
Invertible Residual Neural Networks with Conditional Injector and Interpolator
for Point Cloud Upsampling

Aihua Mao1† , Yaqi Duan1†∗ , Yu-Hui Wen2∗ , Zihui Du1 , Hongmin Cai1 and Yong-Jin Liu3

1South China University of Technology
2Beijing Jiaotong University

3Tsinghua University
{ahmao, hmcai}@scut.edu.cn, {csduanyaqi, csusami}@mail.scut.edu.cn, yhwen1@bjtu.edu.cn,

liuyongjin@tsinghua.edu.cn

Abstract
Point clouds obtained by LiDAR and other sen-
sors are usually sparse and irregular. Low-quality
point clouds have serious influence on the final per-
formance of downstream tasks. Recently, a point
cloud upsampling network with normalizing flows
has been proposed to address this problem. How-
ever, the network heavily relies on designing spe-
cialized architectures to achieve invertibility. In
this paper, we propose a novel invertible residual
neural network for point cloud upsampling, called
PU-INN, which allows unconstrained architectures
to learn more expressive feature transformations.
Then, we propose a conditional injector to im-
prove nonlinear transformation ability of the neu-
ral network while guaranteeing invertibility. Fur-
thermore, a lightweight interpolator is proposed
based on semantic similarity distance in the latent
space, which can intuitively reflect the interpolation
changes in Euclidean space. Qualitative and quan-
titative results show that our method outperforms
the state-of-the-art works in terms of distribution
uniformity, proximity-to-surface accuracy, 3D re-
construction quality, and computation efficiency.

1 Introduction
In recent years, with the development of depth data sen-
sors, point clouds have become one of the most popular data
types representing the 3D world. However, the collected
point cloud data is usually sparse and irregular due to the
complexity of real-world illumination and materials. Low-
quality point clouds have a direct impact on the performance
of downstream tasks, e.g., self-driving cars, robotics, surface
reconstruction, and medical analysis, etc. Therefore, upsam-
pling sparse and irregular point clouds into dense and uniform
data has attracted increasing attention in computer vision and
computer graphics.

Currently, existing upsampling methods, e.g., PU-Net [Yu
et al., 2018], PU-GAN [Li et al., 2019], PU-GCN [Qian et
al., 2021a], DIS-PU [Li et al., 2021] and PC2-PU [Long et
al., 2022], usually perform feature extraction to encode the
feature of the point cloud into a latent code. Then, these

methods duplicate the latent code with some copies to in-
crease the number of points, and finally reconstruct the 3D
coordinates of points in Euclidean space by decoding from
the duplicated latent code. Specifically, the coordinate re-
construction is constrained by evaluation metrics, such as
uniformity and smoothness. The feature extraction and the
coordinate reconstruction need to learn the parameters sep-
arately, and guarantee the relevance between the encoding
and decoding processes. Different from these methods, a nor-
malizing flow network architecture called PU-Flow [Mao et
al., 2022] has been proposed for point cloud upsampling re-
cently. The normalizing flow network parameterizes a bijec-
tive mapping between a complex distribution and a simple
distribution. Thanks to the invertibility, PU-Flow achieves
no information loss in the encoding and decoding processes.
However, this method relies on designing structured Jaco-
bians and specialized architectures, which have a signifi-
cant impact on the model performance [Dinh et al., 2016;
Miyato et al., 2018].

To achieve unconstrained Jacobians and architectures, in
this paper we construct an invertible network with resid-
ual blocks by introducing lipschitz constraints [Chen et al.,
2019]. To further improve the expressiveness of the network,
we design a conditional injector, which includes a feature ex-
tractor module and a fusion module. The feature extractor
module performs adaptive encoding of global and local fea-
tures of sparse point clouds. The feature fusion module uses
the attention mechanism [Vaswani et al., 2017] to aggregate
global features with local features and outputs enhanced fea-
tures. The enhanced features are injected into the main archi-
tecture, to enhance the nonlinear variability.

For upsampling, we also design a lightweight interpolator
to scale the points, based on semantic similarity distance in
the latent space modeled by the invertible network. The inter-
polation in the latent space can be reflected in the Euclidean
space through the reverse mapping of the invertible network.
Furthermore, we selected 25 complex models from Sketch-
fab, called the PU25 dataset, to quantitatively evaluate the up-
sampling point set. We compare our results with state-of-the-
art (SOTA) optimization and learning-based methods. Bene-
fiting from our proposed invertible residual network with con-
ditional injector and interpolator, our upsampling results have
better uniformity and are closer to the underlying surface, and
can better preserve the fine-grained information of the object.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1267

The main contributions of this paper can be summarized as
follows:

• We propose an easily embedded point cloud upsampling
algorithm, called PU-INN, based on an invertible resid-
ual neural network, which has an unconstrained and ex-
pressive architecture by enforcing a Lipschitz constraint.

• We propose a conditional injector that includes a feature
extractor and a feature fusion module, to enhance the
feature transformation capability of the invertible neu-
ral network. The feature extractor module extracts fine
local and coarse-grained global features, and the fusion
module is designed to control the flow of information
from local semantic features to global features based on
an efficient channel attention.

• We propose a lightweight interpolator based on the se-
mantic similarity distance. Considering that PU-INN
learns a bidirectional mapping between the point cloud
and the latent space, the interpolation in the latent space
can immediately reflect the changes in Euclidean space.

• Experimental results show that PU-INN achieves better
performance in qualitative and quantitative evaluations
compared with SOTA methods.

2 Related Works
Optimization-Based Upsampling. Traditional methods
have tried various optimization strategies to generate upsam-
pled point clouds. Early point upsampling methods usually
adopted shape priors [Alexa et al., 2003; Lipman et al., 2007],
and depended on the hand-crafted prior quality. Moreover,
some methods relied on local geometric fitting, such as nor-
mal estimation [Huang et al., 2009] and smooth surface as-
sumptions [Huang et al., 2013; Wu et al., 2015]. In general,
the above metioned methods are not data-driven, thus leading
to insufficient assumptions or requiring geometric attributes.

Learning-Based Upsampling. Deep learning methods in-
troduce promising advances to optimization-based algo-
rithms, owing to their data-driven characteristics and neural
network learning capabilities. Deep neural networks [Qi et
al., 2017a; Qi et al., 2017b; Wang et al., 2019; Thomas et al.,
2019; Li et al., 2018] can learn features directly from point
clouds. PU-Net [Yu et al., 2018], as a pioneer, proposed the
first deep neural network for point cloud upsampling. MPU
[Yifan et al., 2019] and PU-GAN [Li et al., 2019] proposed
a patch-based progressive upsampling method and a GAN-
based framework separately. More recently, PU-GEO [Qian
et al., 2020] considered the local geometric metric to upsam-
ple the point cloud. PU-GCN [Qian et al., 2021a] improved
the performance of point cloud upsampling by using a graph-
based module. DIS-PU [Li et al., 2021] applied a disentan-
gled refinement framework to adjust the coarse upsampled
points into fine scale points. Flexible-PU [Qian et al., 2021b]
formulated the point cloud upsampling problem in an explicit
manner by using the linear approximation theorem. PC2-PU
[Long et al., 2022] paid more attention to patch correlation
and position correction.

The above mentioned methods extract latent features by an
encoding process and reconstruct coordinates by a decoding

process. On the contrary, in this paper we proposed a method
based on normalizing flows to unify the encoding and decod-
ing processes.

Normalizing Flow in Point Cloud. Some inverible neural
networks based on normalizing flows have been proposed to
achieve efficient inverse computation by adopting the dimen-
sional decomposition architecture, such as NICE [Dinh et al.,
2014], Real-NVP [Dinh et al., 2016], i-RevNet [Jacobsen et
al., 2018] and Glow [Kingma and Dhariwal, 2018]. How-
ever, these methods suffered from restricted transformations
with sparse or structured Jacobians, thus leading to weak non-
linear transformation capability. Transformations that scale
to high-dimensional data relied on specialized architectures.
Recently, an invertible residual network [Behrmann et al.,
2019] has been proposed based on invertible residual blocks,
which have forward and backward Lipschitz boundaries, to
avoid strict architectural constraints. To reduce the com-
plexity and boost the adaptability, the invertible residual net-
work [Behrmann et al., 2019] has been further improved
by generalizing the Lipschitz constraint to induced mixed
norms [Chen et al., 2019].

PointFlow [Yang et al., 2019] applied continuous normal-
izing flows [Chen et al., 2018] to 3D point clouds, but contin-
uous flows caused slow convergence. Both DPF-Net [Klokov
et al., 2020] and PU-Flow [Mao et al., 2022] used affine cou-
pling layers [Dinh et al., 2016] to model discrete normalizing
flow. These networks had a strong inductive bias that may
hinder their application in supervised tasks. To improve the
transformation capability, our PU-INN is inspired by an in-
vertible residual network [Chen et al., 2019] and proposed
with free-form Jacobian. Moreover, we impose a flexible con-
ditional injector and a uniformity loss to further enhance the
performance of the invertible residual network. Furthermore,
the upsampling is performed with a point interpolator based
on semantic similarity distance.

3 Method
Given a 3D point cloud X = {xi ∈ R3}Ni=1 with N points
and a user-specified upsampling factor r, we aim to generate a
dense and homogeneous point cloud set P = {pi ∈ R3}r×N

i=1
with r ×N points.

In this study, we put X into the injector, which fuses the
local and global features extracted from the input, to get the
conditional information C. Then, we feed X and C together
into an invertible residual neural network, to get the high-
dimensional output in the latent Riemannian space. Finally,
we interpolate in this latent space to get Z̃, which is trans-
formed to the point cloud P in the Euclidean space by the
inverse mapping of the invertible neural network.

3.1 Invertible Residual Neural Network
Our invertible neural network is constructed with some in-
vertible residual layers. An invertible residual layer maps the
original point cloud distribution Dx to the specified simple
distribution Dz through a transformation function F , which
consists of M invertible residual blocks,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1268

………………

3
N

3

N

G.
T.
G.
T.

iz

2iz

6iz

8iz

9iz

x

rec

1
f

2 3 1L L
f f f f −

1

1f
−

1h

~()px x

z
2 3 1

1 1 1 1

L L
f f f f −

− − − −

Reverse

1 1~()ph h ~()pz z

0c 1c Lc

3
r
N

0
f

0

1f
−

L

Fusion Gate

G Global Feature Extrator

Local Feature Extrator

Feature Fusion Module

Feature

L

Fusion Gate

G

Interpolator

L

Fusion Gate

G
Injector

3N3N 3rN
Forward

Distribution
T

(1)
0h

ransformation

(1)hN

(1)
1h

(2)
0h

(2)hN

(2)
1h

()
0h
M

()hMN

()
1h
M

nll

0c ic

Figure 1: The Architecture of PU-INN. The upper shows the overall architecture of the PU-INN model containing three main parts: the
INN stream in middle row (Section 3.1), Conditional Injector in first row (Section 3.2), and Point Interpolator (Section 3.3). The bottom row
indicates the transformation of the distribution. The INN stream consists of some residual blocks.

hl+1 = fθl(h
l) l = 1, ...,M

h1 = x, hM = z ∼ N (0, I)
(1)

where fθl(h
l) = hl+gθl(h

l), and gθl(h
l) computes the trans-

formation of the input features hl at the l-th invertible resid-
ual block fθl . x is the original point cloud coordinates, and z
obeys the specified simple distribution (like Gaussian distri-
bution).

To ensure that each residual block is invertible, we enforce
a Lipschitz constraint [Behrmann et al., 2019] as follows:

Lip(gθl) < 1 (2)

where the Lip(gθl) is the Lipschitz norm of the function gθl .
According to Banach’s fixed-point theorem, the fixed point
of the inverse function hl = hl+1 − gθl(h

l) is calculated by
iterating a certain number of steps to converge to hl, which
satisfies the accuracy requirement.

The training objective of the invertible neural network is as
follows:

F ∗ = argmin
θ

(− log px(x)) (3)

where log px(x) = log pz(z) + log |det JF)|. px(x) and
pz(z) are the probability distribution of Dx and Dz , respec-
tively. log |det JF | is the Jacobian matrix log-determinant of
the transformation function.

3.2 Conditional Injector
We note that the constraint — the dimensionality of the out-
put must be the same as the input in each invertible resid-
ual block (in Section 3.1) — limits the capacity of nonlinear
transformation. Thus, we propose a conditional injector for
injecting the necessary feature information into the original
network to enhance its transformation capability. Then Equa-
tion (1) becomes:

C0 = INJ(h0), h1 = fθ0(h
0; C0) (4)

where C0 is the output of the injector INJ(h0), which encodes
h0 as a conditional information, Cv+1 = INJ(Cv)(v > 0).
The injector consists of a feature extractor and a feature fu-
sion module.

Point Feature Extractor
As shown in Figure 2, we propose a local and a global feature
extractor to extract the fine and coarse-grained features of the
point cloud, respectively.

Local Feature. To avoid the overall transformation from
affecting the local information, we obtain relative point po-
sitions by subtracting the center point from the the k-nearest
neighbor points. Then, we explicitly encode the relative point
positions to enhance the neighboring point feature. We ex-
tract local features as follows:

HL = MLP
(
T (xi)⊕ xki ⊕

∥∥xi − xki
∥∥) (5)

where the T represents the T-Net [Qi et al., 2017a] which
solves the rotation invariance problem, and ⊕ is the concate-
nation operation. ||xi − xki || computes the euclidean distance
between the neighboring points xki and the centroid point xi,
where xki is the k-th nearst neighbor of xi. The detailed ar-
chitecture of MLP (Multi Layer Perceptron) can be found in
Appendix A. Finally, we use the attentive pooling [Hu et al.,
2020] instead of the traditional maximum pooling to preserve
details during upsampling.

Global Feature. We propose the global feature extractor
based on dense connections [Liu et al., 2019a]. Specifically,
each dense connection learns from its previous layer and the
raw input (on the same local region) simultaneously. With-
out explicit local information encoding, this global extractor
can focus on the shape of point clouds, contour and other

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1269

 Local Feature Extractor

 Global Feature Extractor

 Point Feature Fusion Module

k-NN

Duplicate

− +

T-Net

+
shared

Down
Sampling

P
o
o
l

Dense Connection

Li
ne
ar

K

V

Q Transpose

Concatenate

Li
ne
ar

Soft
max

M
L
P

+ −Dot product

3

Minus

N C

N Ck

2N C k

3N C k
N C

gN C
gN C

lN C

Soft
max

Channel Avg

Sigmoid

1N

gN C 1 gC

gN C

k
i

k

agg

d G

L

C

Figure 2: Conditional Injector. The conditional injector consists of three modules: Local Feature Extractor (Section 3.2), Global Feature
Extractor (Section 3.2), and Feature Fusion Module (Section 3.2).

global information. We extract densely contextual represen-
tation HG as:

HG = MLP(MLP(MLP(xi)⊕ xi)⊕ xi) (6)

This extractor can use the dense connectivity pattern to re-
peatedly aggregate multi-level and multi-scale features. In-
stead of using the attentive pooling in the local feature extrac-
tor, a normal max pooling is used to extract global features.

Point Feature Fusion
We develop the point feature fusion module to incorporate
local information HL with global features HG for aggrega-
tion. The fusion module also controls how much information
from the global features should be merged with the local fea-
tures based on the efficient channel attention [Vaswani et al.,
2017]. The fused feature map is computed as follows:

HC = Norm

(
QTK√
N

)
·MLP(V) (7)

where Norm(·) denotes a sigmoid function. Q =
op(σ(HL)) ∈ RN×1 denotes queries of local features, and
op(·) is a channel average operation. K = WKσ(HG) ∈
RN×Cg denotes keys of global features, and σ denotes a Soft-
max operation. V = WVHG ∈ RN×Cg denotes values of
global features. WK ,WV ∈ RN×N are linear transformation
parameters. HC denotes output fusion features.

3.3 Point Interpolator
We design an interpolator for points expansion based on the
semantic similarity distance. Unlike images with fixed topo-
logical relations, it is impossible to apply the continuous
weight function [Liu et al., 2019b; Wu et al., 2019] to directly
interpolate the feature map.

For each point, we perform interpolation in its k-nearest
neighbors to generate new points, and the distance is calcu-
lated by similarity Si,j . Specifically, we set the cosine sim-
ilarity score between the features of centroid and candidate

points as a measure of the semantic similarity in the latent
space. Given the fusion latent code z ∈ RNC=3, which is the
last residual layer’s NC-dimensional output. The similarity
Si,j of points zi and zj is defined as follows:

Si,j =
zi

Tzj

∥zi∥2 ∥zj∥2
(8)

where ∥ · ∥2 is the L2 Normalization. Cosine distance can
force the network to consider the spatial relationships be-
tween points, as two neighboring points naturally produce
similar features and generate high cosine similarity.

By obtaining the neighborhood of each point, we can inter-
polate in it and learn the weight vector using a learning-based
approach with the following formula:

z̃i,l =

∑k
u=1 ψl (zi, zi,u) zi,u∑k

u=1 ψl (zi, zi,u)
(9)

where zi,u is the u-th nearest neighbor to zi, and
ψ(zi, zi,u) ∈ RNC is the embedding in the feature space,
which encodes the local structure and global information. z̃i,l

is the l-th interpolated feature from the original feature zi,
l = 1, 2, · · · , R (upsampling ratio). k is the number of near-
est neighbors. The interpolation in the latent space can be
reflected in the Euclidean space through the reverse mapping
of the invertible neural network.

3.4 Loss Function
Prior Loss. Equation (3) allows us to train the flow layer
by minimizing the negative log-likelihood by entering X :

Lnll(X) = L(X , C; θ) = − log p(X | C, θ) (10)

where C = INJ(X). Optimizing the prior likelihood of X
encourages encoding the shape representation to obtain high
probability under a predefined prior pz(z), which is modeled
by the flow module Fθ. In our experiments, the prior pz(z) is
simply set to the standard Gaussian distribution N (0, I).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1270

HighLow

Input PU-Net PU-GAN PU-GCN DIS-PU OursPU-Flow

Figure 3: Visual Comparisons. Comparisons to state-of-the-art methods, PU-Net [Yu et al., 2018], PU-GAN [Li et al., 2019], PU-GCN [Qian
et al., 2021a], Dis-PU [Li et al., 2021], PU-Flow [Mao et al., 2022] in 4× upsampling experiments using 5000 input points from PU1K
dataset [Qian et al., 2021a]. We visualized the P2F errors by colors for each point.

Similarity Loss. We use the Earth Mover’s distance
(EMD)to measure the dissimilarity between two multidimen-
sional distributions in a given feature space, and EMD is cal-
culated as follows:

LEMD(P,X) = min
ϕ:P→X

∑
pi∈P

∥pi − ϕ (pi)∥2 (11)

where ϕ : P → X is the bijective mapping. EMD is fast,
differential and robust to outliers[Fan et al., 2017].
Uniform Loss. We also take the uniformity of the point
cloud into consideration. To evaluate the uniformity, we
make each point to be as far as possible from the rest of the
points in the same point set as follows:

LUni(P) =
∑
pi∈P

∑
pj∈P,j ̸=i

exp

(
−∥pi − pj∥2

(2k2)

)
(12)

where k denotes the size of the considered neighborhood.

4 Experiments
Dataset. The data we use for training and testing comes
from two datasets, PU1K [Qian et al., 2021a] and Sketchfab

[Sketchfab, 2011]. Both datasets include point clouds of dif-
ferent resolutions and their surface models for evaluating the
reconstruction metrics. Some mesh models have complex ge-
ometry and high-frequency details. To fairly compare differ-
ent methods, we perform the same enhancement operations
on the point cloud data, including random scaling, rotation
and point perturbation.

Implementation Details. For each training object, we ran-
domly crop it into M = 100 overlayable patches, resulting
in 102000 training surface patches. On each surface patch,
we extract rN points as the groundtruth Q by Poisson-disk
sampling. Then, we randomly sample N = 256 points from
Q as training input X .

We implement our network using the PyTorch platform and
train 200 epochs using the Adam algorithm with an initial
learning rate ϕ = 1e−4 (decayed by 0.7 every 40 epochs) by
NVIDIA 3,090 GPU. The batch size is 16, and we empirically
set the values of α, β, and γ in the compound loss function
to 1000, 0.01, and 0.01, respectively. PU-INN has 10 resid-
ual layers, and each residual layer consists of 27 invertible
residual blocks.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1271

EAR PU-GEO PU-GCN DIS-PU Ours

Figure 4: Surface Comparisons. Comparisons of reconstructed surfaces from upsampled points of various methods, (EAR [Huang et al.,
2013], PU-Geo [Qian et al., 2020], PU-GCN [Qian et al., 2021a], Dis-PU [Li et al., 2021] in 4× upsampling experiments using 5000 input
points from PU25 dataset.

4.1 Comparisons with SOTA Methods
Quantitative Comparison. To quantitatively evaluate the
quality of the output point cloud, we use the Earth Mover’s
distance (EMD), Chamfer distance (CD) [Butt, 1998], Haus-
dorff distance (HD) [Huttenlocher, 1993], Uniform Met-
ric(UNI), and Point-to-surface (P2F) distance. A lower eval-
uation metric value indicates better performance. Table 1
shows the comparison results under the dataset PU1K [Qian
et al., 2021a]. We observe that our method outperforms the
previous SOTA methods on all the metrics. Specifically, the
improvement of our method on EMD shows that it tends to
encourage points to remain the underlying surface. Moreover,
our method achieves the best results on CD and P2F metrics.
The results show that PU-INN is more robust to noise com-
pared with the other methods. Benefiting from the uniform
loss constraint, our method outperforms the other methods
especially on the uniformity metric, even for the challenging
16× upsampling.

Qualitative Comparison. The qualitative results of differ-
ent point cloud upsampling models are presented in Fig-
ure 3. It shows that baseline methods tend to generate more
noise (e.g., PU-Net), or destroy tiny-part structures (e.g., PU-
GAN). In high-curvature regions, PU-GCN cannot produce
high-quality results. Dis-PU is able to well preserve tiny lo-
cal structures by disentangled refinement module while losing
the global information for guiding. Our output can better dis-
play the points’ origin shape contour while preserving more
structural details. As shown in Figure 4, we also reconstruct
meshes from the generated upsampling points by SAP Al-
gorithm [Peng et al., 2021], to show that our results help to
reconstruct complex meshes with high-frequency details and
fewer artifacts.

We have also conducted experiments to verify our model’s
robustness with respect to different input sizes and noise, and
PU-INN achieves the best performance in all the tested cases.
We give more details in Appendix B, which also shows more
qualitative comparisons (real-scanned data, non-uniform data
and other datasets), and quantitative comparisons.

4.2 Ablation Study
To evaluate the effectiveness of the major modules in the con-
ditional injector of our proposed model, we conduct an abla-
tion study in four cases: (1) removing the global feature ex-
tractor (w/o Injector(Global)); (2) removing the local feature
extractor (w/o Injector(Local)); (3) removing the feature fu-
sion module (w/o Injector(Fusion)), and the global and local
features are concatenated after a transformation with MLP;
and (4) removing the injector (w/o Injector). The time met-
ric is the cost of PU-INN’s inference with only one object,
which has 5000 points, and the upsampling ratio is 4x. Ta-
ble 2 shows that our conditional injector can effectively en-
hance the performance of our model on the EMD, CD, HD,
UNI and P2F metrics. Although the computational cost and
reference time are higher by introducing the injector, the com-
putaion efficiency of our full method still outperforms the
SOTA methods.

4.3 Lightweight Network Design
The existing point cloud upsampling methods generally con-
struct networks with a large number of parameters, result-
ing in a complicated training procedure and high computa-
tion cost. The amounts of parameters typically over 100K,
and some methods even contain over 1000K parameters. As
discussed in Section 1, we design a lightweight interpolator

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1272

Methods 4× Upsampling Without Noise 16× Upsampling Without Noise
EMD ↓ CD ↓ HD ↓ UNI ↓ P2F ↓ EMD ↓ CD ↓ HD ↓ UNI ↓ P2F ↓

EAR [Huang et al., 2013] 7.915 4.919 7.784 4.141 6.479 8.515 5.064 8.255 4.594 6.964
PU-Net [Yu et al., 2018] 4.015 3.143 4.495 1.919 2.315 4.295 3.426 4.649 2.061 2.651
PU-GAN [Li et al., 2019] 3.514 1.158 4.251 1.630 2.225 3.647 1.461 4.525 1.726 2.519

PU-Geo [Qian et al., 2020] 3.251 1.002 3.915 1.237 1.525 3.394 1.326 4.051 1.316 1.648
PU-GCN [Qian et al., 2021a] 2.929 0.585 3.648 1.181 1.899 3.105 0.619 3.841 1.354 2.096

Dis-PU [Li et al., 2021] 2.897 0.494 3.422 0.964 1.526 2.996 0.508 3.600 1.281 1.848
Flexible-PU [Qian et al., 2021b] 2.692 0.426 3.588 1.231 1.425 2.859 0.495 3.693 1.261 1.658

PU-Flow [Mao et al., 2022] 2.572 0.394 3.484 1.198 1.336 2.921 0.458 4.618 1.318 1.515
PC2-PU [Long et al., 2022] 2.423 0.381 3.594 0.865 1.308 2.662 0.426 3.961 1.260 1.355

PU-INN 2.042 0.375 2.815 0.699 1.181 2.166 0.401 3.052 0.712 1.301

Methods 4× Upsampling With Noise 16× Upsampling With Noise
EMD ↓ CD ↓ HD ↓ UNI ↓ P2F ↓ EMD ↓ CD ↓ HD ↓ UNI ↓ P2F ↓

EAR [Huang et al., 2013] 8.015 5.132 7.923 4.403 6.696 8.711 5.234 8.534 4.859 7.213
PU-Net [Yu et al., 2018] 4.150 3.415 4.737 2.122 2.476 4.398 3.544 4.822 2.190 2.784
PU-GAN [Li et al., 2019] 3.812 1.347 4.375 1.731 2.327 3.823 1.667 4.739 1.946 2.740

PU-Geo [Qian et al., 2020] 3.384 1.235 4.105 1.407 1.636 3.616 1.583 4.312 1.520 1.808
PU-GCN [Qian et al., 2021a] 3.204 0.830 3.939 1.466 2.107 3.233 0.811 3.988 1.626 2.238

Dis-PU [Li et al., 2021] 3.153 0.762 3.721 1.264 1.748 3.174 0.661 3.759 1.549 1.953
Flexible-PU [Qian et al., 2021b] 2.726 0.616 3.648 1.315 1.613 3.049 0.762 4.118 1.918 1.915

PU-Flow [Mao et al., 2022] 2.747 0.620 3.719 1.309 1.438 3.205 0.613 4.773 1.536 1.753
PC2-PU [Long et al., 2022] 2.594 0.612 3.625 1.261 1.435 2.816 0.716 3.998 1.416 1.617

PU-INN 2.110 0.512 3.012 0.840 1.420 2.260 0.592 3.342 0.821 1.523

Table 1: Quantitative comparisons. Quantitative comparisons to state-of-the-art methods on the PU1K dataset [Qian et al., 2021a]. All
metric units are 10−3. The best results are denoted in bold.

Ablation EMD ↓ CD ↓ HD ↓ UNI ↓
P2F ↓ Time ↓ Params ↓ FLOPs ↓

w/o Injector(Global) 2.294 0.403 3.192 0.983
1.492 3.17 ms 51.6 K 31.5 G

w/o Injector(Local) 2.364 0.761 3.067 0.991
1.873 3.24 ms 55.6 K 35.6 G

w/o Injector(Fusion) 2.406 0.734 3.269 1.075
1.894 4.89 ms 67.9 K 39.8 G

w/o Injector 2.576 0.923 3.562 1.297
2.062 3.09 ms 38.9 K 28.4 G

PU-INN 2.042 0.375 2.815 0.699
1.181 5.10 ms 68.1 K 45.2 G

Table 2: Ablation study. The components of the PU-INN are tested
on PU1K dataset [Qian et al., 2021a]. All metric units are 10−3

except the Time, Params and FLOPs. The best results are denoted in
bold.

to reduce the model complexity for the development of point
cloud upsampling methods.

Benefiting from the architecture of invertible residual neu-
ral network, the resblock can share weights in the forward
and reverse phases, and the elimination of gradient calcula-
tion in the reverse phase saves the calculations in the training
phase, and thus reducing the model’s parameters and saving
the inference time. To reduce the computation cost, we only
set the first residual block of each residual learning layer as a
conditional residual block. As shown in Table 3, our model
has 6.8x fewer parameters and 2.8x fewer FLOPs than PU-
Flow. PU-INN’s inference speed performs up to 2.3x faster
than PU-Flow.

Methods #Params FLOPs Time
PU-NET [Yu et al., 2018] 916.1K 186.2G 10.58ms
MPU [Yifan et al., 2019] 1005.2K 162.9G 9.91ms
PU-GAN [Li et al., 2019] 648.2K 294.5G 13.81ms

PU-Geo [Qian et al., 2020] 1463.2K 148.3G 15.52ms
PU-GCN [Qian et al., 2021a] 219.2K 90.5G 10.94ms

DIS-PU [Li et al., 2021] 131.6K 85.4G 8.83ms
Flexible-PU [Qian et al., 2021b] 324.5K 82.8G 8.92ms

PU-Flow [Mao et al., 2022] 463.4K 125.4G 11.72ms
PC2-PU [Long et al., 2022] 105.4K 68.3G 9.64ms

PU-INN 68.1K 45.2G 5.10ms

Table 3: Computation cost on the state-of-the-art methods in 4x up-
sampling ratio using 5000 uniform input points. Time: Inferencet
Speed.

5 Conclusions

In this paper, we propose a point cloud upsampling method
based on invertible residual neural networks. Considering
that bi-directional mapping limits the dimensionality of the
input and output, we propose a conditional injector, which
can inject the necessary feature information into the origi-
nal network without affecting the invertibility and improve
its nonlinear transformation capability. Furthermore, we de-
sign an interpolator based on semantic similarity distance,
by which interpolating in latent space immediately reflects
changes in Euclidean space. Extensive qualitative and quanti-
tative experiments show that our network outperforms SOTA
methods. With the good performance of PU-INN in solv-
ing upsampling problems, we could extend its adaptability to
advanced 3D vision tasks, such as semantic segmentation in
future work.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1273

Acknowledgments
This work was supported by the NSF of Guangdong Province
under 2022A1515011573, the Key-Area Research and De-
velopment Program of Guangzhou City (202206030009), the
National Natural Science Foundation of China (U21A20520
and No.62202257), Beijing Natural Science Foundation
(L222008).

Contribution Statement
Aihua Mao:Conceptualization, Funding acquisition, Investi-
gation, Project administration, Resources, Supervision, Val-
idation, Validation of analysis, Writing-review & editing.
Yaqi Duan: Conceptualization, Formal analysis, Investiga-
tion, Methodology, Software, Validation, Writing - original
draft, Writing - review & editing. Yu-Hui Wen: Writing-
review & editing. Zihui Du: Conceptualization, Investiga-
tion, Validation. Hongmin Cai: Writing-review & editing.
Yong-Jin Liu: Funding acquisition, Writing-review & edit-
ing. ∗ Corresponding author. † Equal first authorship.

References
[Alexa et al., 2003] Marc Alexa, Johannes Behr, Daniel

Cohen-Or, Shachar Fleishman, David Levin, and Clau-
dio T. Silva. Computing and rendering point set surfaces.
IEEE Transactions on visualization and computer graph-
ics, 9(1):3–15, 2003.

[Behrmann et al., 2019] Jens Behrmann, Will Grathwohl,
Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacob-
sen. Invertible residual networks. In International Confer-
ence on Machine Learning, pages 573–582. PMLR, 2019.

[Butt, 1998] Butt. Optimum design of chamfer distance
transforms. IEEE Transactions on Image Processing,
7(10):1477–1484, 1998.

[Chen et al., 2018] Ricky TQ Chen, Yulia Rubanova, Jesse
Bettencourt, and David K Duvenaud. Neural ordinary dif-
ferential equations. Advances in neural information pro-
cessing systems, 31, 2018.

[Chen et al., 2019] Tian Qi Chen, Jens Behrmann, David
Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for
invertible generative modeling. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 9913–9923, 2019.

[Dinh et al., 2014] Laurent Dinh, David Krueger, and
Yoshua Bengio. Nice: Non-linear independent compo-
nents estimation. arXiv preprint arXiv:1410.8516, 2014.

[Dinh et al., 2016] Laurent Dinh, Jascha Sohl-Dickstein, and
Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

[Fan et al., 2017] Haoqiang Fan, Hao Su, and Leonidas J
Guibas. A point set generation network for 3d object re-
construction from a single image. In Proceedings of the

IEEE conference on computer vision and pattern recogni-
tion, pages 605–613, 2017.

[Geiger et al., 2013] Andreas Geiger, Philip Lenz, Christoph
Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Re-
search, 32(11):1231–1237, 2013.

[Hu et al., 2020] Qingyong Hu, Bo Yang, Linhai Xie, Ste-
fano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and
Andrew Markham. Randla-net: Efficient semantic seg-
mentation of large-scale point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 11108–11117, 2020.

[Huang et al., 2009] Hui Huang, Dan Li, Hao Zhang, Uri
Ascher, and Daniel Cohen-Or. Consolidation of unorga-
nized point clouds for surface reconstruction. ACM trans-
actions on graphics (TOG), 28(5):1–7, 2009.

[Huang et al., 2013] Hui Huang, Shihao Wu, Minglun Gong,
Daniel Cohen-Or, Uri Ascher, and Hao Zhang. Edge-
aware point set resampling. ACM transactions on graphics
(TOG), 32(1):1–12, 2013.

[Huttenlocher, 1993] Huttenlocher. Comparing images us-
ing the hausdorff distance. IEEE Transactions on pattern
analysis and machine intelligence, 15(9):850–863, 1993.

[Jacobsen et al., 2018] Jörn-Henrik Jacobsen, Arnold
Smeulders, and Edouard Oyallon. i-revnet: Deep in-
vertible networks. arXiv preprint arXiv:1802.07088,
2018.

[Kingma and Dhariwal, 2018] Durk P Kingma and Prafulla
Dhariwal. Glow: Generative flow with invertible 1x1 con-
volutions. Advances in neural information processing sys-
tems, 31, 2018.

[Klokov et al., 2020] Roman Klokov, Edmond Boyer, and
Jakob Verbeek. Discrete point flow networks for efficient
point cloud generation. In European Conference on Com-
puter Vision. Springer, 2020.

[Li et al., 2018] Yangyan Li, Rui Bu, Mingchao Sun, Wei
Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convo-
lution on x-transformed points. Advances in neural infor-
mation processing systems, 31:820–830, 2018.

[Li et al., 2019] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel
Cohen-Or, and Pheng-Ann Heng. Pu-gan: a point cloud
upsampling adversarial network. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 7203–7212, 2019.

[Li et al., 2021] Ruihui Li, Xianzhi Li, Pheng-Ann Heng,
and Chi-Wing Fu. Point cloud upsampling via disentan-
gled refinement. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
344–353, 2021.

[Lipman et al., 2007] Yaron Lipman, Daniel Cohen-Or,
David Levin, and Hillel Tal-Ezer. Parameterization-free
projection for geometry reconstruction. ACM Transactions
on Graphics (TOG), 26(3):22–es, 2007.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1274

[Liu et al., 2019a] Yongcheng Liu, Bin Fan, Gaofeng Meng,
Jiwen Lu, Shiming Xiang, and Chunhong Pan. Dense-
point: Learning densely contextual representation for ef-
ficient point cloud processing. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 5239–5248, 2019.

[Liu et al., 2019b] Yongcheng Liu, Bin Fan, Shiming Xiang,
and Chunhong Pan. Relation-shape convolutional neural
network for point cloud analysis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8895–8904, 2019.

[Long et al., 2022] Chen Long, WenXiao Zhang, Ruihui Li,
Hao Wang, Zhen Dong, and Bisheng Yang. Pc2-pu: Patch
correlation and point correlation for effective point cloud
upsampling. In Proceedings of the 30th ACM International
Conference on Multimedia, pages 2191–2201, 2022.

[Mao et al., 2022] Aihua Mao, Zihui Du, Junhui Hou, Yaqi
Duan, Yong-jin Liu, and Ying He. Pu-flow: a point
cloud upsampling network with normalizing flows. IEEE
Transactions on Visualization and Computer Graphics,
DOI:10.1109/TVCG.2022.3196334, 2022.

[Miyato et al., 2018] Takeru Miyato, Toshiki Kataoka,
Masanori Koyama, and Yuichi Yoshida. Spectral normal-
ization for generative adversarial networks. arXiv preprint
arXiv:1802.05957, 2018.

[Peng et al., 2021] Songyou Peng, Chiyu ”Max” Jiang, Yiyi
Liao, Michael Niemeyer, Marc Pollefeys, and Andreas
Geiger. Shape as points: A differentiable poisson solver.
CoRR, abs/2106.03452, 2021.

[Qi et al., 2017a] Charles R Qi, Hao Su, Kaichun Mo, and
Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 652–660, 2017.

[Qi et al., 2017b] Charles Ruizhongtai Qi, Li Yi, Hao Su,
and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. Advances in
neural information processing systems, 30, 2017.

[Qian et al., 2020] Yue Qian, Junhui Hou, Sam Kwong, and
Ying He. Pugeo-net: A geometry-centric network for 3d
point cloud upsampling. In European Conference on Com-
puter Vision, pages 752–769. Springer, 2020.

[Qian et al., 2021a] Guocheng Qian, Abdulellah Abual-
shour, Guohao Li, Ali Thabet, and Bernard Ghanem. Pu-
gcn: Point cloud upsampling using graph convolutional
networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11683–
11692, 2021.

[Qian et al., 2021b] Yue Qian, Junhui Hou, Sam Kwong, and
Ying He. Deep magnification-flexible upsampling over 3d
point clouds. IEEE Trans. Image Process., 30:8354–8367,
2021.

[Sketchfab, 2011] Inc. Sketchfab. Sketchfab - the best 3d
viewer on the web. https://sketchfab.com/, 2011. Ac-
cessed: 2021-11-25.

[Thomas et al., 2019] Hugues Thomas, Charles R Qi, Jean-
Emmanuel Deschaud, Beatriz Marcotegui, François
Goulette, and Leonidas J Guibas. Kpconv: Flexible and
deformable convolution for point clouds. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 6411–6420, 2019.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems,
30, 2017.

[Wang et al., 2019] Yue Wang, Yongbin Sun, Ziwei Liu,
Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds.
Acm Transactions On Graphics (tog), 38(5):1–12, 2019.

[Wu et al., 2015] Shihao Wu, Hui Huang, Minglun Gong,
Matthias Zwicker, and Daniel Cohen-Or. Deep points
consolidation. ACM Transactions on Graphics (ToG),
34(6):1–13, 2015.

[Wu et al., 2019] Wenxuan Wu, Zhongang Qi, and Li Fuxin.
Pointconv: Deep convolutional networks on 3d point
clouds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9621–
9630, 2019.

[Yang et al., 2019] Guandao Yang, Xun Huang, Zekun Hao,
Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
Pointflow: 3d point cloud generation with continuous nor-
malizing flows. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 4541–4550,
2019.

[Yifan et al., 2019] Wang Yifan, Shihao Wu, Hui Huang,
Daniel Cohen-Or, and Olga Sorkine-Hornung. Patch-
based progressive 3d point set upsampling. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 5958–5967, 2019.

[Yu et al., 2018] Lequan Yu, Xianzhi Li, Chi-Wing Fu,
Daniel Cohen-Or, and Pheng-Ann Heng. Pu-net: Point
cloud upsampling network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2790–2799, 2018.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1275

https://sketchfab.com/

	Introduction
	Related Works
	Method
	Invertible Residual Neural Network
	Conditional Injector
	Point Feature Extractor
	Point Feature Fusion

	Point Interpolator
	Loss Function

	Experiments
	Comparisons with SOTA Methods
	Ablation Study
	Lightweight Network Design

	Conclusions
	Implementation Details
	More Experiment Results

