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Abstract
Generative Adversarial networks (GANs) have demonstrated
their powerful capability of synthesizing high-resolution im-
ages, and great efforts have been made to interpret the seman-
tics in the latent spaces of GANs. However, existing works
still have the following limitations: (1) the majority of works
rely on either pretrained attribute predictors or large-scale la-
beled datasets, which are difficult to collect in most cases,
and (2) some other methods are only suitable for restricted
cases, such as focusing on interpretation of human facial
images using prior facial semantics. In this paper, we pro-
pose a GAN-based method called FEditNet, aiming to dis-
cover latent semantics using very few labeled data without
any pretrained predictors or prior knowledge. Specifically, we
reuse the knowledge from the pretrained GANs, and by do-
ing so, avoid overfitting during the few-shot training of FEd-
itNet. Moreover, our layer-wise objectives which take content
consistency into account also ensure the disentanglement be-
tween attributes. Qualitative and quantitative results demon-
strate that our method outperforms the state-of-the-art meth-
ods on various datasets including CelebA, FFHQ and LSUN.

Introduction
Based on a min-max game between a generator and
a discriminator, Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014) learn a nonlinear
mapping from a random distribution to the domain of real
data, which have exhibited high fidelity in synthesizing
high-resolution images (Karras, Laine, and Aila 2019;
Karras et al. 2020; Brock, Donahue, and Simonyan 2019).

Despite great success in achieving amazing quality of syn-
thesized images, it remains unclear how GANs construct se-
mantics in the latent space during training. To address this
issue, some recent works have made efforts to interpret the
meaningful semantic and disentanglement properties in the
latent spaces of GANs (Shen et al. 2020; Shen and Zhou
2021; Plumerault, Borgne, and Hudelot 2020). One repre-
sentative strategy to analyze the semantics is to add a learned
direction on the latent code (Radford, Metz, and Chintala
2016). This strategy makes use of geometrical properties of
hyperplanes in latent spaces, which opens the door to ex-
ploring interpretable latent spaces.
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With this strategy, two types of methods have been devel-
oped to interpret latent spaces of GANs: unsupervised and
supervised. To formulate the latent semantics, a representa-
tive unsupervised way is to use principal component analy-
sis (PCA) (Shen and Zhou 2021; Härkönen et al. 2020; Zhu
et al. 2022). These methods apply PCA on either the model
parameters or feature maps. Then by choosing the eigenvec-
tors associated with the largest few eigenvalues, the achieved
directions have the most significant effects on the synthe-
sized images and semantics. However, they cannot precisely
edit the user-desired attributes. As a comparison, the direc-
tions found by supervised methods usually have better con-
trollability and disentanglement property. The cost paid for
this advantage is that most supervised methods use either
a pretrained attribute assessor (Goetschalckx et al. 2019;
Zhuang, Koyejo, and Schwing 2021) or a large amount of
data containing the target attributes to learn the semantics
in the latent space (Yang, Shen, and Zhou 2021; Yang et al.
2021b; Shen et al. 2020), which restricts applications of su-
pervised methods, such as the scenarios where labeling a lot
of data is infeasible and unlabeled datasets have to be used.

In this paper, we aim to explore interpretable semantics
using limited labeled data. To achieve this goal, we pro-
pose a GAN-based method called FEditNet (Few-shot At-
tribute Editing Network), which can perform efficient at-
tribute editing and latent space disentanglement by train-
ing with very few data samples. Unlike previous supervised
methods which use a pretrained assessor or train attribute
assessor from scratch with extra efforts, our method reuse
the knowledge from the discriminator (which is pretrained to
compete with the given generator) to train the assessor (Yang
et al. 2021a). To further ensure the disentanglement from un-
desired attributes, we introduce a feature contrastive loss as
the regularizer to fix the attributes that users do not want
to edit. Therefore, our FEditNet is able to achieve high at-
tribute disentanglement and state-of-the-art editing quality
with few-shot data, avoiding the vulnerablity and overfitting
in few-shot learning. Some results are shown in Fig. 1.

In this paper, we make three contributions:
• We propose a learning method with limited training data,

to explore interpretable latent spaces of a pretrained
GAN and the editing direction of desired attributes.

• We introduce a feature contrastive loss as a regularizer in
training to facilitate disentanglement in latent semantics,
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Figure 1: Interpretable latent semantics of latent spaces in StyleGAN2 (Karras et al. 2020) discovered from very few data
samples by our proposed FEditNet. In images (a), (b), (d) and (e), the middle one is the original synthesis while the left and
right ones are images from latent codes moving in the forward and backward directions respectively. In each of images (c), (f)
and (g), the left one is the original image while the right is the editing result along the direction. The subfigure captions present
the intended attributes for manipulation.

which helps to learn the internal structure of latent space.
• We study the layer-wise effects of GANs using the fea-

ture contrastive loss, and achieve further performance
improvement. We also propose to apply the Bayesian op-
timization for adaptive loss weights in feature contrastive
loss, which can achieve good performance while main-
taining time efficiency.

Related Work
Generative Adversarial Networks
GAN (Goodfellow et al. 2014) has played a significant role
in promoting the development of image synthesis (Brock,
Donahue, and Simonyan 2019; Karras, Laine, and Aila
2019; Arjovsky, Chintala, and Bottou 2017; Karras et al.
2018). A typical GAN consists of two parts: a generator and
a discriminator. The generator maps a randomly sampled la-
tent code to a high-fidelity image while the discriminator
tries to distinguish the real distribution from the fake/gen-
erated data. Conventionally, GANs are based on deep neu-
ral networks where the latent code is fed into the convolu-
tional layers after an affine transformation (Arjovsky, Chin-
tala, and Bottou 2017; Radford, Metz, and Chintala 2016).
Style-based GANs like StyleGAN (Karras, Laine, and Aila
2019) and StyleGAN2 (Karras et al. 2020) transform the la-
tent codes to layer-wise style codes and feed them to each
convolutional layer using Adaptive Instance Normalization
(AdaIN) (Huang and Belongie 2017). This operation ensures
that each convolutional layer receives sufficient information
of the latent code, and thus helps GAN to generate high-
quality images.

Semantic Editing on GANs
Early GANs generate images from random latent codes,
whose attributes cannot be directly edited. Recently, much
effort has been made on learning semantics in the latent
space of a fixed GAN model, which do not need to retrain
the model for attribute editing. In this direction, unsuper-
vised methods do not need labeled data and can achieve
high-quality editing results, but it is difficult to choose the

specified semantics (Shen and Zhou 2021; Härkönen et al.
2020; Wu, Lischinski, and Shechtman 2021; Zhu et al. 2022;
Voynov and Babenko 2020). As a comparison, supervised
methods are more accurate in decoupling and characterizing
attributes desired by users; however, they usually need pre-
trained attribute assessors or large amount of labeled data,
which restricts their applications (Goetschalckx et al. 2019;
Shen et al. 2020; Yang et al. 2021b; Zhuang, Koyejo, and
Schwing 2021; Jiang et al. 2021).

Contrastive Representation Learning
Contrastive representation learning (CRL) is a state-of-the-
art unsupervised leaning technique, which aims to maximize
the mutual information and has shown its capability to out-
perform data-compression methods (Hinton and Salakhutdi-
nov 2006). Representative CRL methods can introduce mu-
tual information of representations between an image and it-
self (He et al. 2020; Wu et al. 2018; Shrivastava et al. 2011)
or between an image and its transformed version (Chen et al.
2020; Misra and van der Maaten 2020; Park et al. 2020). A
typical work is CUT (Park et al. 2020), which introduced the
InfoNCE (Van den Oord, Li, and Vinyals 2018) to the image
translation task and achieved high-quality translation.

Method
We first present our view on the role of large-scale data la-
beled with target attributes that are required in supervised
methods. Based on this view, we present our solution to use
limited labeled data in our FEditNet.

Role of Large-Scale Data in Supervised Methods
For those supervised methods relying on training an attribute
assessor (Yang et al. 2021b; Yang, Shen, and Zhou 2021), if
only a few data are used, the assessor trained from scratch
will rapidly memorize the data rather than recognizing the
target attribute. For example, if we want to train an asses-
sor which can distinguish a target attribute with one single
sample of data, then the trained assessor may output a True
prediction only if the test image looks similar to the training
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Figure 2: The overview of our FEditNet pipeline. Given a pretrained and fixed StyleGAN model, we aim to discover the latent
semantic and the editing direction θ in the latent space, which manipulates the target attribute from xori to xedited while keeping
other attributes fixed. To this end, we fix the backbone of the pretrained discriminator and equip it with a light linear classifier
as Dattr(·). The novel feature contrastive loss Lfc is also introduced for training.

data sample due to overfitting. As a result, the learning of
latent semantics lacks correct supervision. This overfitting
problem directly leads to poor diversity of image editing, in
which all edited images have high similarity to the few train-
ing data.

In addition to the difficulty of learning the target attribute,
attribute disentanglement is another challenge in the setting
of only a few available training data. We note that the at-
tribute assessor is essentially a classifier, which does not pro-
vide supervision on the attributes that need to be fixed during
the editing process. In other words, regardless of whether the
non-target attributes change or not, the attribute assessor will
output a True prediction as long as the input image contains
the target attribute. Therefore, traditional supervised meth-
ods need a large set of diverse data to achieve attribute disen-
tanglement and to ensure the attributes other than the target
one are fixed during image editing.

Few-shot Semantic Exploration in GANs
Given a pretrained and fixed generator, one representative
way to explore latent semantics is to learn an editing direc-
tion v by the GAN framework on a labeled dataset together
with an attribute assessor (Yang et al. 2021b; Yang, Shen,
and Zhou 2021). As discussed above, training an assessor
from scratch is vulnerable when using a few training data.
To mitigate model overfitting, some works on GAN trans-
fer have been proposed to reduce trainable parameters (Mo,
Cho, and Shin 2020; Robb et al. 2020). We observe that dur-
ing the training of GANs, the discriminator is trained using
thousands of images and thus its backbone has a strong capa-
bility of extracting good image features. We follow the idea
in (Yang et al. 2021a) to adequately reuse the knowledge of
the pretrained discriminator together with the given genera-

tor, which can provide sufficient supervision and prevent the
model from overfitting in our few-shot settings.

Note that the attribute assessor does not provide supervi-
sion for attribute disentanglement. Even with a well-trained
attribute assessor, we cannot guarantee a good semantic dis-
entanglement in the latent space. Such entanglement in la-
tent spaces is unacceptable in the application of local image
editing. To address this issue, we improve the patch-wise
contrastive loss in (Park et al. 2020) and propose our spe-
cially designed feature contrastive.

Architecture of FEditNet
Based on the investigation in previous sections, here we pro-
pose to explore the latent semantics of pretrained style-based
GANs (Karras, Laine, and Aila 2019; Karras et al. 2020)
using a few labeled data. The generator of these pretrained
GANs is composed of a mapping network Gmap(·) and a
synthesis network Gsyn(·). Gmap(·) constructs a function
mapping the latent code z ∈ Z sampled from Gaussian dis-
tribution to the intermediate latent code w ∈ W , which is
also called style code. Gsyn(·) maps the style code w to the
high-resolution synthesized image x, i.e.,

w = Gmap(z), (1)
x = Gsyn(w). (2)

Direction Generator. Our editing direction generator
Gedit(·) focuses on learning an attribute-corresponding di-
rection v for all style codes w, and the manipulated image
can be represented as:

Gedit(w) = w + l · v, (3)
xedited = Gsyn(Gedit(w)), (4)



where l is a fixed length for manipulation. Here we use a
fixed length during the training to ensure that our generator
has a significant and consistent effect on image editing.

Attribute assessor. As aforementioned, training an at-
tribute assessor from scratch using a few data is vulnerable.
Given that we fix the pretrained StyleGAN generator and
only apply a linear translation to the style space, the gener-
ated images before and after editing are in the same domain
of the given generator, where the discriminator still works
for feature extraction and classification. Therefore, we reuse
the pretrained discriminator together with the given genera-
tor (Yang et al. 2021a). In detail, we use the backbone d(·)
of the discriminator and freeze its parameters as a feature
extractor. Then we equip d(·) with a light linear classifier
φ(·) as our attribute assessor Dattr(·). The assessor outputs
the probability p for the given image x, which measures how
likely it contains the target attribute, i.e.,

p = Dattr(x) = φ ◦ d(x). (5)

Objectives for Learning Directions
The loss function L(Gedit, Dattr) consists of two parts: (1)
the adversarial loss Ladv which pushes the direction genera-
tor Gedit to compete against the attribute assessor Dattr(·),
and (2) our specially-designed feature contrastive loss Lfc
which acts as a regularizer to force the other attributes to be
unchanged. We use a global loss weight on Lfc to adjust the
strength of the regularizer, i.e.,

L(Gedit, Dattr) = Ladv + λfcLfc, (6)

where λfc is the global loss weight. We also intro-
duce a layer-wise loss weight adjustment and Bayesian-
optimization-based adaptive loss weights, whose details are
presented in the experiment section and

Adversarial Loss. We apply the adversarial loss to both
direction generator Gedit(·) and the attribute assessor
Dattr(·), which promotes the min-max competition. This
drives Dattr(·) to make correct prediction and Gedit(·) to
learn the latent semantics of the target attribute. The adver-
sarial loss is defined as:

LD = −Ex∈X [log (Dattr(x))]

− Ez∈Z [log (1−Dattr (xedited)))], (7)
LG = −Ez∈Z [log (Dattr (xedited)))], (8)
Ladv = LD + LG, (9)

where xedited is the image editing result from z by the pre-
trained generator and Gedit(·), i.e., using Eqs. (1) and (3).

Feature Contrastive Loss. Recall that exploring latent se-
mantics only with a few data cannot provide sufficient super-
vision to train a direction generator that can fix the attributes
other than the target attribute. To address this issue, we intro-
duce the feature contrastive loss as a regularizer to help with
attribute disentanglement and to freeze the other attributes.

Following the setting of CUT (Park et al. 2020), we maxi-
mize the mutual information between images before and af-
ter image editing. The idea of contrastive learning is to cor-
relate two signals, i.e., a query and its positive example, in

contrast to other negative examples. The query, its positive
example and N negative examples are mapped to K dimen-
sional vectors u, u+ ∈ RK , u− ∈ RN×K respectively. We
can mathematically represent the probability of the positive
example being selected over the negative examples as:

l(u, u+, u−) = − log
exp u·u+

τ

exp u·u+

τ +
∑N
n=1 exp

u·u−
n

τ

(10)

Notice that style-based generators feed the style code to
all convolutional layers which are organized in a hierarchi-
cal structure (Karras, Laine, and Aila 2019; Karras et al.
2020), we make use of the layer-wise feature stacks to de-
sign the contrastive loss as follows. We select L layers and
pass the feature maps through a small MLP Hl as used in
SimCLR (Chen et al. 2020), producing a stack of features
{rl}L = {Hl(fl(xori))}L, where fl represents the feature
map of the l-th convolutional layer. We index these layers
as l ∈ {1, 2, · · · , L} and s ∈ {1, 2, · · · , Sl}, where Sl is
the number of spatial locations in each layer. We refer to
the corresponding feature as rsl ∈ RCl and other features as
r
S\s
l ∈ R(Sl−1)×Cl , where Cl is the number of channels of

each layer. Similarly, we encode the edited image xedited as
{r̂l}L = {Hl(fl(xedited))}L. Then the feature contrastive
loss can be formulated as:

Lfc =
1

L

L∑
l=1

Sl∑
s=1

l(r̂sl , r
s
l , r

S\s
l ). (11)

In other words, we refer to the patches at the same location
as the positive one, while negative patches are all patches at
different locations.

Given that (1) different layers in style-based generators
correspond to different attributes and (2) the patch-wise con-
trastive loss promotes content consistency of the input rep-
resentations, the feature contrastive loss is able to help fix
the attributes other than the target attribute.

Experiments
We summarize datasets, implementation details, baselines,
evaluation metrics, qualitative and quantitative experimental
results in this section.

Datasets. We evaluated FEditNet on:

• facial datasets - CelebA dataset (Liu et al. 2015),
FFHQ dataset (Karras, Laine, and Aila 2019) and Dan-
booru2018 dataset (Anonymous, community, and Bran-
wen 2021),

• animal dataset - AFHQ dataset (Choi et al. 2020),
• scene datasets - LSUN dataset (Yu et al. 2015) including

church, tower and car.

In each dataset, we manually select 30 synthesized images
containing the target attribute as our training dataset.

Implementation details. We trained FEditNet on the
platform of PyTorch (Paszke et al. 2019), in a Linux envi-
ronment with an Nvidia A100 PCIe GPU. The whole 30,000
training steps were completed in 6 hours to obtain editing
directions of the best quality. We apply FEditNet to style-
based GANs (Karras, Laine, and Aila 2019; Karras et al.



(a) Bangs (b) Male

(d) Green Hair

(c) Smile
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Figure 3: Image editing on binary attributes with Style-
GAN2 (Karras et al. 2020). (a)-(c) are trained on CelebA
dataset, and (d)-(f) are trained on Danbooru2018 dataset.

(a) Smile + Gender

Figure 4: Image editing on multiple attributes with Style-
GAN2 (Karras et al. 2020) trained on FFHQ dataset.

2020), then use the Adam (Nothaft et al. 2015) optimizer to
simutaneously optimize the direction generator Gedit(·) and
attribute assessor Dattr(·). The learning rate of Gedit(·) is
set to 2 · 10−3 while that of Dattr(·) is set to 2 · 10−4. We
use a fixed length of l = 5 in Eq. (3).

Baselines. As we are not aware of few-shot methods for
GAN-based attribute editing, we compare FEditNet with
three state-of-the-art latent semantic discovery methods: Ad-
vStyle (Yang et al. 2021b), Latent2im (Zhuang, Koyejo, and
Schwing 2021) and InterFaceGAN (Shen et al. 2020). Since
AdvStyle only provided pretrained editing directions while
Latent2im and InterFaceGAN released codes, we compare
FEditNet with them in the following way. The editing di-
rections of FEditNet are trained with only 30 samples,
while the editing directions of AdvStyle are trained with the
full dataset, Latent2im pretrained an attribute classifier on
CelebA and InterFaceGAN is trained using 30 pairs of data
(including both positive and negative samples).

Evaluation metrics. To quantitatively compare the edit-
ing results, we follow (Shen et al. 2020) to apply the re-
scoring analysis on 2,000 images containing different facial
attributes. We also compare the four methods in a user study,
where users were asked to score edited results on three di-
mensions, i.e., quality (the quality of the results), adequate-
ness (the significance of the editing on the target attribute)
and consistency (whether non-target attributes are fixed).

Latent Semantics and Attributes Editing
FEditNet can provide interpretable latent semantics for the
target attribute with only a few training data, and our pro-
posed feature contrastive loss provides strong constraints
to keep other attributes fixed during image editing. Fig. 3
shows some qualitative results on editing attributes in hu-
man face and anime, demonstrating that high-quality facial
attribute manipulation can be achieved by FEditNet. Un-
like existing methods that train the attribute assessor from
scratch, FEditNet introduces the backbone d(·) of pretrained
discriminator, which can better extract features from the im-
ages and obtain the latent semantics of fine attributes such as
eyelids (see the editing results in Fig. 1e for some examples).

(c) Smile(a) Pose (b) Male

(1
)

(2
)

Figure 5: Qualitative comparison of image editing learned
by (1) our FEditNet trained with 30 samples, (2) Ad-
vStyle (Yang et al. 2021b) trained with the full dataset. The
pretrained model uses StyleGAN (Karras, Laine, and Aila
2019) trained with the FFHQ dataset.
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Male -0.11 0.41 0.29 0.01

Smile -0.02 -0.04 0.23 0.01

Pose -0.02 0.04 0.00 0.44

(a) FEditNet with 30 data
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Male 0.01 0.12 -0.07 -0.11

Smile -0.02 -0.02 0.20 0.01

Pose -0.02 0.07 -0.11 0.42

(b) AdvStyle with full dataset

Table 1: Re-scoring analysis of (a) our FEditNet, (b) Ad-
vStyle (Yang et al. 2021b) from StyleGAN (Karras, Laine,
and Aila 2019) trained on FFHQ dataset. Each row shows
how semantic score varies of images before and after edit-
ing with a target attribute direction by different predictors.

FEditNet is able to acquire latent semantics from a few
training samples, which can be easily obtained by labeling a
small amount of data from unlabeled datasets. Some results
are shown in Fig. 1. Given only 30 training samples, FEdit-
Net can effectively manipulate images using the editing di-
rection of the target attribute while fixing other attributes.

Comparisons with State of the Arts

In order to keep non-target attributes fixed, previous meth-
ods introduce an extra classifier which distinguishes image
identities before and after editing. This solution is based
on the fact that synthesized images before and after editing
share most subjective semantic knowledge (e.g., a human
face image is still a human face after manipulation). How-
ever, the image editing in these solutions may fail when two
cases occur: (1) there is a gap between the domains of syn-
thesized images before and after editing (e.g., editing from
cat to dog), in which the identity classifier may no longer
work; (2) the domain of the synthesized images has either
low diversity (e.g. all tigers have a similar appearance) or
few common structural semantics (e.g., editing in the LSUN
church dataset). In other words, the training of the identity
classifier may fail and make the learning of latent seman-
tics incorrect. As a comparison, FEditNet does not make
use of the identity classifier. Instead, our layer-wise feature
contrastive loss provides strong supervision hierarchically
to keep the attributes other than the target attribute fixed
through the content consistency. Therefore, FEditNet can
effectively handle the above two cases. We conduct com-
prehensive experiments to show the proposed FEditNet sur-
passes the state-of-the-art methods on editing quality, espe-
cially the capability of preserving non-target attributes.
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(a) Bangs (b) Male (c) Smile (d) Young

Figure 6: Qualitative comparison of latent semantics learned by (1) our FEditNet trained with 30 data samples, (2) La-
tent2im (Zhuang, Koyejo, and Schwing 2021) trained with pretrained attribute assessor and (3) InterFaceGAN (Shen et al.
2020) trained with 30 pairs of data samples. All the models use StyleGAN2 (Karras et al. 2020) trained on FFHQ dataset.
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Bangs 0.38 -0.09 0.01 -0.01 -0.05

Male -0.03 0.33 -0.05 0.06 -0.13

Smile -0.04 0.00 0.30 0.02 0.00

Young 0.04 -0.09 -0.08 -0.03 0.11

(a) FEditNet with 30 data
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Bangs 0.23 -0.10 0.20 0.03 -0.04

Male -0.04 0.08 0.16 0.01 0.03

Smile -0.05 -0.04 0.27 0.03 0.08

Young -0.05 -0.07 0.14 0.01 0.15

(b) Latent2im with pretrained classifier
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Bangs 0.32 -0.13 -0.29 -0.07 0.14

Male -0.04 0.17 0.17 0.03 -0.19

Smile -0.03 0.09 0.28 0.08 0.02

Young 0.00 -0.16 -0.51 -0.07 0.17

(c) InterFaceGAN with 30 pairs of data

Table 2: Re-scoring analysis of (a) our FEditNet, (b) Latent2im (Zhuang, Koyejo, and Schwing 2021) and (c) InterFace-
GAN (Shen et al. 2020) from StyleGAN2 (Karras et al. 2020) trained on FFHQ dataset. Each row shows how semantic score
of images varies before and after editing with a target attribute direction by different predictors.

（
1）

（
2） (a) Open Mouth (b) Male

(a) Single Eyelid (b) White Dog (c) Short Church

Figure 7: Qualitative comparison of editing latent seman-
tics learned by (1) FEditNet, (2) InterFaceGAN (Shen et al.
2020). The three columns are trained on FFHQ dataset,
AFHQ dataset, church from LSUN dataset respectively.

Comparison with AdvStyle Since (1) AdvStyle is based
on StyleGAN while Latent2im and InterFaceGAN are based
on StyleGAN2, and (2) AdvStyle only provides pre-selected
latent semantics, we compare them separately. First we com-
pare FEditNet with AdvStyle using four editing tasks and
some qualitative results are shown in Fig. 5. We observe that
AdvStyle fails to fix some attributes other than the target at-
tribute and cannot achieve significant editing effects as FEd-
itNet does. The quantitative results on re-scoring analysis
summerized in Table 1 and user study in Table S2 (supple-
mentary material) also deomonstrate this observation.

Comparison with InterFaceGAN and Latent2im Sec-
ond, we compare FEditNet with InterFaceGAN and La-
tent2im, and qualitative results are illustrated in Fig. 6. We
observe that (1) even with little training data, reusing the
pretrained discriminator makes FEditNet work well on edit-

ing the target attribute, and our feature contrastive loss en-
sures other attributes to be fixed after editing, (2) although
Latent2im makes use of an attribute assessor to explore the
latent semantics, it is difficult to edit some subtle attributes
such as smile and bangs, and (3) InterFaceGAN suffers
severely from the attribute entanglement. We can also con-
clude from Table 2 and the user study in Table S2 (supple-
mentary material) that the manipulation quality of our FEd-
itNet surpasses the SOTA methods.

Extra Comparison We further compare editing quality of
FEditNet and InterFaceGAN on non-labeled or non-facial
datasets (note that neither AdvStyle nor Latent2im can edit
images by training on these datasets). Some qualitative re-
sults are shown in Fig. 7. We observe that (1) FEditNet has
a stronger attribute disentanglement capability, i.e., FEdit-
Net successfully edit the target attribute of single eyelid and
simultaneously keep other attributes fixed, while InterFace-
GAN fails to fix non-target attributes, (2) InterFaceGAN is
highly likely to fail on the editing tasks between domains
with gaps such as converting lions into white dogs in Fig. 7b;
as a comparison, FEditNet can easily handle domain gaps
and even edit subtle spatial attributes such as shortening the
height of a church in Fig. 7c.

Ablation Studies
In our proposed method, we introduce the reuse of the pre-
trained discriminator and a novel feature contrastive loss.
Fig. 8 and Table S3 (supplementary material) show that the



Layer 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Bangs 1.00 1.07 1.04 1.26 1.18 1.00 0.99 1.05 1.15 1.13 1.12 1.09 1.10 1.05 1.00 1.01
Smile 1.00 1.02 1.04 1.32 1.32 1.14 1.12 1.12 1.17 1.14 1.19 1.20 1.14 1.17 1.12 1.02
Male 1.00 1.12 1.27 1.45 1.49 1.30 1.35 1.38 1.92 1.73 1.97 1.88 2.14 1.59 1.45 1.07

Table 3: For each layer and attribute, we show the ratio rfc between the feature contrastive loss of latent codes near separation
boundary and far away from the boundary along the forward direction of the attribute.

(1) (2)

Figure 8: Ablation study of the reuse of the pretrained dis-
criminator on the CelebA dataset of (1) the baseline of FEd-
itNet, (2) without the reuse of the pretrained discriminator.

(a) (b) 

(d) (c) 

Figure 9: Ablation study of the loss weight λfc on the
CelebA dataset.

reuse of the discriminator helps FEditNet capture the target
attribute “Male”, so that the editing results are more signif-
icant. We also conclude from Fig. 9 and Table S4 (Supple-
mentary material) that (1) larger λfc better emphasizes the
attribute consistency while smaller λfc promotes more sig-
nificant editing effects, hence it is expected to set a smaller
λfc for the editing tasks between domains with big gaps, (2)
smaller λfc relaxes the constraints responsible for freezing
the non-target attributes, especially the earring part during
the manipulation on “Smile” attribute.

Layer-wise Analysis of Representations in GANs
Inspired by the works (Karras, Laine, and Aila 2019; Yang,
Shen, and Zhou 2021), we analyze each convolutional layer
using the feature contrastive loss. Noting that the feature
contrastive loss builds strong constraints on content consis-
tency of layer-wise feature map in the generator, it naturally
reflects the response of each convolutional layer to the target
attribute during editing.

It is widely recognized that editing is more conspicuous
near the separation boundary than far from the boundary
along the editing direction (Shen et al. 2020). Hence, the
image content is more difficult to preserve near the sepa-
ration boundary. For the feature map of each convolutional
layer, denote by rfc the ratio between the feature contrastive
loss near the boundary and that far away from the boundary
along the editing direction. The larger the rfc is, the more

(a) Baseline of FEditNet (b) Layer-wise loss weight adjustment

Figure 10: Qualitative comparison of FEditNet baseline
and with layer-wise loss weight adjustment from Style-
GAN2 (Karras et al. 2020) and CelebA dataset. We better
disentangle “Age” and “Smile” attributes from the target one
with this adjustment technique.

responsive this layer is to the target attribute and vice versa.
To sample latent codes near or far from the separation

boundary, we use the pretrained StyleGAN2 on the CelebA
dataset. First, we synthesize 400K images randomly. Then
we assign scores using pretrained attribute predictors for all
images, and choose 10K samples with the highest scores as
the latent codes far from the separation boundary. Since we
cannot locate the exact boundary, for the latent codes near
the boundary, we randomly sample 10K samples from all
images, aiming to reduce the influence of the latent codes far
away from the boundary in the backward editing direction.
The results are summarized in Table 3. Given that the ratio
rfc reflects the response of one layer to the target attribute,
one can add additional constraint (or relax constraints) for
those layers with small (or large) rfc respectively.

To validate our analysis, we train latent semantics after
adjusting the layer-wise loss weights and then compare with
the baseline of FEditNet through attribute manipulation and
re-scoring analysis. From Fig. 10 and Table S5 (supplemen-
tary material), we observe that the adjustment promotes the
disentanglement between attributes and helps explore accu-
rate latent semantics. Furthermore, we introduce an adaptive
loss weight through Bayesian optimization (Mockus 2012)
for fast adjusting loss weights and improving the perfor-
mance, which are detailed in the supplementary material.

Conclusions
In this paper, we propose a GAN-based approach, called
FEditNet, to explore latent semantics for attribute editing.
We address the limitations of large-scale labeled dataset or
pretrained attribute predictors by only using a few training
data to achieve attribute disentanglement. Our method does
not need to use prior knowledge of semantics which is com-
monly used in facial manipulation task; instead, we reuse the
knowledge of the given pretrained GANs, which also helps
understand the training process of GANs. Our specially-
designed feature contrastive loss also provides a novel way
to interpret the hierarchical structure in style-based models.
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and Garnett, R., eds., Advances in Neural Information Pro-
cessing Systems, volume 32, 8024–8035. Curran Associates,
Inc.
Plumerault, A.; Borgne, H. L.; and Hudelot, C. 2020. Con-
trolling generative models with continuous factors of varia-
tions. In International Conference on Learning Representa-
tions.
Radford, A.; Metz, L.; and Chintala, S. 2016. Unsupervised
Representation Learning with Deep Convolutional Genera-
tive Adversarial Networks. In Bengio, Y.; and LeCun, Y.,



eds., 4th International Conference on Learning Representa-
tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.
Robb, E.; Chu, W.-S.; Kumar, A.; and Huang, J.-B. 2020.
Few-shot adaptation of generative adversarial networks.
arXiv preprint arXiv:2010.11943.
Shen, Y.; Gu, J.; Tang, X.; and Zhou, B. 2020. Interpret-
ing the Latent Space of GANs for Semantic Face Editing.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 9240–9249.
Shen, Y.; and Zhou, B. 2021. Closed-Form Factorization of
Latent Semantics in GANs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 1532–1540.
Shrivastava, A.; Malisiewicz, T.; Gupta, A.; and Efros, A. A.
2011. Data-driven visual similarity for cross-domain image
matching. In Proceedings of the 2011 SIGGRAPH Asia Con-
ference, 1–10.
Van den Oord, A.; Li, Y.; and Vinyals, O. 2018. Represen-
tation learning with contrastive predictive coding. arXiv e-
prints, arXiv–1807.
Voynov, A.; and Babenko, A. 2020. Unsupervised discov-
ery of interpretable directions in the gan latent space. In
International conference on machine learning, 9786–9796.
PMLR.
Wu, Z.; Lischinski, D.; and Shechtman, E. 2021. StyleSpace
Analysis: Disentangled Controls for StyleGAN Image Gen-
eration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 12863–
12872.
Wu, Z.; Xiong, Y.; Yu, S. X.; and Lin, D. 2018. Unsuper-
vised Feature Learning via Non-Parametric Instance Dis-
crimination. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 3733–
3742.
Yang, C.; Shen, Y.; Zhang, Z.; Xu, Y.; Zhu, J.; Wu, Z.; and
Zhou, B. 2021a. One-Shot Generative Domain Adaptation.
arXiv preprint arXiv:2111.09876.
Yang, C.; Shen, Y.; and Zhou, B. 2021. Semantic hierarchy
emerges in deep generative representations for scene syn-
thesis. International Journal of Computer Vision, 129(5):
1451–1466.
Yang, H.; Chai, L.; Wen, Q.; Zhao, S.; Sun, Z.; and He,
S. 2021b. Discovering Interpretable Latent Space Direc-
tions of GANs Beyond Binary Attributes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 12177–12185.
Yu, F.; Seff, A.; Zhang, Y.; Song, S.; Funkhouser, T.; and
Xiao, J. 2015. Lsun: Construction of a large-scale image
dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365.
Zhu, J.; Shen, Y.; Xu, Y.; Zhao, D.; and Chen, Q. 2022.
Region-Based Semantic Factorization in GANs. In Inter-
national Conference on Machine Learning (ICML), 27612–
27632.

Zhuang, P.; Koyejo, O. O.; and Schwing, A. 2021. Enjoy
Your Editing: Controllable {GAN}s for Image Editing via
Latent Space Navigation. In International Conference on
Learning Representations.


