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Abstract

Generating high-fidelity talking head video by fitting
with the input audio sequence is a challenging problem that
receives considerable attentions recently. In this paper, we
address this problem with the aid of neural scene represen-
tation networks. Our method is completely different from
existing methods that rely on intermediate representations
like 2D landmarks or 3D face models to bridge the gap be-
tween audio input and video output. Specifically, the feature
of input audio signal is directly fed into a conditional im-
plicit function to generate a dynamic neural radiance field,
from which a high-fidelity talking-head video corresponding
to the audio signal is synthesized using volume rendering.
Another advantage of our framework is that not only the
head (with hair) region is synthesized as previous methods
did, but also the upper body is generated via two individual
neural radiance fields. Experimental results demonstrate
that our novel framework can (1) produce high-fidelity and
natural results, and (2) support free adjustment of audio
signals, viewing directions, and background images. Code
is available at https://github.com/YudongGuo/AD-NeRF.

1. Introduction

Synthesizing high-fidelity audio-driven facial video se-
quences is an important and challenging problem in many
applications like digital humans, chatting robots, and vir-
tual video conferences. Regarding the talking-head genera-
tion process as a cross-modal mapping from audio to visual
faces, the synthesized facial images are expected to perform
natural speaking styles while synchronizing photo-realistic
streaming results as same as the original videos.

Currently, a wide range of approaches have been pro-
posed for this task. Earlier methods built upon professional
artist modelling [12, 60] or complicated motion capture sys-
tem [6, 54] are limited in high-end areas of the movie and
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game industry. Recently, many deep-learning-based tech-
niques [35, 42, 10, 58, 7, 43, 48, 59, 21, 57] are proposed to
learn the audio-to-face translation by generative adversarial
networks (GANs). However, resolving such a problem is
highly challenging because it is non-trivial to faithfully re-
late the audio signals and face deformations, including ex-
pressions and lip motions. Therefore, most of these meth-
ods utilize some intermediate face representations including
reconstructing explicit 3D face shapes [55] and regressing
expression coefficients [43] or 2D landmarks [41, 47]. Due
to the information loss caused by the intermediate represen-
tation, it might lead to semantic mismatches between origi-
nal audio signals and the learned face deformations. More-
over, existing audio-driven methods suffer from several lim-
itations, such as only rendering the mouth part [41, 43]
or fixed by static head pose [35, 42, 10, 7], thus are not
suitable for advanced talking head editing tasks, like pose-
manipulation and background-replacement.

To address these issues of existing talking head methods,
we turn attention to recent developed neural radiance fields
(NeRF). We present AD-NeRF, an audio-driven neural ra-
diance fields model that can handle the cross-modal map-
ping problem without introducing extra intermediate rep-
resentation. Different from existing methods which rely
on 3D face shape, expression coefficient or 2D landmarks
to encode the facial image, we adopt the neural radiance
field (NeRF) [30] to represent the scenes of talking heads.
Inspired by dynamic NeRF [16] for modeling appearance
and dynamics of a human face, we directly map the corre-
sponding audio features to dynamic neural radiance fields
to represent the target dynamic subject. Thanks to the neu-
ral rendering techniques which enable a powerful ray dis-
patching strategy, our model can well represent some fine-
scale facial components like teeth and hair, and achieves
better image qualities than existing GAN-based methods.
Moreover, the volumetric representation provides a natural
way to freely adjust the global deformation of the animated
speakers, which can not be achieved by traditional 2D im-
age generation methods. Furthermore, our method takes the
head pose and upper body movement into consideration and
is capable of producing vivid talking-head results for real-

ar
X

iv
:2

10
3.

11
07

8v
3 

 [
cs

.C
V

] 
 1

9 
A

ug
 2

02
1

https://github.com/YudongGuo/AD-NeRF


world applications.
Specifically, our method takes a short video sequence,

including the video and audio track of a target speaking per-
son as input. Given the audio features extracted via Deep-
Speech [1] model and the face parsing maps, we aim to
construct an audio-conditional implicit function that stores
the neural radiance fields for talking head scene represen-
tations. As the movement of the head part is not consistent
with that of the upper body part, we further split the neural
radiance field representation into two components, one for
the foreground face and the other for the foreground torso.
In this way, we can generate natural talking-head sequences
from collected training data. Please refer to the supplemen-
tary video for better visualization of our results.

In summary, the contributions of our proposed talking-
head synthesis method contain three main aspects:

• We present an audio-driven talking head method that
directly maps the audio features to dynamic neural ra-
diance fields for portraits rendering, without any in-
termediate modalities that may cause information loss.
Ablation studies show that such direct mapping has
better capability in producing accurate lip motion re-
sults with training data of a short video.

• We decompose the neural radiance fields of human
portrait scenes into two branches to model the head and
torso deformation respectively, which helps to gener-
ate more natural talking head results.

• With the help of audio-driven NeRF, our method
enables talking head video editings like pose-
manipulation and background-replacement, which are
valuable for potential virtual reality applications.

2. Related Work
Audio-driven Facial Animation. The goal of audio-driven
facial animation is to reenact a specific person in sync with
arbitrary input speech sequences. Based on the applied tar-
gets and techniques, it can be categorized into two classes:
model-based and data-driven methods. The model-based
approaches [39, 12, 60] require expertise works to estab-
lish the relationships between audio semantics and lip mo-
tions, such as phoneme-viseme mapping [14]. Therefore,
they are inconvenient for general applications except for
advanced digital creations like movie and game avatars.
With the rise of deep learning techniques, many data-driven
methods are proposed to generate photo-realistic talking-
head results. Earlier methods try to synthesize the lip
motions that fulfill the training data of a still facial im-
age [5, 13, 8, 53, 7, 46]. Later it is improved to generate
full image frames for President Obama by using quantities
of his addressing videos [41]. Based on the developed 3D
face reconstruction [19, 11, 50] and generative adversarial
networks, more and more approaches are proposed by inter-
mediately estimating 3D face shapes [22, 43, 55] or facial

landmarks [56, 47]. In contrast to our method, they require
more training data due to the latent modalities, i.e., prior
parametric models or low-dimensional landmarks.
Video-driven Facial Animation. Video-driven facial an-
imation is the process of transferring facial pose and ex-
pression from a source actor to a target. Most approaches
on this task rely on model-based facial performance cap-
ture [44, 45, 24, 23]. Thies et al. [44] track dynamic 3D
faces with RGB-D cameras and then transfer facial expres-
sions from the source actor to the target. Thies et al. [45]
further improve the pipeline by using RGB cameras only.
Kim et al. [24] utilize a generative adversarial network to
synthesize photo-realistic skin texture that can handle skin
deformations conditioned on renderings. Kim et al. [23] an-
alyze the notion of style for facial expressions and show its
importance for video-based dubbing.
Implicit Neural Scene Networks. Neural scene represen-
tation is the use of neural networks for representing the
shape and appearance of scenes. The neural scene represen-
tation networks (SRNs) was first introduced by Sitzmann et
al. [40], in which the geometry and appearance of an ob-
ject is represented as a neural network that can be sampled
at points in space. Since from last year, Neural Radiance
Fields (NeRF) [30] has gained a lot of attention for neu-
ral rendering and neural reconstruction tasks. The underly-
ing implicit representation of the shape and appearance of
3D objects can be transformed into volumetric ray sampling
results. Follow-up works extend this idea by using in-the-
wild training data including appearance interpolation [29],
introducing deformable neural radiance fields to represent
non-rigidly moving objects [31, 36], and optimizing NeRF
without pre-computed camera parameters [52].
Neural Rendering for Human. Neural rendering for hu-
man heads and bodies have also attracted many atten-
tions [15, 28, 27]. With recent implicit neural scene rep-
resentations [38, 20], Wang et al. [51] present a composi-
tional 3D scene representation for learning high-quality dy-
namic neural radiance fields for upper body. Raj et al. [37]
adopt pixel-aligned features [38] in NeRF to generalize to
unseen identities at test time. Gao et al. [17] present a meta-
learning framework for estimating neural radiance fields
form a single portrait image. Gafni et al. [16] propose dy-
namic neural radiance fields for modeling the dynamics of
a human face. Peng et al. [33] integrate observations across
video frames to enable novel view synthesis for human body
from a sparse multi-view video.

3. Method
3.1. Overview

Our talking-head synthesis framework (Fig. 1) is trained
on a short video sequence along with the audio track of a
target person. Based on the neural rendering idea, we im-
plicitly model the deformed human heads and upper bodies
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Figure 1. Framework of our proposed talking-head synthesis method. Given a portrait video sequence of a person, we train two neural
radiance fields to synthesize high-fidelity talking head with volume rendering.

by neural scene representation, i.e., neural radiance fields.
In order to bridge the domain gap between audio signals
and visual faces, we extract the semantic audio features
and learn a conditional implicit function to map the audio
features to neural radiance fields (Sec. 3.2). Finally, vi-
sual faces are rendered from the neural radiance fields us-
ing volumetric rendering (Sec. 3.3). In the inference stage,
we can generate faithful visual features simply from the au-
dio input. Besides, our method can also generate realistic
speaking styles of the target person. It is achieved by esti-
mating the neural radiance fields of dynamic heads and up-
per bodies in a separate manner (Sec. 3.4) with the help of
an automatic parsing method [26] for segmenting the head
and torso part and extracting a clean background. While
we transform the volumetric features into a novel canoni-
cal space, the heads and other body parts will be rendered
differently with their individual implicit models and thus
produce very natural results.

3.2. Neural Radiance Fields for Talking Heads

Based on the standard neural radiance field scene repre-
sentation [30] and inspired by the dynamic neural radiance
fields for facial animation introduced by Gafni et al. [16],
we present a conditional radiance field of a talking head us-
ing a conditional implicit function with an additional audio
code as input. Apart from viewing direction d and 3D lo-
cation x, the semantic feature of audio a will be added as
another input of the implicit function Fθ. In practice, Fθ is
realized by a multi-layer perceptron (MLP). With all con-
catenated input vectors (a,d,x), the network will estimate
color values c accompanied with densities σ along the dis-
patched rays. The entire implicit function can be formulated
as follows:

Fθ : (a,d,x) −→ (c, σ). (1)

We use the same implicit network structure including posi-
tional encoding as NeRF [30].
Semantic Audio Feature. In order to extract the semanti-
cally meaningful information from acoustic signals, similar

to previous audio-driven methods [10, 43], we employ the
popular DeepSpeech [1] model to predict a 29-dimensional
feature code for each 20ms audio clip. In our implementa-
tion, several continuous frames of audio features are jointly
sent into a temporal convolutional network to eliminate
noisy signals from raw input. Specifically, we use the fea-
tures a ∈ R16×29 from the sixteen neighboring frames
to represent the current state of audio modality. The us-
age of audio features instead of regressed expression coeffi-
cients [43] or facial landmarks [49] is beneficial for alleviat-
ing the training cost of intermediate translation network and
preventing potential semantic mismatching issue between
audio and visual signals.

3.3. Volume Rendering with Radiance Fields

With the color c and density σ predicted by the im-
plicit model Fθ mentioned above, we can employ the vol-
ume rendering process by accumulating the sampled den-
sity and RGB values along the rays casted through each
pixel to compute the output color for image rendering re-
sults. Like NeRF [30], the expected color C of a camera ray
r(t) = o + td with camera center o, viewing direction d
and near bound tn and far bound tf is evaluated as:

C(r; θ,Π,a) =

∫ tf

tn

σθ(r(t)) · cθ(r(t),d) · T (t)dt, (2)

where cθ(·) and σθ(·) are the outputs of the implicit func-
tion Fθ described above. T (t) is the accumulated transmit-
tance along the ray from tn to t:

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
. (3)

Π is the estimated rigid pose parameters of the face, repre-
sented by a rotation matrixR ∈ R3×3 and a translation vec-
tor t ∈ R3×1, i.e., Π = {R, t}. Similar to Gafni et al. [16],
Π is used to transform the sampling points to the canoni-
cal space. Note that during the training stage, we only use
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Figure 2. Training process of the two neural radiance fields. We reconstruct the head part and upper-body with Head-NeRF (Step 1) and
Torso-NeRF (Step 2) respectively.

the head pose information instead of any 3D face shapes for
our network. We use the two-stage integration strategy in-
troduced by Mildenhall et al. [30]. Specifically, we first use
a coarse network to predict densities along a ray, and then
sample more points in areas with high density in the fine
network.

3.4. Individual NeRFs Representation

The reason of taking head pose into account for the ren-
dering process is that, compared to the static background,
the human body parts (including head and torso) are dy-
namically moving from frame to frame. Therefore, it is es-
sential to transform the deformed points from camera space
to canonical space for radiance fields training. Gafni et
al. [16] try to handle the dynamic movements by decoupling
the foreground and background based on the automatic pre-
dicted density, i.e., for dispatched rays passing through the
foreground pixels, the human parts will be predicted with
high densities while the background images will be ignored
with low densities. However, there exist some ambiguities
to transform the torso region into canonical space. Since
the movement of the head part is not consistent with the
movement of the torso part and the pose parameters Π are
estimated for the face shape only, applying the same rigid
transformation to both the head and torso region together
would result unsatisfactory rendering results in the upper
body. To tackle this issue, we model these two parts with
two individual neural radiance fields: one for the head part
and the other for the torso part.

As illustrated in Fig. 2, we initially leverage an automatic
face parsing method [26] to divide the training image into
three parts: static background, head and torso. We first train
the implicit function for the head part Fheadθ . During this
step, we regard the head region determined by the parsing
map as the foreground and the rest to be background. The
head pose Π is applied to the sampled points along the ray
casted through each pixel. The last sample on the ray is as-
sumed to lie on the background with a fixed color, namely,
the color of the pixel corresponding to the ray, from the

background image. Then we convert the rendering image
of Fheadθ to be the new background and make the torso
part to be the foreground. Next we continue to train the
second implicit model F torsoθ . In this stage, there are no
available pose parameters for the torso region. So we as-
sume all points live in canonical space (i.e., without trans-
forming them with head pose Π) and add the face pose Π
to be another input condition (combined with point loca-
tion x, viewing direction d and audio feature a) for radi-
ance fields prediction. In other words, we implicitly treat
the head pose Π as an additional input, instead of using Π
for explicit transformation within F torsoθ .

In the inference stage, both the head part model Fheadθ

and the torso part model F torsoθ accept the same input pa-
rameters, including the audio conditional code a and the
pose coefficients Π. The volume rendering process will first
go through the head model accumulating the sampled den-
sity and RGB values for all pixels. The rendered image is
expected to cover the foreground head area on a static back-
ground. Then the torso model will fill the missing body
part by predicting foreground pixels in the torso region. In
general, such an individual neural radiance field represen-
tation design is helpful to model the inconsistent head and
upper body movements and to produce natural talking head
results.

3.5. Editing of Talking Head Video

Since both neural radiance fields take semantic audio
feature and pose coefficients as input to control the speak-
ing content and the movement of talking head, our method
could enable audio-driven and pose-manipulated talking
head video generation by replacing the audio input and ad-
justing pose coefficients, respectively. Moreover, similar to
Gafni et al. [16], since we use the corresponding pixel on
the background image as the last sample for each ray, the
implicit networks learn to predict low density values for the
foreground samples if the ray is passing through a back-
ground pixel, and high density values for foreground pixels.
In this way, our method decouples foreground-background
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regions and enables background editing simply by replac-
ing the background image. We further demonstrate all these
editing applications in Sec. 4.4.

3.6. Training Details

Dataset. For each target person, we collect a short video
sequence with audio track for training. The average video
length is 3-5 minutes and all in 25 fps. The recording cam-
era and background are both assumed to be static. In test-
ing, our method allows arbitrary audio input such as speech
from different identities, gender and language.
Training Data Preprocessing. There are three main steps
to preprocess the training dataset: (1) We adopt an auto-
matic parsing method [26] to label the different semantic
regions for each frame; (2) We apply the multi-frame op-
tical flow estimation method [18] to get dense correspon-
dences across video frames in near-rigid regions like fore-
head, ear and hair, and then estimate pose parameters using
bundle adjustment [2]. It is worth noting that the estimated
poses are only effective for the face part but not the other
body regions like neck and shoulders, i.e., the face poses
could not represent the entire movements of upper body;
(3) We construct a clean background image without person
(as shown in Fig. 2) according to all sequential frames. This
is achieved by removing the human region from each frame
based on the parsing results and then computing the aggre-
gation results of all the background images. For the missing
area, we use Poisson Blending [34] to fix the pixels with
neighbor information.
Network & Loss Function. In general, our proposed neu-
ral radiance field representation network has two main con-
straints. The first one is the temporal smooth filter. In
Sec. 3.2, we mentioned to process the DeepSpeech feature
with a window size of 16. The 16 continuous audio features
will be sent into a 1D convolutional network to regress the
per-frame latent code. In order to assure the stability within
audio signals, we adopt the self-attention idea [43] to train
a temporal filter on the continuous audio code. The filter
is implemented by 1D convolution layers with softmax ac-
tivation. Hence the final audio condition a is given by the
temporally filtered latent code.

Second, we constrain the rendering image of our method
to be the same as the training groundtruth. Let Ir ∈
RW×H×3 be the rendered image and Ig ∈ RW×H×3

to be the groundtruth, the optmization target is to reduce
the photo-metric reconstruction error between Ir and Ig .
Specifically, the loss function is formulated as:

Lphoto(θ) =

W∑
w=0

H∑
h=0

‖Ir(w, h)− Ig(w, h)‖2,

Ir(w, h) = C(rw,h; θ,Π,a)

(4)

4. Experiments
4.1. Implementation Details

We implement our framework in PyTorch [32]. Both
networks are trained with Adam [25] solver with initial
learning rate 0.0005. We train each model for 400k iter-
ations. In each iteration, we randomly sample a batch of
2048 rays through the image pixels. We train the networks
with RTX 3090 and train each model for 400k iterations.
For a 5-minutes video with resolution 450 × 450, it takes
about 36 hours to train two NeRFs and 12 seconds to render
a frame.

Figure 3. Ablation study on using direct audio or intermediate fa-
cial expression representation to condition the NeRF model. It
can be observed that direct audio condition has better capability in
producing accurate lip motion results.

Figure 4. Ablation study on training individual neural radiance
field representation for head and torso.

4.2. Ablation Study

We validate two main components adopted in our frame-
work. First, we compare the neural rendering results based
on direct audio condition and additional intermediate condi-
tion. Second, we explore the beneficial of training separated
neural radiance fields for head and torso region.
Audio condition. As aforementioned in Sec. 3.2, our NeRF
based talking head model is directly conditioned on audio
features to avoid the traininjg cost and information loss
within additional intermediate modalities. In Fig. 3, we
compare the rendering images generated from audio code
and audio-estimated expression code. We use the monocu-
lar face tracking method [45] to optimize expression param-
eters and use the same network structure as Thies et al. [43]
to estimate expression code from audio. From the illustra-
tion results, it can be clearly observed that the audio condi-
tioning is helpful for precise lip synchronization.
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Figure 5. Comparison with model-based methods of Thies et al. [43] and Suwajanakorn et al. [41]. Our method not only remains the
semantics of lip motion, but also supports free adjustment on viewing angles. Please watch our supplementary video for visual results.

Figure 6. Comparison with image-based methods. The image size
decides the image quality of generation results. Please watch our
video demo for more results.

Individual training for head and torso region. Another
factor we would evaluate is the individual training strat-
egy for head and torso part. To demonstrate the advantages
of training two separate neural radiance fields network for
these two regions, we conduct an ablative experiment by
training a single one NeRF network for the human body
movements. In such case, the torso area including neck and
shoulders are transformed by the estimated head pose matri-
ces. Therefore there are obviously inaccurate mismatching
pixels around the boundary of upper body. We visualize
the photo-metric error map of this region for the rendering
image and groundtruth. From Fig. 4, the illustrated results
prove that our individual training strategy is beneficial for
better image reconstruction quality.

We also compute the structural similarity index mea-
sure (SSIM) between the generated frames and ground-truth
frames on the whole test sequence of 500 frames. The
scores are 0.92, 0.88 and 0.87 respectively (higher is better)
for our method and the settings of intermediate expression
and single NeRF.

4.3. Evaluations

In this section, we compare our method with two cate-
gories of talking head synthesis approaches: pure image-
based [53, 7, 46] and intermediate model-based [41, 43]

ones. We conduct both quantitative and qualitative exper-
iments to evaluate the visualized results generated by each
method. In the following, we first summarize the compared
methods from two categories and then introduce our de-
signed evaluation metrics.
Comparison with Image-based Method. There are a
branch of talking head generation methods [5, 13, 8, 53,
7, 46] entirely lying in the image domain. Recent deep-
learning-based approaches are trained for multiple identities
and thus can be applied for new target person. However, the
limitation of these methods is obvious as they are only capa-
ble of producing still face crop images, and differs from our
method that produces full-size images with backgrounds
and natural taking styles of target person. In Fig. 6, we
present the audio-driven facial animation results generated
by our method and three competitive methods [53, 7, 46]. It
can be clearly observed that the image-based talking head
methods are restricted by the input image size and thus
could not producing high-resolution imagery as we do.
Comparison with Model-based Method. The model-
based method refers to the approach that takes prior in-
formation in generating photo-realistic face images. The
key component of this categorical methods is the statisti-
cal model, e.g., PCA model for mouth textures [41] or 3D
morphable model for face shapes [43].

In comparison, we extract the audio from the released
demos of the two methods as the input of our framework
(we assume the released demos as their best results since
both of them did not provide pre-trained model), named
as testset A (from Neural Voice Puppertry [43]) and test-
set B (from SynthesizingObama [41]). In Fig. 5, we show
some selected audio-driven talking head frames from each
method. Note that the prior model generally requires large
quantities of training data, for example, Suwajanakorn et
al. [41] reported to use 14 hours high-quality Obama Ad-
dressing videos for training and Thies et al. [43] took more
than 3 hours data for training and 2-3 minutes long video for
fine-tuning, while our method only requires a short video
clip (3-5 minutes) for training. Despite the huge gap of the
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Figure 7. Rating scores from participants. Based on the statics on three different terms, our method achieves comparable results with the
other two model-based methods. However, our method only requires a very short video sequence for training, while the other two are
trained on multiple and large datasets.

Methods SyncNet score [9]N AU error [4]H Pose Full-frame Backgroundtestset A testset B testset A testset B
[Chen et al.] [7] 6.129 4.388 2.588 3.475

static
5 5

[Wiles et al.] [53] 4.257 3.976 3.134 3.127 5 5
[Vougioukas et al.] [46] 5.865 6.712 2.156 2.658 5 5

[Thies et al.] [43] 4.932 - 1.976 - copied from
source

X 5
[Suwajanakorn et al.] [41] - 5.836 - 2.176 X 5

Ours 5.239 5.411 2.133 2.287 freely adjusted X X
Original 5.895 6.178 0 0 - - -

Table 1. We conduct comparisons on two testsets (A and B) collected from the demos of Neural Voice Puppertry [43] and Synthesizin-
gObama [41], respectively. N indicates that the confidence value in SyncNet score is better with higher results. H means that AU error is
better with smaller numbers. Moreover, our method can synthesize full-frame imagery while enables pose manipulation and background
replacement thanks to the audio-driven neural radiance fields.

w
it

h
ov

er

Source Kim et al. 19 Ours
Figure 8. Comparison with the video-driven method of Kim et
al. [23]. On the right are the saying words.

training dataset size, our approach is still capable of produc-
ing comparable natural results to the other two methods.

Moreover, our method owns the advantage of freely
manipulating the viewing directions on the target person,
which means that we can freely adjust head poses within
the range of training data. We further demonstrate the free-
viewing-direction results in Fig. 10 and our supplementary
video.

Comparison with Video-driven Method. Besides
audio-driven methods, another category of talking head
generation methods lie in video-driven, namely driving the
target person from a source portrait video. We compare our

Figure 9. Our method allows arbitrary audio input from different
identity, gender and language. For the audio-driven results, please
refer to our supplementary video.

audio-driven method with a recent style-based video-driven
method [23] in Fig. 8. We can see that both methods pro-
duce high-fidelity talking head results. Note that the method
of Kim et al. [23] takes the video frames as input while our
method takes the corresponding audio as input.

Metrics. We employ multiple evaluation metrics to
demonstrate the superiority of our method to the others.
As an audio-driven talking head generation work, the syn-
chronized visual faces are expected to be consistent with
audio input while remaining high image fidelity and realis-
tics. To this end, we propose a combined evaluation de-
sign, including SyncNet [9] scores for audio-visual syn-
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Figure 10. Our method can generate talking head frames with freely adjusted viewing directions and various background images. Each
row from left to right: original frames from a video, reconstructed results with audio and pose from the original video, two samples of
background-replacement results, two samples of pose-manipulation results.

chronization quality, Action Units (AU) detection [3] (by
OpenFace [4]) for facial action coding consistency between
source and generated results, and a diversified user study on
image realism, fidelity and synchronization consistency.

SyncNet [9] is commonly used to validate the audio-
visual consistency for lip synchronization and facial anima-
tion tasks. In this experiment, we use a pretrained SyncNet
model to compute the audio-sync offset and confidence of
speech-driven facial sequences generated by each compar-
ing method (Tab. 1). Higher confidence values are better.

We employ an action units (AU) detection module by
OpenFace [4] to compute the facial action units for the
source video that providing audio signals and the corre-
sponding generated results. This metric is aimed at evalu-
ating the muscle activation consistency between the source
faces and driven ones. The ideal talking-heads are expected
to perform similar facial movements as the source faces.
We select the lower face and mouth-related AUs as active
subjects and compute the mean errors between source and
driven faces. The quantitative results are given in Tab. 1.

Finally, we conduct a user study comparisons with the
help of 30 attendees. Each participant is asked to rate the
talking-head generation results of 100 video clips (9 from
Thies et al. [43], 11 from Suwajanakorn et al. [41] and
20 from three image-based methods [53, 7, 46] and ours)
based on three major aspects: audio-visual synchronization
quality, image fidelity and image realism. The head poses
for generating results of our method come from a template
video clip outside the training set. We collect the rating
results within 1 to 10 (the higher the better) and compute
the average score that each method gained. The processed
statistics are visualized in Fig. 7.

4.4. Applications on Talking Head Editing

As described in Sec. 3.5, our method could enable talk-
ing head video editing on audio signal, head movement, and
background image. First we show the audio-driven results

of the same video with inputs from diverse audio input from
different persons in Fig. 9. As we can see, our method pro-
duces reasonable results with arbitrary audio input from dif-
ferent identities, gender, and language. Then we show the
pose-manipulation and background-replacement results of
our method in Fig. 10. We can see that our method al-
lows adjusting viewing directions and various background
images replacement for high-fidelity talking portraits syn-
thesis with the trained neural radiance fields. We believe
these features would be very exciting for the virtual reality
applications like virtual meetings and digital humans.

5. Limitation
We have demonstrated high-fidelity audio-driven talk-

ing head synthesis of AD-NeRF. However, our method has
limitations. As seen from the supplemental video, for the
cross-identity audio-driven results, the synthesized mouth
parts sometimes look unnatural due to the inconsistency be-
tween the training and driven language. As seen from Fig. 5
and the supplemental video, sometimes the torso parts look
blurry due to that the head pose and audio feature cannot
totally determine the actual torso movement.

6. Conclusion
We have presented a novel method for high-fidelity talk-

ing head synthesis based on neural radiance fields. Using
volume rendering on two elaborately designed NeRFs, our
method is able to directly synthesize human head and upper
body from audio signal without relying on intermediate rep-
resentations. Our trained model allows arbitrary audio input
from different identity, gender and language and supports
free head pose manipulation, which are highly demanded
features in virtual meetings and digital humans.
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