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Abstract

Video semantic segmentation (VSS) is a computationally
expensive task due to the per-frame prediction for videos
of high frame rates. In recent work, compact models or
adaptive network strategies have been proposed for efficient
VSS. However, they did not consider a crucial factor that
affects the computational cost from the input side: the in-
put resolution. In this paper, we propose an altering res-
olution framework called AR-Seg for compressed videos to
achieve efficient VSS. AR-Seg aims to reduce the computa-
tional cost by using low resolution for non-keyframes. To
prevent the performance degradation caused by downsam-
pling, we design a Cross Resolution Feature Fusion (CR-
eFF) module, and supervise it with a novel Feature Similar-
ity Training (FST) strategy. Specifically, CReFF first makes
use of motion vectors stored in a compressed video to warp
features from high-resolution keyframes to low-resolution
non-keyframes for better spatial alignment, and then selec-
tively aggregates the warped features with local attention
mechanism. Furthermore, the proposed FST supervises the
aggregated features with high-resolution features through
an explicit similarity loss and an implicit constraint from the
shared decoding layer. Extensive experiments on CamVid
and Cityscapes show that AR-Seg achieves state-of-the-art
performance and is compatible with different segmenta-
tion backbones. On CamVid, AR-Seg saves 67% computa-
tional cost (measured in GFLOPs) with the PSPNet18 back-
bone while maintaining high segmentation accuracy. Code:
https://github.com/THU-LYJ-Lab/AR-Seg.

1. Introduction
Video semantic segmentation (VSS) aims to predict

pixel-wise semantic labels for each frame in a video se-
quence. In contrast to a single image, a video sequence
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&RPSUHVVHG��
9LGHR

�[��&RQY

(a)

&RPSUHVVHG�9LGHR
,�IUDPH 3�IUDPH������

:DUS

�[��&RQY �[��&RQY

(b)

&RPSUHVVHG�9LGHR
3�IUDPH������

6KDUHG��[��&RQYROXWLRQ

&5H))

09

(c)

Figure 1. Comparison of different VSS methods: (a) per-frame
framework, (b) Accel [19] that alters the depth of models, and
(c) our AR-Seg. AR-Seg reduces the computational cost for non-
keyframes by lowering the input resolution (depicted by narrow
blocks), which is a dimension orthogonal to the depth of networks.

is a series of consecutive image frames recorded at a cer-
tain frame rate (usually 25fps or higher). Applying image-
based segmentation methods [6, 25, 48, 52, 55] to a video
frame by frame consumes considerable computational re-
sources. To improve the efficiency of VSS, existing meth-
ods mainly focus on the design of network architectures.
A class of methods proposes compact and efficient image-
based architectures to reduce the computational overhead
per-frame [22,23,28,49,51,52,54]. Another class of meth-
ods applies a deep model to keyframes and a shallow net-
work for non-keyframes to avoid the repetitive computa-
tion [19, 24, 27, 34] for videos.

The work presented in this paper is based on an impor-
tant observation: the above existing works ignored a cru-
cial factor that affects the computational cost from the input
side: the input resolution. For image-related tasks, the in-
put resolution directly determines the amount of computa-
tion, e.g., the computational cost of 2D convolution is pro-
portional to the product of image width and height. Once we

https://github.com/THU-LYJ-Lab/AR-Seg


downsample the input frame by 0.5×0.5, the computational
overhead can be reduced by 75%. On the other hand, de-
creasing resolution often leads to worse segmentation accu-
racy due to the loss of information [43,54]. In this paper, we
propose to prevent the accuracy degradation by using tem-
poral correlation in the video. Since the contents of video
frames are temporally correlated, the local features lacking
in low-resolution (LR) frames can be inferred and enriched
by finding correspondences in sparse high-resolution (HR)
reference frames based on motion cues. In a compressed
video, the motion vectors contain such motion cues and can
be obtained along with the video frames from video decod-
ing at almost no additional cost.

Motivated by the above observation, we propose an al-
tering resolution framework for compressed videos, named
AR-Seg, to achieve efficient VSS. As shown in Figure 1(c),
AR-Seg uses an HR branch to process keyframes at high
resolution and an LR branch to process non-keyframes at
low resolution. In particular, to prevent performance drop
caused by downsampling, we insert a novel Cross Resolu-
tion Feature Fusion (CReFF) module into the LR branch
and supervise the training with a Feature Similarity Train-
ing (FST) strategy to enrich local details in the LR fea-
tures. CReFF fuses the HR keyframe features into LR non-
keyframe features in two steps: 1) Align the spatial struc-
tures of features from different frames by feature warping
with motion vectors, which can be readily obtained from
compressed videos at almost no additional cost; 2) Selec-
tively aggregate the warped features (which may be noisy
after warping) into LR features with the aid of local atten-
tion mechanism. Since local attention assigns different im-
portance to each location in the neighborhood, it is an ef-
fective way to avoid misleading by noisy warped features.

Furthermore, our proposed FST strategy guides the
learning of the CReFF aggregated features. FST consists of
an explicit similarity loss (between the aggregated features
and HR features inferred from non-keyframes) and an im-
plicit constraint from the shared decoding layer across the
HR and LR branches. Such a training strategy helps the LR
branch to learn from features extracted from the HR branch,
which is reliable and effective. Integrated with CReFF and
FST, AR-Seg efficiently compensates for the accuracy loss
of LR frames. Overall, AR-Seg significantly reduces the
computational cost of VSS by altering input resolutions,
while maintaining high segmentation accuracy.

To sum up, we make three contributions in this paper: 1)
We propose an efficient framework for compressed videos,
named AR-Seg, that uses altering input resolution for VSS
and significantly reduces the computational cost without
losing segmentation accuracy. 2) We design an efficient
CReFF module to prevent the accuracy loss by aggregat-
ing HR keyframe features into LR non-keyframe features.
3) We propose a novel FST strategy that supervises the

LR branch to learn from the HR branch through both ex-
plicit and implicit constraints. Experiment results demon-
strate the effectiveness of AR-Seg with different resolu-
tions, backbones, and keyframe intervals. On both CamVid
[3] and Cityscapes [9] datasets, compared to the constant-
resolution baselines, AR-Seg reduces the computational
cost by nearly 70% without compromising accuracy.

2. Related Works
As a fundamental task of scene understanding, seman-

tic segmentation has been an active research area for many
years [8, 13, 21, 41], which also attracts considerable atten-
tion in the study of deep neural networks, e.g., FCN [25],
DeepLabs [4, 5] and PSPNet [55]. In order to obtain accu-
rate results in real-time applications, several methods have
been proposed to improve the efficiency of semantic seg-
mentation, which we summarize as follows.

Efficient Image Segmentation Methods. Many com-
pact architectures have been proposed for efficient image
segmentation. DFANet [22] adopted a lightweight back-
bone to reduce computational cost and designed cross-
level aggregation for feature refinement. DFNet [23] uti-
lized a partial order pruning algorithm to search segmen-
tation models for a good trade-off between speed and ac-
curacy. ICNet [54] used a cascade fusion module and
transformed part of the computation from high-resolution
to low-resolution. Wang et al. [43] designed super-
resolution learning to improve image segmentation perfor-
mance. BiSeNets [11,51,52] used two-stream paths for low-
level details and high-level context information, respec-
tively. ESPNet [28] used an efficient spatial pyramid to ac-
celerate the convolution computation. These efficient back-
bone networks reduce the computational burden of single-
image segmentation, and can be applied to temporal or spa-
tial frameworks in VSS.

Temporally Correlated Video Segmentation. Another
group of methods focus on utilizing temporal redundancy in
videos. They proposed various mechanisms that propagate
the deep features extracted from keyframes to reduce the
computation for non-keyframes. Clockwork [36] directly
reused the segmentation result from keyframes, while Ma-
hasseni et al. [27] interpolated segmentation results in the
neighborhood. Noticing the lack of information from non-
keyframes, Li et al. [24] extracted shallow features from
non-keyframes, and fused them into the propagated deep
features by spatially variant convolution. To compensate
for the spatial misalignment between video frames, Zhu et
al. [56] and Xu et al. [50] warped the intermediate features
from keyframes by optical flow to produce segmentation re-
sults for non-keyframes. Jain et al. [19] fused the shallow
features of non-keyframe into the warped features, and de-
coded them into better results. With global attention mech-
anism, TD-Net [16] aggregated the features from different



time stamps and replaced the deep model with several shal-
low models distributed across the timeline. All the above
methods mainly reduced the depth of backbone networks,
but neglected the factor of input resolution considered in
this paper. Instead of processing the image frames as a
whole, Verelst et al. [42] split the frame into blocks and
chose to copy or process them by a policy network. This
block-based method reduces computational overhead from
the spatial dimension, but lacks global information on non-
keyframes. Kim et al. [20] attempted to improve efficiency
by reducing resolution. But they directly used the LR seg-
mentation results, thus suffering from severe performance
degradation. Compared to these methods, our proposed
AR-Seg keeps the global information of LR non-keyframes,
and enhances LR frames by selectively aggregating inter-
mediate features from HR keyframes.

Compressed-Domain Video Analysis. Compressed
video formats have been recently utilized in computer vi-
sion tasks. The motion vectors and residual maps are treated
as additional modalities and directly fed into networks for
video action recognition [1, 17, 37, 47] and semantic seg-
mentation [39]. Such motion information also helps com-
pensate for the spatial misalignment of features from dif-
ferent frames. Wang et al. [44] leveraged motion vectors to
warp features in previous frames for object detection. Fan
et al. [12] conditionally executed the backbone network for
pose estimation depending on the residual values. For VSS,
several methods have been proposed for efficient segmenta-
tion in the compressed domain. Jain et al. [18] warped the
former and latter keyframe features using motion vectors,
and predicted the non-keyframe features by interpolation.
Tanujaya et al. [40] warped the results of keyframe seg-
mentation for non-keyframes, and refined the warped seg-
mentation by guided inpainting. Feng et al. [14] replaced
a block of warped features with a local non-keyframe fea-
ture patch for further refinement. These methods reduced
the computational cost of VSS, but suffered from perfor-
mance degradation due to the limited capability of their fea-
ture refinement modules designed for non-keyframes. In
our proposed AR-Seg, the warped features are refined by
local attention mechanism according to the LR features of
non-keyframes. Our attention-based refinement selectively
aggregates the warped features and effectively suppresses
the noise in motion vectors, achieving good segmentation
accuracy with little computational overhead.

3. Method
In order to achieve efficient VSS for compressed videos,

we propose an altering resolution framework named AR-
Seg (Section 3.1). AR-Seg uses two branches to process
HR keyframes and LR non-keyframes in the video sepa-
rately. To compensate for the information loss due to down-
sampling the non-keyframes, we design a novel CReFF

module that aggregates HR keyframe features into LR non-
keyframe features (Section 3.2). To guide the learning of
aggregated features, we further propose a novel feature sim-
ilarity training (FST) strategy containing both explicit and
implicit constraints (Section 3.3).

3.1. AR-Seg Framework

For image/video semantic segmentation tasks, the input
resolution directly determines the amount of computation,
no matter what type of algorithms are applied, e.g., Condi-
tional Random Fields, CNNs, and Transformers. Although
reducing resolution has been studied in the context of video
recognition [26, 29], altering resolution in dense prediction
tasks like VSS remains unexplored. Based on this obser-
vation, we design the AR-Seg framework for VSS, which
inputs video frames with altering resolutions; i.e., in AR-
Seg, only a few keyframes are processed at high resolution
to preserve fine details, while other non-keyframes are pro-
cessed at low resolution to reduce the computational cost.

To identify the keyframes, we make use of the frame
structure in a group of pictures (GOP) encoded in com-
pressed videos [38, 46]. A GOP includes L consecutive
frames of three types: I frame, P frame, and B frame. I
frames are encoded in intra mode, while P and B frames are
encoded in inter mode that computes motion vectors for mo-
tion compensation. In each GOP, we treat the first I frame as
a keyframe and process it at high resolution. The remaining
L − 1 frames in GOP are non-keyframes and processed at
low resolution. To simplify the description of our method,
following the previous works [14,47], we only consider the
GOP structure without B frames in this section. The full
treatment including B frames is presented in Appendix A4.

Due to the domain gap between images with different
resolutions, it is difficult for a single network to extract fea-
tures suitable for both HR and LR resolution images. Thus
we design two branches with shared backbone architecture
in the model and train them separately for each resolution.
Figure 1(c) summarizes the proposed AR-Seg framework.
It consists of two branches: an HR branch for keyframes
and an LR branch for non-keyframes.

The HR branch adapts an image segmentation network,
which consists of a feature sub-network Nfeat, a task sub-
network Ntask, and a final 1x1 convolutional layer1. It pre-
dicts segmentation results in high-resolution and simultane-
ously provides intermediate features before the final convo-
lution as a reference for the LR branch. The LR branch
is equipped with the same backbone network as the HR
branch. To prevent performance degradation caused by
downsampling, we design a CReFF module that aggregates
HR features of the keyframe into the LR branch and place it
before the final convolution layer of the backbone network.

1We follow the modular division of backbone networks in [19]. Two
backbones are discussed and compared in Section 4.
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Figure 2. The CReFF module in the network architecture and feature similarity training (FST) strategy. CReFF consists of feature warping
WMV and local-attention-based feature fusion FLA (Section 3.2). FST includes the explicit supervision by the feature similarity loss and
the implicit supervision from shared convolution (Section 3.3). Parameters in gray blocks are fixed during the training of the LR branch.

CReFF aggregates the HR reference features into the ex-
tracted LR features, yielding estimated HR features for the
non-keyframes, which are further converted into pixel-wise
semantic labels by the final convolution layer.

As illustrated in Figure 1, different from the previous Ac-
cel framework [19], AR-Seg performs feature fusion before
the last 1x1 convolution layer, instead of before the task
sub-network Ntask. The reason is twofold: 1) Since fea-
ture maps before the final convolution have basically the
same spatial layout as the input images and segmentation
outputs, we can utilize motion vectors to compensate for
the spatial misalignment of features at such position; and
2) As the CReFF module actually upsamples the LR fea-
tures, such a placement allows almost all convolution layers
to benefit from the low resolution, thus reducing most of the
computational cost.

3.2. CReFF: Cross Resolution Feature Fusion

In the AR-Seg framework, CReFF aims to prevent the
performance degradation caused by the lack of fine local
details in LR non-keyframes. Unlike a single image, video
frames are intrinsically temporally correlated, so missing
details in LR non-keyframes can be retrieved from the cor-
responding regions in HR keyframes according to motion
cues. Motion vectors (MVs) in the compressed video ex-
actly provide such motion cues at the block level, i.e., pixels
inside a macroblock share the same motion vector. Almost
all mainstream video compression standards use motion
vectors for inter-prediction, including H.26x series [38,46],
AOMedia series [7] and AVS series [10,15,53]. Such block-

wise MVs are readily available in compressed videos and
can be used to assist the LR branch.

Specifically, as depicted in Figure 2, the HR branch
of AR-Seg extracts the feature FI ∈ RC×H×W from an
I frame, and the LR branch extracts the feature fP ∈
RC×h×w from a P frame. Although P frames are pro-
cessed in low resolution, CReFF takes FI , MP , and fP as
input to generate the aggregated feature F̃P , where MP ∈
R2×H×W denotes the MVs from P frame to I frame. The
two channels of MP correspond to x and y dimensions of
motion vectors, denoted by cx and cy . Inside the CReFF
module, the MV-based feature warping operation WMV

firstly warps FI to the spatial layout of the P frame, which
can be formulated as per-pixel shifting:

F̂
(x,y)
I = F

(x+M
(cx,x,y)
P ,y+M

(cy,x,y)

P )
I , (1)

where F̂I ∈ RC×H×W denotes the warped HR feature that
will be further fused into LR features.

Due to the coarse-grained MVs (block-level instead of
pixel-level) and the varying occlusion relationships across
video frames, the warped features F̂I are often noisy and
misleading. Inspired by the success of non-local opera-
tion [45] and attention mechanism [16, 31, 33] in video-
based applications, we propose to assign different fusion
importance weights to the (x, y) locations in noisy features
F̂I by attention mechanism. Since F̂I is roughly spatially
aligned to fp after warping, we use local attention to effi-
ciently fuse the features as follows.

In the local-attention-based feature fusion module FLA,



we firstly generate the Value and Key feature maps from
the warped HR features F̂I , and the Query maps from
the upsampled LR features F̄P . The 3 × 3 grouped con-
volution Convg with groups = C is selected to effi-
ciently encode the feature maps into attention representa-
tions VI ,KI , QP ∈ RC×H×W . Note that attention repre-
sentations share the same channel size as the intermediate
features. Denote the n× n neighborhood centered at (x, y)
as Nbhd(x,y). Within Nbhd(x,y), the output of local atten-
tion AP at the position (x, y) is generated by

AP
(x,y) = VI

Nbhd(x,y)S(KI
Nbhd(x,y) , QP

(x,y)), (2)

where AP
(x,y), QP

(x,y) ∈ RC×1 denote the feature vec-
tors at the position (x, y) of AP and QP respectively, and
VI

Nbhd(x,y) , KI
Nbhd(x,y) ∈ RC×n2

are the re-arranged
feature vectors within Nbhd(x,y) in VI and KI , respec-
tively. The similarity operation S(K,Q) is formulated as

S(K,Q) = Softmax (
KTQ√

C
). (3)

Furthermore, the aggregated feature F̃P for P frame is ob-
tained in a residual fashion:

F̃P = F̄P +AP = Upsample(fP ) +AP . (4)

In summary, using the CReFF module, the feature details
from the I frame are firstly aligned to the P frame, and then
aggregated into the LR branch according to the pixel-wise
similarity between QP and KI . The verification of the ar-
chitecture design of CReFF is presented in Section 4.3. The
reader is referred to Appendix A1 for more details on the
visualization of attention weights in FLA.

3.3. FST: Feature Similarity Training

In order to effectively train the CReFF module, we pro-
pose a feature similarity training (FST) strategy. FST uti-
lizes the HR features of P frame FP (extracted from the
HR branch) to guide the learning of the aggregated features
F̃P in the LR branch. Since FP contains sufficient details
to produce high-quality segmentation results, CReFF can
learn how to aggregate F̄P and F̂I into effective HR features
from it under the supervision of FST. Specifically, FST su-
pervises the training process of the LR branch both explic-
itly and implicitly in the following ways.

The explicit constraint is to use the feature similarity loss
Lfs. We use mean square error (MSE) to measure the dif-
ference between F̃P and FP , which serves as an additional
regularization for the LR model:

L = Lseg + Lfs = CE(SP , GP ) +MSE(F̃P , FP ), (5)

where SP ∈ RCout×H×W denotes the segmentation result
produced by LR branch, GP ∈ RH×W denotes the ground-
truth segmentation of P frame and the segmentation loss
Lseg is the standard cross entropy loss CE(SP , GP ).

The implicit constraint of FST is the shared decoding
layer of F̃P and FP . In the segmentation backbone model
trained on the HR images, the final convolution layer acts
as the segmentation decoder, which contains deep semantic
information about high-quality HR features. To utilize such
information, we directly transfer the final 1× 1 convolution
layer of the HR branch to the LR branch with fixed param-
eters. Since the parameters are trained on HR features, they
produce better segmentation results SP when F̃P is closer
to the HR feature FP .

In summary, with the explicit and implicit constraints,
FST effectively transfers the knowledge of HR features
from the HR branch to the LR branch, enabling high-quality
segmentation based on the aggregated features of CReFF.
Figure 2 shows the overall training strategy for the LR
branch. The HR I frame provides the features FI for feature
fusion in CReFF, and the HR P frame provides the features
FP for the explicit supervision in FST. Parameters of the LR
branch are trained using the total loss L via backpropaga-
tion, with fixed parameters of the HR branch and the shared
final convolution layer.

4. Experiments

We evaluate the proposed AR-Seg framework on
CamVid [3] and Cityscapes [9] datasets for street-view
video semantic segmentation. Below we present experi-
ments to demonstrate the efficiency of AR-Seg and its com-
patibility with different backbone models, resolutions, and
video compression configurations.

4.1. Experimental Setup

Datasets & Pre-processing. The CamVid [3] dataset con-
sists of 4 videos of 720 × 960 resolution captured at 30
fps, with semantic annotations at 1Hz and, in part, 15Hz.
The Cityscapes [9] dataset contains street view videos of
1024 × 2048 resolution captured in 17 fps, from which
5,000 images are densely annotated. We use the official
train/validation/test split for both datasets. Following the
previous works [16, 51], we select 11 and 19 classes for
training and evaluation on these two datasets, respectively.

To simulate a real video compressed scenario, we com-
press the videos at reasonable bit-rates of 3Mbps for
CamVid and 5Mbps for Cityscapes with the HEVC/H.265
[38] standard. The reader is referred to Appendix A3.1 for
the detailed pre-processing steps.
Models & Baselines. To demonstrate the compatibility of
AR-Seg with different backbones, we select two represen-
tative image segmentation models in our experiments: PSP-
Net [55] and BiseNet [52], which is similar to settings in the
previous work [16]. The former is a widely used classical
model, and the latter is a lightweight model that achieves
state-of-the-art performance. We use ARα- as the prefix



of AR-Seg with specified backbone networks, where α de-
notes the downsample scale for the LR branch.
Training & Evaluation Details. Given a GOP length L, we
train the LR branch with image pairs (i, p), where p refers
to the P frame with annotation and i = p− (L−1) refers to
the I frame as a reference. We denote the distance between
the annotated and the reference frames as d, then d = L−1
for the training pairs.

For evaluation, we test AR-Seg with different distances
d between the target frame p and the reference keyframe i.
For d = 0, we treat frame p as the keyframe and process
it by the HR branch. Otherwise, we feed frame p into the
LR branch for d ∈ (0, L − 1]. The average of mIoUd for
each distance d is reported as the mIoU result. We measure
FLOPs by PyTorch-OpCounter [35] following the previous
methods [30, 32]. All the comparisons are evaluated on the
compressed videos. More training and evaluation details are
presented in Appendix A3.2 and A3.3.

4.2. Experiment Results

Comparison with image-based methods. We first com-
pare AR-Segs (with PSPNet [55] and BiseNet [52] as back-
bone) to their image-based counterparts of 1.0x resolution.
As shown in Table 1, on both CamVid and Cityscapes
datasets, the proposed AR0.5- models achieve on-par or bet-
ter performance than the 1.0x resolution baselines while
saving 67% computational cost. Different from the low-
resolution baselines that lead to significant performance
degradation, AR-Seg successfully preserves the segmenta-
tion accuracy with the help of the CReFF module and the
FST strategy. More comparisons between AR-Seg and the
LR baselines under different resolutions are presented in
Appendix A2.1. Furthermore, these experiment results with
PSPNet and BiseNet also demonstrate the compatibility of
AR-Seg for different backbone networks.
Comparison with video-based methods. Taking tem-
poral coherence into consideration, we compare AR-Seg
with the recent state-of-the-art video-based methods for ef-
ficient VSS. Besides the accuracy and computational cost,
we also follow the previous work [33] to report the relative
changes compared to their single-frame backbone models.
Specifically, ∆̃mIoU denotes the relative change of mIoU,
and ∆̃GFLOPs denotes the relative change of GFLOPs.
As shown in Table 2, existing video-based methods usu-
ally improve accuracy (∆̃mIoU>0) at the cost of more
computation (∆̃GFLOPs>0), e.g., TDNet [16] and Ac-
cel [19]. Other methods, including BlockCopy [42], Ta-
pLab [14] and Jain et al. [18], reduce the computational
cost (∆̃GFLOPs<0) but the accuracy also decreases 3%-
7% (∆̃mIoU<0). As a comparison, our proposed models
AR0.6- can reduce the computational cost (∆̃GFLOPs<0)
by more than 55% and preserve the accuracy of single-
frame backbone models (∆̃mIoU≥0). With the lightweight

Table 1. Comparison to the image-based methods on CamVid test
set and Cityscapes valid set.

Method
PSPNet18 [55] BiseNet18 [52]

mIoU(%)↑ GFLOPs ↓ mIoU(%)↑ GFLOPs ↓

C
am

V
id 1.0x 69.43 309.02 71.57 58.83

AR0.7 71.23 169.86 71.78 31.89
AR0.6 70.82 133.09 71.60 24.68
AR0.5 70.48 101.98 70.38 18.96

C
ity

sc
ap

es 1.0x 69.00 560.97 70.09 178.96
AR0.7 70.23 302.95 70.86 97.10
AR0.6 69.45 234.91 70.72 76.06
AR0.5 69.03 177.44 70.57 57.00

Table 2. Comparison to the video-based methods on CamVid test
set and Cityscapes valid set. ∆̃x = ∆x

|x| denotes the relative
change compared to their single-frame backbone models. The best
results are bold and the second best results are underlined.

Method mIoU↑ GFLOPs↓ ∆̃mIoU↑ ∆̃GFLOPs↓

C
am

V
id

Accel-DL18 [19] 66.15 397.70 +13.8% +61.9%
TD4-PSP18 [16] 70.13 363.70 +1.0% +17.7%
BlockCopy [42] 66.75 107.52 -5.2% -45.7%
TapLab-BL2 [14] 67.57 117.73 -3.1% -50.2%
Jain et al. [18] 67.61 146.97 -4.3% -53.8%
AR0.6-PSP18 70.82 101.98 +2.0% -57.0%
AR0.6-Bise18 71.60 24.68 +0.0% -58.0%

C
ity

sc
ap

es

Accel-DL18 [19] 68.25 1011.75 +18.4% +96.0%
TD4-PSP18 [16] 70.11 673.06 +1.6% +20.0%
BlockCopy [42] 67.69 294.20 -6.7% -41.2%
TapLab-BL2 [14] 68.90 237.29 -4.1% -50.6%
Jain et al. [18] 68.57 342.67 -5.1% -52.5%
AR0.6-PSP18 69.45 234.91 +0.7% -58.1%
AR0.6-Bise18 70.72 76.06 +0.9% -57.5%

backbone model BiseNet, AR0.6-Bise18 achieves good per-
formance in both accuracy and computational cost. More
results of video-based methods and their single-frame back-
bone models are presented in Appendix A2.2.

4.3. Ablation Study

We perform ablation studies to show the importance of
each component in CReFF and FST, as well as the location
of CReFF. We also evaluate AR-Seg in terms of different
resolutions and GOP lengths, which reflects the influence of
hyper-parameters α and L, respectively. We conducted ab-
lation studies on the 30fps CamVid dataset, and used PSP-
Net18 as the default backbone model, L = 12 as the default
GOP length, and HEVC@3Mbps as the default codec.
Architecture of CReFF. We first validate the necessity
of WMV and FLA. The method without CReFF directly
applies FST to the upsampled features F̄P and serves as
a baseline. As shown in Table 3, simply warping the
keyframe features (+ WMV ) saves the most amount of com-
putation by skipping processing non-keyframes with the



Compressed Video Frame 1.0x PSPNet18 0.5x PSPNet18 AR!.#-PSP18 (ours) Ground Truth

309.28 GFLOPs 77.27 GFLOPs 101.98 GFLOPs

560.97 GFLOPs 140.24 GFLOPs 177.44 GFLOPs

Figure 3. Semantic segmentation on CamVid (top) and Cityscapes (bottom) with d = 11. Note that AR0.5-PSP18 predicts more semantic
details than the constant-resolution PSPNet18 working on 0.5x resolution. Compared to the 1.0x baseline, AR0.5-PSP18 generates similar
segmentation results, but consumes only 33.0% computational cost (measured in GFLOPs).

segmentation network, but receives poor accuracy. Directly
fusing the keyframe features using local attention (+ FLA)
does not perform very well, because the feature maps are
not well-aligned due to object motion in videos.

We further evaluate the design of FLA by replacing 7x7
local attention (LA) with other operations, including LA
with different neighborhood sizes, LA with non-grouped
convolution encoders (FLA∗ ), global attention (FGA) and
one-layer convolution (FConv). For FGA, we downsam-
ple the Value and Key maps by 1

32 to save the computation.
FConv processes the concatenated feature [F̂I , F̄P ] with a
3x3 convolution. Due to the large channel number in deep
layers, such an operation brings considerable computation
overhead. Results in Table 3 show that FLA with a 7x7
neighborhood achieves a good balance between computa-
tion and accuracy. Other designs increase the computational
cost without improving the accuracy. Furthermore, remov-
ing the direct connection (DC) path from CReFF reduces
the mIoU to 69.14%. This result implies that CReFF is
more likely to learn the residuals of HR features than the
absolute values.
Location of CReFF. As specified in Section 3.1, we place
CReFF before the final 1x1 convolution layer, which is dif-
ferent from the previous Accel framework [19]. To evaluate
the influence of the split point location, we insert CReFF
before different layers and evaluate the performance. Split
points include the final convolution layer (C1×1), the task
sub-network Ntask and the feature sub-network Nfeat. For
the Nfeat case, we insert CReFF after the first convolution
layer of ResNet. As shown in Table 3, placing CReFF be-
fore C1×1 results in the best performance, which affirms
our design in Section 3.1. We note that fusing features at an
early stage does not improve accuracy, but rather consider-
ably increases computational cost.
Feature Similarity Training (FST). The proposed FST
strategy consists of the MSE Loss and the shared final con-

Table 3. Ablation experiments on CamVid dataset with PSPNet18.
Settings used in our final model are underlined.

Experiment Method mIoU(%) GFLOPs

Baseline
PSPNet18 (1.0x) 69.43 309.02
PSPNet18 (0.5x) 66.51 77.27

Architecture
of CReFF

+ WMV + FLA (7x7) 70.48 101.98
w/o CReFF 67.14 96.60
+ WMV 57.64 25.75
+ FLA (7x7) 67.93 101.98
+ WMV + FLA (3x3) 70.30 98.74
+ WMV + FLA (11x11) 70.48 107.32
+ WMV + FLA∗ (7x7) 69.99 170.96
+ WMV + FGA (1/32) 67.11 113.58
+ WMV + FConv 70.45 143.63
+ CReFF w/o DC 69.14 101.98

Location
of CReFF

before C1×1 70.48 101.98
before Ntask 68.60 214.76
before Nfeat 68.31 308.46

Feature
Similarity
Training
(FST)

+ MSE Loss + Shared C1×1 70.48 101.98
w/o FST 69.21 101.98
+ Shared C1×1 69.57 101.98
+ MSE Loss 70.17 101.98
+ KL Loss + Shared C1×1 68.91 101.98

Keyframe
Interval

AR0.5-PSP18, L=12 70.48 101.98
AR0.5-PSP18, L=15 70.28 97.88
AR0.5-PSP18, L=20 70.28 94.11
AR0.5-PSP18, L=30 69.67 90.34

volution layer C1×1. We train AR0.5-PSP18 with or without
these components and report the results in Table 3. Both
components improve the segmentation performance com-
pared to the model trained without FST. We also replace
the MSE Loss with the Kullback-Leibler (KL) Divergence
Loss, but the resulting segmentation performance is poor.

Resolution of LR Branch. By adjusting the resolution of
the LR branch, AR-Seg can tailor the setting adaptive to
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Figure 4. (a) Performance of AR-Seg with different resolutions
for the LR branch. (b) mIoUd for annotated frames with different
distances to key frame. Value intervals of mIoUd when d varies
from 1 to L− 1 are depicted as color bars in (a).

different computational budgets. Here, we train and eval-
uate AR-Seg with different resolutions for the LR branch,
ranging from 0.3x to 1.0x. We also train and evaluate the
constant-resolution baselines of each resolution for compar-
ison. As shown in Figure 4(a), AR-Seg improves both back-
bones under all resolutions, demonstrating the effectiveness
of CReFF and FST. To quantify the average improvement,
we utilize two metrics BD-FLOPs and BD-mIoU follow-
ing the design of BD-Rate and BD-PSNR [2] in video com-
pression. The results show that (1) with the same compu-
tational budget, AR-Seg improves the absolute accuracy for
two backbones by 3.67% and 3.02% respectively, and (2)
with the same accuracy, AR-Seg reduces the computational
cost by 76.73% and 51.06% respectively. Both metrics are
described in detail in Appendix A5.
The Temporal Gap. To investigate the influence of the
distance d to the keyframe, we plot the mIoUd results for
AR0.5-PSP18 and the constant-resolution baselines in Fig-
ure 4(b). As mIoU0 is determined by the HR branch,
AR0.5-PSP18 shares the same point with PSPNet18(1.0x)
at d = 0. The mIoU0 for PSPNet18(0.5x) is much lower
due to downsampling. When d > 0, the accuracy of PSP-
Net18(1.0x) decreases since the compression artifacts in P
frames are more severe than those in I frames. As a com-
parison, the AR0.5-PSP18 benefits from the CReFF module
and maintains high accuracy for all the d values.
Keyframe Intervals. To validate the long-range reference,
we extend our evaluation to different keyframe intervals
without re-training. As shown in Table 3, AR0.5-PSP18
trained with L = 12 maintains good performance with dif-
ferent GOP lengths. Moreover, even for L = 30, which
stands for 1s in 30fps videos and is larger than the discus-
sion in previous works [19, 56], AR-Seg outperforms the
1.0x baseline using only 29.2% FLOPs.
Video Compression Configurations. As shown in Table
4, we also train and evaluate our model with different re-
alistic bit-rates (3Mbps and 1Mbps) and configurations for
HEVC/H.265 encoders. We use x265-medium and x265-
ultrafast to represent different presets for x265, which ap-
ply simplified motion search algorithms and larger macro-

Table 4. Performance of AR-Seg on videos compressed by differ-
ent codecs. AR-Seg achieves comparable or even better accuracy
than its image-based constant-resolution counterparts.

Codec Method mIoU(%) GFLOPs

HEVC@3Mbps
PSPNet18(1.0x) 69.43 309.02
AR0.5-PSP18 70.48 101.98

HEVC@1Mbps
PSPNet18(1.0x) 65.76 309.02
AR0.5-PSP18 67.89 101.98

x265-medium@3Mbps
PSPNet18 (1.0x) 68.19 309.02
AR0.5-PSP18 69.53 101.98

x265-ultrafast@3Mbps
PSPNet18 (1.0x) 67.69 309.02
AR0.5-PSP18 68.78 101.98

blocks. These configurations are widely used in traditional
video encoders. The results show that AR0.5-PSP18 consis-
tently outperforms the 1.0x constant resolution counterpart
using only 33% GFLOPs under different configurations.

4.4. Running Time

We measure the running time of AR-Seg with PSPNet18
on both CamVid and Cityscapes datasets, and the results are
reported in Table 5. Our AR-Seg models run 2x-3x times
faster than the constant resolution counterparts. All tests
are executed on a single GeForce RTX 3090 GPU.

Table 5. Running time of AR-PSP18 on 720x960 CamVid and
1024x2048 Cityscapes datasets.

Dataset 1.0x baseline AR0.5 AR0.3

CamVid 31.2 ms (32fps) 14.7 ms (68fps) 9.0 ms (111fps)
Cityscapes 95.4 ms (10fps) 30.7 ms (33fps) 19.9 ms (50fps)

5. Conclusion
In this paper, we propose AR-Seg, an altering resolu-

tion framework for compressed video semantic segmenta-
tion, which innovatively improves the efficiency of video
segmentation from the perspective of input resolution. By
jointly considering the design of architecture and training
strategy, our proposed CReFF module and FST strategy
effectively prevent the accuracy loss caused by downsam-
pling. Results evaluated on two widely used datasets show
that AR-Seg can achieve competitive segmentation accu-
racy with a reduction of up to 67% computational cost.
Our current study only uses two alternating resolutions (i.e.,
HR and LR). Future work that applies more complicated
scheduling of multi-resolutions and keyframe gaps will be
considered to further improve the VSS performance.
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