding framework have very good performance
in terms of segment accuracy and boundary adherence.

Next, we extend JFA to video oversegmentation, where
every voxel looks for its (maximum) 26 neighbors with a
certain step length to choose its nearest seed in 3D space on
each round, using L = 3

√
n/k. We load seeds S and their

metrics M into GPU memory in advance, then use the ping-
pong buffer alternating as input and output in the rounds of
flooding with different step lengths. During the jump flooding
procedure, we change the distance measure between seeds and
voxels to the metric in Eq. (3) to better catch the motion of
objects. The parameter λp is related to L, and λc is used
to adjust the relative importance between color and position.
In Fig. 3, the results of our method are anisotropic supervoxels
on a video, and the results of SLIC are isotropic supervoxels
(which adopts Euclidean distance metric in Eq. (1)). We use
the same initialization of seeds in these two methods. The
results clearly show that, using the non-Euclidean distance
metric consistent with the motion direction is more beneficial
to the detection of objects, since the nearest seeds of those
voxels in motion tend to remain the same for longer time.

So far we have discussed the computation of anistropic
metric, seed initialization and supervoxel generation on
GPU. We summarize the detailed steps of this method in
Algorithm 2. The algorithm optimizes the segmentation by
iterating through steps from #7 to #11. For one iteration,
it computes segmentation with given seeds using the JFA
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Fig. 10. Streaming GPU-based anisotropic supervoxels for long videos. Our
method loads one block into memory at once, and places k seeds for the
over-segmentation.

framework on GPU, and calculates the new position and
anisotropic matrix of the seed. Then the algorithm uses new
seed information for next iteration until the termination con-
dition is reached.

F. Streaming GPU-Based Anisotropic Supervoxel

Our algorithm is able to segment objects with the aid of
motion information, while for long videos that cannot be
loaded into memory at once, the algorithm should be extended
to a streaming version. We use a simple strategy to deal with
long videos: the more frames coming, the more seed points
should be used. As illustrated in Fig. 10, we set the p frames
of video as a block i , place k seeds to segment it, and only
load a block in memory at once. With a new block coming in,
the corresponding number of new seeds are placed. In order
to guarantee the smooth transition between blocks, we divide
each block i into three parts, with its first 1/3 part overlapping
with block i − 1 and its third 1/3 part overlapping with block
i + 1. For each new block i + 1, its first 1/3 part is already in
the memory, so we only need to load 2 p/3 new frames into
memory. We add new seeds to keep the number of seeds to
be k for block i + 1. For every block, we use Algorithm 2 to
generate the anisotropic supervoxels.

V. EXPERIMENTS

We implemented the algorithm in C++, and compared it
with other algorithms on a PC with Intel Core I9-9920X,
NVIDIA GeForce RTX 2080 SUPER, and 64 GB RAM
running on Linux. We use OpenGL Shading Language (GLSL)
to implement the JFA framework on the GPU. We compare
our method with several representative methods, including
NCut [17], [18], [39], MeanShift [29], GB [16], GBH [20],
streamGBH [43], SWA [10], [35], [36], TSP [8], SLIC [1],
qd-CSS [44] and FCSS [46]. We name our method as
GPU-AS (for GPU-based Anisotropic Supervoxels) algorithm,
and the streaming version as streamGPU-AS algorithm.

A. Evaluation Benchmark

We evaluate the performance based on the LIBSVX4.0
benchmark [42] with multiple performance metrics, including
segmentation accuracy, time cost and memory usage.

1) Datasets: The performances of representative algorithms
are evaluated on the following datasets: SegTrackv2 [23], Buf-
faloXiph [9], BVDS [19], [40] and CamVid [6]. SegTrackv2
and BuffaloXiph datasets have frame-by-frame groundtruth
annotations, and other datasets provide only sparse anno-
tations. In our experiments, except for NCut (Matlab) and

Fig. 11. Ablation experiments on the SegTrackv2 dataset. Isotropic+Uniform
is the GPU implementation of the isotropic supervoxel (SLIC) method.
Anisotropic+Uniform is anisotropic supervoxel method with same uniform
initialization, and Anisotropic+Adaptive is the anisotropic supervoxels with
the proposed seed initialization strategy.

TSP (Matlab with MEX), all other methods are implemented
in C or C++. Furthermore, NCut runs with 8 threads in
a resized resolution of 240 × 160 down-sampled from the
original video. In Fig. 12, we evaluate thirteen supervoxel
methods in the range of 0 to 4000 supervoxels per-video on
SegTrackv2 dataset. Our algorithm achieves good balance on
all metrics, especially on UE3D, BRD, EV, and time metrics.
For the performance on other datasets, please refer to the
supplementary document.

2) Evaluation Metrics: The LIBSVX 4.0 benchmark [42]
propose multiple standard metrics to evaluate the performance
of video over-segmentation based on given human annotation,
such as 3D segmentation accuracy (SA3D), 3D underseg-
mentation error (UE3D), boundary recall distance (BRD),
explained variation (EV) and label consistency (LC). SA3D
measures the fraction of groundtruth segments that is correctly
detected by supervoxels. UE3D measures the fraction of voxels
that exceed the boundary of groundtruth when the super-
voxels are mapped on it. BRD directly evaluates how well
the groundtruth boundaries are successfully retrieved by the
supervoxels. EV is proposed to measure the color variation in
supervoxels. LC measures the ability of supervoxels tracking
objects given groundtruth flows. SA3D and UE3D are two
complementary indicators of supervoxel accuracy. For the
values of SA3D, EV and LC, the higher the better, while for
UE3D and BRD, the lower the better. The video supervoxel is
often used as a pre-processing technique, thus the efficiency
on space and time is important. We also evaluate the runtime
and peak memory cost of these methods.

B. Performance

We summarize the performance of our method and the
representative methods on SegTrackv2 dataset in this section.
The performance on other three datasets is summarized in
supplementary document.

1) Ablation Experiments: Compared with the classic
isotropic supervoxel method SLIC, our method improves
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Fig. 12. Performance of representative methods on the SegTrackv2 dataset. Our algorithm has high performance on UE3D, BRD and EV metrics, and
achieves a good balance between segmentation quality and efficiency.The top row is the magnified performance curves. We report the runtime and peak
memory at a video with 414 × 352 × 51 voxels, our method takes about 2 seconds, requires 600 MB for CPU memory, and 1GB for GPU memory.

Fig. 13. Label consistency of supervoxels. Figure (a) shows the LC
comparison on MiddleburyFlow dataset. TSP performs best, while our method
performs better than other seed-based methods (qd-CSS and FCSS), and
achieves a good balance among quality and processing efficiency. In Figure
(b), the missed or wrong detections are circled in black.

the segmentation quality by proposing the anisotropic dis-
tance metric and seed initialization strategy. We clarify the
effectiveness of the algorithm in Fig. 11. We first show
the performance of Isotropic+Uniform, which is the GPU

implementation of SLIC using JFA framework. We also show
the anisotropic supervoxels with the same uniform initial-
ization, which is denoted as Anisotropic+Uniform. With the
same uniform initialization, anisotropic supervoxels achieve
higher segmentation accuracy than isotropic supervoxels. The
comparison also shows the improvement by our initialization
strategy. Our method with adaptive seed initialization, denoted
as Anisotropic+Adaptive, further improves the quality of
segmentation.

2) Comparison With Anisotropic Supervoxels: The previous
methods such as FCSS, qd-CSS utilize the geodesic centroidal
Voronoi tessellation to generate video over-segmentation,
which also reflect the anisotropic measurement in the clus-
tering process for the seed. The results in Fig. 12 show that
these anisotropic methods can also achieve relatively good
performance. However, these previous anisotropic methods do
not consider the object motion and cannot be performed on
GPU. As a comparison, our algorithm directly uses the motion
field to implement the geometric anisotropy of the model,
which makes our method particularly suitable for the seg-
mentation of videos containing obvious motions. Furthermore,
our anisotropic supervoxel algorithm is the only method that
can be implemented in parallel on GPU, which makes our
algorithm much more time efficient than existing algorithms.

3) Comparison on SegTrackv2 Dataset: In Fig. 12, we show
the performance of thirteen methods on SegTrackv2 dataset.
The top row is the magnified details of seven representative
methods. (1) For SA3D metric, the performance of GPU-AS
gets better as the number of supervoxel increases. GPU-AS
sets a fixed search range for every seed, and takes a simple



DONG et al.: GPU-BASED SUPERVOXEL GENERATION WITH NOVEL ANISOTROPIC METRIC 8857

Fig. 14. Analysis of anisotropic supervoxels. Our algorithm achieves the best performance on video (a) containing continuous motion of objects. We select
some videos with smooth motion from SegTrackv2 dataset. The results summarized in (b) show that our method performs the best for these videos.

strategy to adjust the grid-like seed initialization according to
information richness. Other seed-based algorithms FCSS and
qd-CSS adopt the K-means++ algorithm [2] to decide initial
seed position, which is able to generate better initialization
for seeds, however, this strategy is very time consuming.
Compared with them, our initialization is relatively even and
this is required for the jump flooding procedure on GPU.
If there is no seed placed in a large area, some voxels will not
receive any seed information during the JFA process, which
is not conducive to segmenting objects. (2) UE3D imposes a
penalty when supervoxels leak on groundtruth segments. TSP,
qd-CSS, FCSS, SLIC and ours have the best performance on
UE3D. (3) The performance on EV shows that our algorithm
is sensitive to color variation, and the color homogeneity in
each supervoxel is high. (4) Our algorithm achieves the best
performance on BRD than other methods.

4) Comparison on Efficiency: In Fig. 12, we evaluate the
run time and peak memory on a typical video with 414 ×
352 × 51 voxels. Our algorithm requires about 600 MB for
CPU memory and 1 GB for GPU memory, which can be met
by most computers. The GPU memory is mainly used for JFA.
For time performance, our algorithm is able to generate the
segmentation for the video of 51 frames in about 2 seconds,
and the computation time is not affected by the number of
supervoxels, which is not satisfied by other seed-based meth-
ods FCSS and qd-CSS. For the graph-based methods, such as
GBH, streamGBH and SWA, they take more than 10 minutes
to process the video. The TSP uses a generative probabilistic
model to propagate superpixels in a streaming fashion, which
takes much longer time with more supervoxels. In Table I we
show run time of each stage on three videos. Our algorithm
first loads video data into CPU, then passes it to the GPU and
computes the optical flow information. The JFA stage includes
Lloyd iteration and matrix solving. This stage takes up half of
the total time. In Table II we test the average running time of

TABLE I

RUN TIME (SECONDS) OF EACH STAGE OF THE ALGORITHM WITH

k = 1000, ON VIDEOS IN SEGTRACKV2 DATASET. THE VIDEO

RESOLUTIONS ARE 414 × 352 × 51, 400 × 320 × 21, AND
640 × 360 × 98, RESPECTIVELY

representative methods on four datasets. Our method has huge
advantage on processing efficiency.

5) Comparison on Label Consistency: Label consis-
tency (LC) measures how well supervoxels track the objects
given groundtruth flows. In Fig. 13(a), we show the LC
comparisons on the MiddleburyFlow dataset [3]. TSP performs
best, while GPU-AS achieves a good balance among quality
metrics and running time. GPU-AS outperforms other seed-
based algorithms such as SLIC, qd-CSS and FCSS due to
its good object tracking capability. Furthermore, we show
an example comparison of label consistency between TSP,
FCSS and our method in Fig. 13(b). The colored regions are
supervoxels that successfully detect the objects according to
the definition of the SA3D metric. From the results we can
see that, our algorithm shows temporal consistency between
frames, and is able to detect more details of objects. The TSP
and FCSS methods are not sensitive to the color variation, thus
fail to detect the arms of the skater. In addition, we provide
more comparison on the LC metric in the supplementary
document.

C. Discussion

The anisotropic distance metrics help the seeds detect the
object more accurately, as shown in Fig. 14 (a), our method
achieves the highest segmentation accuracy for the moving
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TABLE II

AVERAGE RUN TIME (SECONDS) OF DIFFERENT METHODS ON DATASETS WITH 1000 SUPERVOXELS

TABLE III

F MEASURE AND ACCURACY MEASURE OF FOREGROUND PROPAGATION ON YOUTUBE-OBJECTS BASED ON DIFFERENT SUPERVOXEL METHODS. FOR

EACH CATEGORY, WE HIGHLIGHT THE METHOD WITH THE BEST RESULT IN BOLD. THE LAST ROW SHOWS THE AVERAGE PERFORMANCE

OVER TEN CATEGORIES, AND WE HIGHLIGHT THE TOP THREE METHODS

TABLE IV

F MEASURE AND ACCURACY MEASURE OF FOREGROUND PROPAGATION

ON YOUTUBE-OBJECTS BASED ON STREAMING SUPERVOXELS. THE
LAST ROW SHOWS THAT THE STREAMGPU-AS HAS THE BEST

AVERAGE PERFORMANCE OVER TEN CATEGORIES

object. The seeds located on the object and the background
have anisotropic distance metrics consistent with different
motion directions, which are helpful for segmenting the object
more accurately. For these videos without obvious object or
background motion, our method performs average. We calcu-
lated the average pixel motion (apm) value for the foreground
objects in a video. The average apm value over all videos
of SegTrackv2 dataset is 2.85. We select some videos with
continuous motion from the dataset, which has average apm
value 3.24. As shown in Fig. 14(b), our GPU-AS method
performs best for these videos according to the performance
on comprehensive evaluation.

D. Application

Supervoxels are designed to reduce the computational
complexity for video processing tasks. To further show the

Fig. 15. Foreground propagation example of the representative methods:
TSP, SLIC, FCSS and our GPU-AS method, with F measure and Accuracy
measure. The first column shows the first frame of the video with manual
annotated mask. The mislabeled regions are circled in black. Our method
performs best on F and accuracy metrics.

advantage of our algorithm, we apply the supervoxels to
solve practical problems in computer vision. In the following
experiment, we take supervoxel results generated by different
methods as input for the foreground propagation application,
and evaluate the performance.

The application [22] propagates foreground object regions
in the video. Given an initial frame with manual annotation
for the foreground object, it propagates the foreground region
to the remainder of frames, by using supervoxels to guide its
estimates towards long-range coherent regions. We estimate
representative supervoxel methods (GB, GBH, streamGBH,
MeanShift, TSP, FCSS, qd-CSS, SLIC) and our method
GPU-AS on the Youtube-Objects dataset [31] (126 videos



DONG et al.: GPU-BASED SUPERVOXEL GENERATION WITH NOVEL ANISOTROPIC METRIC 8859

with 10 object categories) with the groundtruth of foreground
objects. NCut and SWA are not compared because of their high
computational cost and huge memory cost for long videos.
We evaluate the results using two measures: F measure and
accuracy measure. The F measure = 2 · P R/(P + R), where
P is precision and R is recall. The values of F measure and
accuracy measure range in [0,1], and the larger values mean
better results.

The average F measure and accuracy measure per class
on YouTube-Objects dataset are illustrated in Table III and
Table IV. We can see that TSP, qd-CSS, FCSS and our method
GPU-AS all demonstrate high performance averagely over
ten classes. The value of average F measure and accuracy
measure using the SLIC supervoxels is lower than using
our supervoxels because the isotropic supervoxels have low
segmentation accuracy and boundary adherence. Table IV
shows the performance of foreground propagation based on
three streaming supervoxel methods, our method has high
performance averagely over ten categories. Fig. 15 shows
foreground propagation results of an example video. The
images in the first column are first frames, foreground objects
are manual annotated with blue masks. We show foreground
propagation results of two frames in the second and third
columns. The mislabeled regions are circled in black. Some
regions of the object are not successfully detected, and some
regions on the background are mislabeled as foreground.
We give the values of F measure and accuracy measure below
each method. The result based on SLIC has low accuracy in
narrow areas, such as the legs of horse in the video. Using the
supervoxels of our algorithm, the application [22] achieves the
highest quality.

VI. CONCLUSION

In this paper, we present a GPU-based anisotropic super-
voxel generation algorithm which is fast and can obtain
video over-segmentation with high quality results. In order
for the supervoxels to better capture the motion of objects,
we design a new anisotropic metric for each supervoxel to
calculate the distance between the seeds and the voxels, and
adopt an initialization strategy that is consistent with the
video content. The energy minimization in our algorithm is
a Lloyd-like optimization with several iterations, where in
each iteration, given the position and metric of seeds, our
algorithm computes an anisotropic Voronoi tessellation by
extending the jump flooding framework on GPU. We evaluate
our algorithm on four datasets and apply it in a practical
application. Experimental results show that our method has
high performances in terms of SA3D, UE3D, BRD, and EV
metrics on different datasets, and achieves good balance on
segmentation quality and efficiency. Our method generates
high quality segmentation especially for videos containing
moving objects. The video application shows that our method
works well when applying supervoxels to solve practical
problems. The parallel implementation with JFA makes our
algorithm much more efficient in space and time than the state-
of-the-art methods.

The proposed method is very efficient on image and video
over-segmentation, which is practical for video applications

with large time cost. In the future, we consider applying our
method to more applications that require fast segmentation on
images, videos or point clouds.
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