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a b s t r a c t

Facial information plays an important role in human communication, e.g., rich and nuanced facial
expressions effectively convey emotions. Traditional data such as 2D facial images and videos are
susceptible to perturbation from lighting and occlusion, while 3D static data such as mesh models
lack the temporal information which is necessary to describe facial dynamics. Therefore, researches
on 4D facial data (3D facial models together with time as the fourth dimension) have received
considerable attention in recent years. 4D data can simultaneously reflect the complex facial temporal
and space information. To fully explore these characteristics, we present a systematic overview of the
4D facial research in this paper. We give a review in terms of historical development of 4D facial
datasets, acquisition process of these datasets, related algorithms and applications, and discussion of
outstanding issues. We also analyze the 4D facial research works by summarizing and comparing them;
in particular, we present the results on three kinds of tasks conducted on the 4D facial datasets,
i.e., expression-related tasks (AU detection, expression recognition and retrieval), generation tasks
(3D facial reconstruction, facial expression and facial animation generation), and other tasks (facial
registration, facial recognition and facial disease diagnosis). Finally, we summarize the future research
directions.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Face analysis has always been a popular research direction as
any practical application tasks are based on faces, such as recog-
ition, detection, synthesis, alignment, and etc. It is a challenging
ask due to the complex geometry of facial surface, the concave
nd convex nature of facial organs, and the facial muscles sup-
orting dynamic changes. Early face research analysis is generally
ased on 2D images or video data and most of them focus on
acial recognition. The literature [1] has a detailed summary of the
D facial analysis method. 3D facial data is more advantageous
han 2D facial data in response to blocking and light changes
nd can characterize more features. Therefore, it can adapt to
ore scenarios. With the recent improvement of high-precision
D imaging levels and the popularization of low-precision RGB-D
ameras, obtaining 3D facial data has become easier. The 4D facial
ata adds temporal information and more dynamic information

∗ Corresponding authors.
E-mail addresses: zhaojl@yeah.net (J. Zhao), gu@cs.stonybrook.edu (X. Gu).
ttps://doi.org/10.1016/j.cag.2023.07.014
097-8493/© 2023 Elsevier Ltd. All rights reserved.
about the face, which is vital to the expression of facial emotions.
At the same time, the development of deep learning technology
in recent years has made advanced technologies such as encoder–
decoder structure [2,3], long-term memory network (LSTM) [4],
Transformer [5], and other advanced technologies [6–8] emerging
in 4D face research and applications. Therefore, a systematic
survey of the 4D face analysis is necessary.

Recently, many researchers have shifted their focus to 4D
facial data due to the advantages of 4D facial data compared
with 2D and 3D facial data. On the one hand, 4D data contains
more temporal information that can be used to analyze complex
dynamic changes in a face. Facial expressions and movements,
especially micro-expressions, are often not completed in a sin-
gle frame, and 4D data adds a time dimension to 3D static
single-frame facial data, providing more comprehensive facial
information. Therefore, in facial recognition, expression or micro-
expression recognition tasks, 4D data can improve accuracy and
robustness. On the other hand, 4D facial data can fully express
complex facial features. 4D facial data is unaffected by occlusions
or lighting conditions. In addition to the advantage of rendering

https://doi.org/10.1016/j.cag.2023.07.014
https://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2023.07.014&domain=pdf
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Fig. 1. 4D facial dataset development timeline.
rom any angle in view space, 4D data also provides contin-
ous variation over time. In computer animation and virtual
eality tasks, 4D data can provide more realistic facial dynam-
cs and expression information, resulting in more lifelike facial
nimation.
In the past decade, research on face analysis has achieved

ruitful results in aspects such as dataset, recognition, and detec-
ion, mainly based on 2D and 3D facial images or video data. For
xample, a recent survey [9] reviewed the progress of 3D facial
ecognition technology in recent years. Due to the characteristics
f 4D data, which contain both temporal and spatial information,
n increasing number of researchers have focused on 4D facial
esearch. However, most existing research on 4D facial data is still
cattered and lacks systematic survey. In this paper, we provide
comprehensive survey and make the following contributions:

• We provide a comprehensive overview of a 4D facial dataset,
including the dataset acquisition equipment, participants,
acquisition method, data processing, and database organi-
zation.

• We classified and elaborated on the different facial studies
conducted using these datasets and discussed the remain-
ing challenges and future development directions to inspire
different 4D facial applications.

The rest of this paper is organized as follows. Section 2 in-
roduces the situation of existing 4D facial datasets. Section 3
rovides a detailed data collection process for 4D facial datasets.
ection 4 summarizes the facial research work carried out using
D facial datasets. The image and video features and facial analy-
is methods are also collected and classified. Section 5 discusses
he advantages and disadvantages of 2D, 3D, and 4D methods, the
nfluence of attributes of different datasets on 4D applications,
nd the remaining challenges and future directions for facial
esearch based on 4D data. Finally, Section 6 concludes the paper.

. 4D facial dataset

The development of 4D facial analysis technology, to a large
xtent, relies on the development of mature 4D facial datasets.
s early as 2004, the State University of New York at Stony
rook proposed a high-resolution, real-time 3D shape acquisition
ystem [10] based on structured light technology. The acquisi-
ion frame rate of this system is 120 Hz and the resolution is
32 × 500 pixels. In recent years, Gu et al. [11] has been devel-
ping a cutting edge 3D camera system to obtain high-resolution
acial surfaces with dynamic expressions.

According to our survey, there have been 12 representative
D facial datasets developed since 2008, including BU-4DFE [12],
3D(AC)ˆ2 [13], D3DFACS [14], Hi4D-ADSIP [15], datasets pro-
osed by Alashkar et al. [16], BP4D-Spontaneous [17], BP4D+ [5],
DFAB [18], CoMA [19], VOCASET [20], 4DME [21], and Mim-
cME [22]. Fig. 1 shows the development timeline of 4D facial
atasets.
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The first high-resolution 3D dynamic facial expression dataset,
BU-4DFE, was introduced in 2008. This dataset contains 606
3D facial expression sequences captured from 101 subjects of
different racial backgrounds. In 2014, considering that the data
in the previously proposed BU-4DFE dataset was based on posed
behavior rather than spontaneous behavior, it is essential to
note that posed expressions are different from spontaneous ex-
pressions. Therefore, BP4D-Spontaneous was the first attempt
to induce spontaneous expressions in a controlled environment
through a series of carefully designed tasks. Although emotions
can be expressed in various ways, most research only focuses
on one or two ways due to lacking large, diverse, and well-
annotated multi-modal datasets. Therefore, in 2016, a 4D dataset
with well-annotated, multi-modal, and multidimensional sponta-
neous emotions, BP4D+, was proposed.

The first 4D audio-visual database for emotional communica-
tion, B3D (AC), was proposed in 2010. The authors believe that
speech and facial expression in the form of dense dynamic 3D
face geometries may be the two most important ways used by
humans to communicate their emotional states.

In 2011, the first 3D dynamic Facial Action Coding System
(FACS) [23]for facial expression research was introduced, which
resulted in a facial database called D3DFACS. It captured 519
AU sequences with a total of 1184 Action units (AUs). In 2012,
the first 4D dataset is used to study facial dysfunctions: Hi4D-
ADSIP. Compared to BU-4DFE’s six basic expressions, the dataset
added a ‘‘Pain’’ expression, and all seven basic expressions were
divided into three levels of expression intensity: mild, moderate,
and extreme. In 2014, Alashkar et al. [16] proposed a new 3D
dynamic facial dataset to develop and test face recognition al-
gorithms under unconstrained conditions. The dataset addressed
several challenges that may arise in real-world scenarios, such
as continuous and freely-pose variation, expressive and talking
faces, distance changes to the 3D camera, occlusions and multiple
persons in the scene.

In 2018, the 4DFAB dataset was completed after five years
of data acquisition, which included large-scale 4D data from
180 participants recorded across four different sessions. Over 1.8
million high-resolution 3D facial data were collected, including
posed and spontaneous expressions. Also, the same year, Ran-
jan et al. [19] proposed the CoMA dataset, which collected 12
extreme expressions from 12 individuals.

In 2019, a new 4D face and speech dataset called VOCASET
and a general-purpose speech-driven facial animation framework
called VOCA were proposed. Given speech signal and a static
3D face mesh, the framework generates realistic 3D dynamic
character animation.

In 2022, the first 4D micro-expression dataset, 4DME, was
proposed. The current micro-expression datasets are insufficient
[21], and most of them [24–27] only contain one form of 2D color
video. This new 4D dataset recorded approximately 5980 min
of video from 65 participants, containing four data modes: DI4D
video, frontal grayscale video, Kinect-color video, and Kinect-
depth video. Examples of the four modalities are shown in Fig. 2.
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Table 1
Details of the 4D facial dataset.
Dataset Expressions/emotion/different conditions Coverage Number of samples Scanner

BU-4DFE Angry, Disgust, Fear, Happy, Sad, Surprise Face, neck,
sometimes ears

101 individuals × six 100
frame expression sequences

Di3D

B3D(AC)ˆ2 Negative, Anger, Sadness, Stress, Contempt, Fear, Surprise,
Excitement, Confidence, Happiness, Positive

Inner face only 14 individuals × around 80
dynamic sequences
(speech-4D)

Structured light
stereo

D3DFACS Angry, Disgust, Fear, Happy, Sad, Surprise and non-additive
appearance changes

Face, neck,
sometimes ears

10 individuals × around 52
dynamic sequences, FACS
coded

3dMD

Hi4D-ADSIP Angry, Disgust, Fear, Happiness, Sadness, Surprise, Pain Inner face only 80 individuals × around 42
dynamic Sequences

Di3D

Alashkar et al. [16] Neutral, Facial Expression, Talking, Internal Occlusion (hand
or hair), External Occlusion, Walking, Multiple persons

Inner face only 58 individuals × one static
scan + seven dynamic
sequences

Artec MHT and
Artec L

BP4D-Spontaneous Happiness/Amusement, Sadness, Startle, Embarrassment,
Fear, Physical pain, Anger, Disgust

Face, neck,
sometimes ears

41 individuals × eight one
minute dynamic sequences,
FACS coded

Di3D

BP4D+ Happiness/amusement, Surprise, Sadness, Startle, Skeptical,
Embarrassment, Fear/Nervous, Physical pain, Angry/Upset,
Disgust

Face, neck,
sometimes ears

140 individuals × 10 tasks,
FACS coded

Di3D, FLIR A655sc
Longwave infrared
camera, Biopac
MP150

4DFAB Angry, Disgust, Fear, Happiness, Sadness, Surprise,
Embarrassment, Nervousness

Face, neck and
ears

180 individuals × 4k–16k
frames of dynamic
sequences

DI4D

CoMA Bareteeth, Cheeks in, Eyebrow, High smile, Lips back, Lips
up, Mouth down, Mouth extreme, Mouth middle, Mouth
side, Mouth up

Full head 12 individuals × 12
extreme expression
sequences

3dMD

VOCASET N/A Full head,
speech

12 individuals × 40
dynamic sequences
(speech-4D)

3dMD

4DME Positive, Negative, Surprise, Repression, Others Face, neck,
ears, speech

65 individuals, around
5980 min of videos

DI4D, Stingray
F-046B, Xbox 360

MimicME 6 Basic + Pain, Pout, Show teeth, Flare nostrils, Inflate
cheeks, Wink right, Wink left, Bite lower lip, Bite upper lip,
Tongue out, Tongue left, Tongue right, Mouth right, Mouth
left

Face, neck and
ears

4700 individuals × 70–120
3D images

3dMD
Fig. 2. Sample images of the four modalities in 4DME [21]. (a) (one of the six)
DI4D videos; (b) Grayscale videos; (c) Kinect- color videos; (d) Kinect-depth
videos.

The dataset also provides five categories of emotion labels and
22 AU labels to explore the relationship between AU annotation
and micro-expression emotion categories. The largest 4D facial
expression analysis dataset, MimicME, was also proposed in the
same year. The dataset collected 4D facial information from 4700
participants over three months.

Table 1 details the most commonly used 4D facial datasets we
urveyed.

. Acquisition of 4D dataset

4D datasets contain richer facial information than traditional
D facial image or video data, as occlusions and lighting envi-
onments do not affect them. However, the acquisition process
f 4D datasets is more complex. This section will introduce the
2 4D facial datasets according to their acquisition equipment,
articipants, acquisition method, data processing, and database
rganization.
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3.1. Acquisition equipment

We found that the BU-4DFE, BP4D-Spontaneous, and Hi4D-
ADSIP datasets were collected using the Di3D dynamic facial
capture system produced by Dimensional Imaging [28]. Fig. 3(a)
shows the specific setup used to collect BU-4DFE. The system
consists of two stereo cameras and one texture camera. Three
cameras are placed on tripods with two lighting lamps on either
side. Two computers run in parallel, and the system captures 3D
model sequences and 2D texture videos at 25 frames per second.
The working principle of DI3D is to use passive stereo pho-
togrammetry to process each stereo image pair to generate range
maps. The combination range map generates a high-resolution
3D sequence that changes with 0.2 mm RMS accuracy over time.
When 3D depth model sequences are captured from the top
and bottom cameras, related 2D texture videos are also recorded
from the middle camera. Fig. 3(b) shows the collection scene
of BP4D-Spontaneous. This dataset uses one main computer and
three slave computers. In addition, a conventional camera is set
up to capture the entire scene. The acquisition system of Hi4D-
ADSIP has increased the number of hosts to six, with a maximum
recording speed of 60 frames per second. The acquisition scenario
is shown in Fig. 3(d).

BP4D+ involves multiple modalities, and its acquisition equip-
ment includes the Di3D dynamic imaging system, thermal signal
sensors, and physiological signal sensor system, as shown in
Fig. 3(c). The 3D dynamic imaging system (Di3D) includes a 3D
stereo imaging sensor and a 2D video sensor. The acquisition data

come from various facial sensors (including high-resolution 3D
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Fig. 3. Acquisition scenarios for each dataset (courtesy of the original papers). (a) BU-4DFE [12], (b) BP4D-Spontaneous [17], (c) BP4D+ [5], (d) Hi4D-ADSIP [15], (e)
4DME(back view) [21], (f) 4DME(frontal view) [21].
dynamic imaging, high-resolution 2D video, and thermal /infrared
imaging) as well as contact physiological sensors (including skin
conductance, respiration, blood pressure, and heart rate). Experts
in FACS annotated the occurrence and intensity of facial action
units from the 2D video. The thermal infrared camera used was
the FLIR A655sc long-wave infrared camera from the US-based
company FLIR, which captures thermal imaging videos at a res-
olution of 640 × 480 per frame and the capture rate was set to
5 fps. Physiological data were collected using the Biopac MP150
ata acquisition system.
With the emergence of high-resolution cameras, the newly

roduced DI4D system by Dimensional Imaging can capture mo-
ion over time. 4DFAB and 4DME are using the DI4D dynamic cap-
ure system to capture and build 4D faces, as shown in Fig. 3(e)
nd (f). The system mainly consists of six cameras (two pairs of
ameras and one pair of texture cameras, 60 fps, 1200 × 1600)
o capture full-color 3D facial mesh sequences, where each frame
f the sequence is treated as a separate stereo image pair and
s automatically processed to generate a colored 3D surface. The
enerated files are combined to produce a high-resolution 3D
acial mesh sequence. In addition, a microphone records the
udio signal, a front gray camera (60 fps, 640 × 480) records
ront-facing images, and a Kinect records RGB-D data (30 fps,
40 × 480).
The B3D(AC)ˆ2 dataset was captured using a real-time 3D

canner and a studio condenser microphone to record audio-
isual speech data simultaneously.
The dataset proposed by Alashkar et al. [16] uses two types

f acquisition equipment: the Artec MHT 3D scanner is used to
btain the 3D static models, while the Artec L 3D scanner has a
arger field angle to capture 3D dynamic sequences. Both scanners
ave a frame rate of 15 fps.
D3DFACS uses the 3dMD dynamic 3D stereo camera to record

ach FACS performer. The system comprises six cameras in two
ods, three vertically stacked on each pod. Each pod’s top and
ottom cameras are responsible for the stereo reconstruction,
hile the middle camera captures UV color textures—the sys-
em samples at a rate of 60 fps. MimicMe also uses the 3dMD
quipment for data acquisition.
The CoMA and VOCASET datasets acquisition devices are

ulti-camera active stereo system 3dMD LLC. The capture system
omprises six pairs of grayscale stereo cameras, six color cameras,
ive speckle pattern projectors, and six white light LED panels.
he system captures 3D meshes at 60 fps with approximately
426
120K vertices per mesh. Color images are used to generate UV
texture maps for each scan. Audio synchronized with the scanner
is captured at a sampling rate of 22 kHz.

3.2. Participants

In this section, we summarize the participant information
for different datasets. Due to factors such as the high cost and
long time required for 4D data acquisition, the specific envi-
ronmental conditions during acquisition, and the requirement
for emotionally induced facial expressions, the number of par-
ticipants in current 4D datasets are relatively small, with most
datasets consisting of only a few dozen individuals. Only three
datasets had more than one hundred participants. Table 2 pro-
vides information on the participants for different datasets. For
example, the D3DFACS dataset has only 10 participants, including
four expert FACS coders and six untrained participants. The CoMA
and VOCASET datasets both have 12 participants. The B3D(AC)ˆ2
dataset has 14 native English-speaking participants. The BP4D-
Spontaneous dataset has a total of 41 participants. The dataset
proposed by Alashkar et al. has 58 participants. 4DME recruited
65 volunteers from the campus to participate in data acquisition.
The Hi4D-ADSIP dataset has 80 participants, including 65 under-
graduate students majoring in performing arts, as well as other
undergraduate and graduate students and staff members from
other departments who were not explicitly trained in performing
arts.

There are only four datasets with more than 100 participants:
BU-4DFE, BP4D+, 4DFAB, and MimicMe. The BU-4DFE dataset has
101 participants, including undergraduate and graduate students
and teachers from the psychology, computer science, and engi-
neering departments. The BP4D+ dataset has 140 participants.
Currently, the 4DFAB dataset has 180 participants. Among all par-
ticipants, 179 subjects participated in the first data collection, 100
subjects participated in the second, and 81 and 75 participated in
the third and fourth, respectively, with an average time interval
of 219 days between consecutive attendances (minimum: 1 day,
maximum: 1654 days). The participants were students from the
administrative departments, engineering, business, and medical
majors, and volunteers from outside the school. MimicMe col-
lected facial expressions from 4700 museum visitors over three
months during a special exhibition at the Science Museum in
London.
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Table 2
Data acquisition participant information for 4D facial dataset.
Dataset Number of

participants
Age Gender Ethnic(number)

BU-4DFE 101 18–45 58 females, 43 males Asian(28), Black(8), Hispanic/Latino(3) and White(62)
B3D(AC)ˆ2 14 21–53 8 females, 6 males –
D3DFACS 10 23–41 6 females, 4 males Caucasian European
Hi4D-ADSIP 80 18–65 48 females, 32 males –
Alashkar et al. [16] 58 Avg 23 23 females, 35 males –
BP4D-Spontaneous 41 18–29 23 females, 18 males Asian(11), African-American(6), Hispanic(4) and Euro-American(20)
BP4D+ 140 18–66 82 females, 58 males Asian(46), African American(15), White(64), Latino/Hispanic(14) and

Others(1)
4DFAB 180 5–75 60 females, 120 males Ethnicity includes Caucasian (Europeans and Arabs), Asian (East-Asian and

South-Asian) and Hispanic/Latino
CoMA 12 – – –
VOCASET 12 – 6 females, 6 males –
4DME 65 22–57 27 females, 38 males Eastern Asia(37), southern Europe(27) and Britain(1)
MimicME 4700 – – –

– Not Stated.
Our research found an interesting phenomenon: The data of
nly the 4DFAB dataset are collected at four different times. We
elieve that conducting multiple data collections on the same
roup of participants at different time intervals may be beneficial
or studying the stability of facial expressions in response to spe-
ific events or the changes in behavior over time, which may also
e an exciting direction for medical research on individual emo-
ional stability. However, currently, there is no research confirm-
ng this, possibly because it would make the already cumbersome
rocess of 4D facial data collection even more challenging.

.3. Acquisition method

This section summarizes the data acquisition processes de-
igned for each participant in 4D facial expression datasets. Re-
earchers induced emotions in participants through various
ethods such as video emotion induction, conversation, physical
timulation, and reading designated texts, among others. Next,
e will introduce the acquisition method of each dataset.
Currently, the data acquisition for 4D datasets is usually con-

ucted in a laboratory or soundproof room environment, even
or spontaneous facial expression data acquisition, which involves
nducing emotions through a series of methods within the labo-
atory. Before the data acquisition begins, each dataset typically
equires participants to sit a certain distance away from the
apture system for a short pre-test to ensure that the participant’s
osture and orientation are suitable for generating accurate data
uring the formal recording.
For posed facial expressions, participants in the BU-4DFE

ataset were instructed by a psychologist to perform six facial
xpressions. Each expression was performed sequentially from a
eutral expression, low intensity, to high intensity, back to low
ntensity, and finally, a neutral expression, lasting approximately
s. During the D3DFACS data acquisition, participants were asked
o repeat the target AUs as much as possible. Each participant
as required to record for 2 to 7 h. After all data records,
ACS experts score the data to select the sequence that matches
he most expression with the target expression. For MimicMe,
ach participant was required to watch facial expression videos
erformed by actors twice. The first viewing served as a familiar-
zation process, while the second viewing involved capturing the
acial expressions, with participants required to mimic the actors’
xpressions.
The expression of emotions can be achieved visually, but re-

eating emotional sentences or reading emotion-evoking texts
an also be a way to induce emotions. The data acquisition for
3D(AC)ˆ2 was divided into two stages. In the first stage, par-

icipants were asked to read sentences displayed on a computer

427
screen while trying to maintain a neutral tone. In the second
stage, participants watched emotion-inducing videos and was
asked to evaluate the emotional content on a paper questionnaire.
In the Hi4D-ADSIP dataset, participants were asked to make fa-
cial utterances continuously. Each recorded sequence began and
ended with a neutral facial appearance and was performed with
a specified intensity of utterance. While recording the 3D scanner
video stream, the synchronized audio was also recorded.

The acquisition of spontaneous facial expressions is often
achieved by designing specific tasks to induce emotions in par-
ticipants. Common methods of inducing emotions include watch-
ing video clips, conversation, word pronunciation, cold pressure,
and designing physical experiences. BP4D-Spontaneous designed
eight tasks for each participant and collected 4D facial data with
eight different expressions. BP4D+ designed a protocol consisting
of ten tasks to achieve a natural transition from positive emotions
to negative emotions. For 4DFAB, participants were first asked
to perform the six basic facial expressions and then pronounce
nine words in order during the formal recording. These two tasks
were repeated in all four different recording sessions. Then show
the participants a few videos to trigger their spontaneous ex-
pressions. 4DME was designed for micro-expression research, so
participants were asked to hide their true feelings and maintain
a neutral face throughout the experiment. The method of induc-
ing micro-expressions was the same as that used in previous
literature [24,29]. Participants showed 11 carefully selected video
clips that elicited intense emotions. Only 4DFAB did not require
participants to complete a self-report.

The above facial datasets were proposed for research on facial
expressions, while the dataset proposed by Alashkar et al. [16]
is dedicated to research on unconstrained facial recognition. The
dataset collected each participant’s full 3D static models and eight
sets of 3D video sequences. For the whole 3D part, the Artec MHT
scanner was used to capture each participant’s full 3D static facial
model and texture information, which takes approximately 2 min
to obtain. For the 3D video sequence, eight sets of 3D videos
containing seven scenes were collected for each participant. The
seven scenes were neutral facial expression, conversation, in-
ternal occlusion, external occlusion, walking, and multi-person
scenes, each with geometric information but no texture.

3.4. Data processing and database organization

In this section, we summarize the data processing and
database organization of the 4D facial dataset.

According to our survey, all those mentioned above 4D facial
datasets have sequences of 3D models with triangular meshes.

The average number of vertices in the 3D models of early datasets
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Table 3
4D dataset data format.
Dataset Triangle mesh Texture Other format Size

BU-4DFE 35k vertices Texture image (1040 × 1329) – Approximate 500 GB
B3D(AC)ˆ2 Raw scan: 55k

vertices;
processed:23k
vertices

Raw scan: texture image (780 ×

580); processed: UV texture map
(1024 × 768)

– –

D3DFACS 30k vertices UV texture map (1024 × 1280) – –

Hi4D-ADSIP 20k vertices Texture image – Triangle mesh: 7.8 TB,
video clip: 6 GB, GIF: 39.0
GB

Alashkar et al. [16] 3.5k vertices for
dynamic, 50k
vertices for static

Texture image – –

BP4D-Spontaneous 30k–50k vertices Texture image (1040 × 1392) – Video data about 2.6 TB

BP4D+ 30k–50k vertices Texture image (1040 × 1392) Thermal image (640 × 480), physiological
signal

Over 10 TB with about 1.4
million frames

4DFAB 60k–75k vertices UV texture map – Over 20 TB

CoMA 80k–140k vertices Texture images (avg resolution
3700 × 3200)

Six raw camera images (1600 × 1200),
alignments in FLAME topology

–

VOCASET 80k–140k vertices Texture images (avg resolution
3700 × 3200)

Six raw camera images (1600 × 1200),
alignments in FLAME topology

–

4DME Over 50k vertice UV texture map (1200 × 1600) 2D frontal facial videos (640 × 480), RGB-D
images (640 × 480)

–

MimicME 20k vertices UV texture map – –

– Not Stated
such as BU-4DFE and D3DFACS was only 35k and 30k, respec-
tively. However, in recent years, the average number of vertices
in datasets such as 4DFAB, VOCASET, and MimicME has reached
60k–75k, 80k–140k, and 120k, respectively. This undoubtedly
makes the models more detailed and increases the required stor-
age space. For example, the storage space required for 4DFAB has
already exceeded 20 TB.

Four datasets have FACS AU coding, namely D3DFACS, BP4D-
pontaneous, BP4D+, and 4DME. D3DFACS collected AU
equences of 42 different action unit types from 10 subjects. Each
equence is about 90 frames long at 60 fps and consists of OBJ
eshes and BMP cylindrical UV texture mapping data, totaling
19 sequences. For each of the eight tasks in BP4D-Spontaneous,
wo FACS-certified coders independently coded 27 action units
or the 20-s segment with the highest facial expression density.
P4D+ is similar to BP4D-Spontaneous, but with a larger dataset
ize, providing annotations for 34 AU types for four sessions with
97,875 frames. 4DME has both AU and emotion category anno-
ations. AU annotation is a time-consuming and labor-intensive
omplex task, but it is the data foundation for many subsequent
orks on AU detection and facial expression recognition.
As one of the ways of emotional expression, audio is also

ecorded in the acquisition process of multiple data sets.
3D(AC)ˆ2 is the first audio-visual dataset that records speech
nd dense 3D dynamic facial geometry representations of facial
xpression sequences for 40 English phrases, with a total of
109 sequences and an average length of 4.67 s. In Alashkar
t al.’s dataset, one of the seven scenes in the collection of 3D
ynamic sequences requires participants to speak and move their
eads freely. The Hi4D-ADSIP dataset includes three parts: an
xpression database, a basic-articulation database, and a phrases
eading database. During data acquisition, 4DFAB and 4DME also
sed a microphone to record audio signals. VOCASET records
peech and 3D mesh models for 40 English sentence sequences
or each participant, with each sentence length ranging from 3 to
s. To maximize speech diversity, twenty-seven of the sentences
ome from the TIMIT corpus [30], three from pangrams [31], and
en from the Stanford Question Answering Dataset (SQuAD) [32].

In addition to the CoMA dataset, all other datasets have 2D
exture videos. The CoMA dataset consists of 12 extreme expres-
ions from 12 subjects. The dataset contains 20,466 3D meshes,
428
each with approximately 120k vertices. The Sequential Mesh
Registration method [33] was used for preprocessing the data to
reduce the dimensionality to 5023 vertices. In contrast, the data
collected by BP4D+ includes high-resolution 3D dynamic imaging,
2D videos, thermal imaging videos, and physiological information,
including skin conductivity, respiratory rate, blood pressure, and
heart rate, with a total data volume of over 10 TB and a total of
approximately 1.4 million frames.

Therefore, unlike 2D and 3D facial datasets, 4D datasets often
contain multiple data modalities, and the data scale is gradually
increasing. Such large-scale, diverse, and multimodal datasets
undoubtedly play an important role in promoting complex facial
analysis tasks. Table 3 summarizes the data formats and storage
sizes of the published 4D datasets according to our survey.

4. Algorithms and applications for 4D datasets

According to our research on derivative works of 4D facial
datasets, there are three main research directions for the appli-
cation of 4D facial datasets in facial analysis: expression-related
tasks, generation tasks, and other tasks. The first task includes
expression recognition, retrieval and AU detection. Unlike the
expression recognition task based on 2D images or videos, the de-
velopment of 4D facial tasks is closely related to the development
of 4D facial datasets. Before 2016, researchers mainly focused on
the overall expression recognition and retrieval of facial expres-
sions. After 2018, with the development of 4D facial databases,
researchers’ focus shifted to detecting facial AUs. The research
on generating tasks can be divided into 3D facial reconstruction,
expression generation, and 3D facial animation generation. The
third research direction is other tasks related to registration,
facial recognition, and facial disease estimation. Fig. 4 provides a
classification summary of different research directions based on
4D facial datasets. Table 4 provides the corresponding references
and their years for the classification of derivative works.

4.1. Expression-related tasks

Facial expression classification and recognition is a very pop-
ular research field with a wide range of applications in human–

computer interaction, psychology, computer vision, traffic safety,
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nd other fields. As early as 1971, Ekman [34] conducted the
irst systematic study of facial expressions and proposed six uni-
ersally accepted basic emotions not influenced by language or
ulture: anger, disgust, fear, happiness, sadness, and surprise.
he facial expression recognition tasks that have been widely
sed have primarily used 2D facial images or videos for research.
here are few studies on 4D facial expression analysis based on
D datasets, most of which are focused on the BU-4DFE and
P4D-Spontaneous datasets.

.1.1. Expression recognition
The feature extraction methods for facial expression recogni-

ion tasks can be divided into two categories: artificial feature ex-
raction methods and learning-based methods. In addition, some
cholars have conducted research on facial expression retrieval
y continuously improving the feature descriptors defined on the
ace [43–45].

1) Artificial feature extraction methods
Early methods mostly relied on manually extracting features,

hich can be divided into methods based on facial curves [35,
6], methods based on feature points/regions [37,38], methods
ased on frequency domain features [39], and methods based on
n-depth features [40], depending on the type of facial feature.

Methods based on facial curves Maalej et al. [35] described
acial features using iso-geodesic and quantified their shape infor-
ation under the Riemann framework to obtain similarity scores
etween different local shapes of the face. Linear Discriminant
nalysis (LDA) was then used to reduce the dimensionality of
he features, and Hidden Markov Model (HMM) was used to
erform temporal modeling of 3D frame sequences for expression
lassification. Experiments on BU-4DFE dataset have achieved an
verage recognition rate of 93.83%. In contrast to the methods
 d

429
mentioned above, literature [36] used Riemann analysis to de-
fine a new Dense Scalar Field (DSF) on the radial curves of 3D
faces, accurately capturing 3D deformations. LDA was also used
to reduce the dimensionality of features, and a classifier based
on HMM was used for the six basic expressions in the BU-4DFE
dataset, achieving an average recognition rate of 93.83%.

Methods based on feature points/regions Literature [37] pro-
osed a 4D facial expression recognition method by combining
istance information and local shape context descriptors of facial
andmark points. The experimental results by HMM classification
n the 3D dynamic sequences of the six basic expressions in the
U-4DFE dataset obtained an average recognition rate of 79.44%.
hen et al. [38] proposed a 3D/4D facial expression recognition
ethod based on the Muscular Movement Model (MMM) from an
natomical perspective, which first locates 11 muscle regions cor-
esponding to single major facial muscles or combinations using
he Iterative Closest Normal Point (ICNP) algorithm, then extracts
he coordinates, normals, and shape indices of each vertex in
he region to form a feature vector. SVM and HMM are used to
erform expression classification for 3D static expressions and
D expressions, respectively. The experimental results on the BU-
DFE and BU-4DFE databases obtained recognition accuracies of
3.2% and 87.06%, respectively.
Methods based on frequency domain features Xue [39]

ointed out that the changes in facial expressions are essentially
spatio-temporal process and that performing feature extrac-

ion frame by frame may not capture the dynamic changes in
xpressions. Therefore, the authors proposed a frequency-domain
acial expression recognition method. Specifically, the 3D discrete
osine transform features around the 68 facial landmark points
re transformed into the frequency domain. The Minimal Re-
undancy Maximal Relevance (mRMR) algorithm selects the m
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Table 4
Classification and references of 4D facial derivative work.
Task Method References (Year)

Expression recognition Artificial feature extraction methods [35] (2012), [36] (2014), [37] (2013), [38] (2016), [39] (2015), [40]
(2016)

Learning-based methods [41] (2018), [42] (2021)

Expression retrieval Feature descriptor methods [43] (2014), [44] (2015), [45] (2016)

AU detection
2D image-based methods [6] (2018), [46] (2019), [47] (2021), [48] (2021), [49] (2021), [50]

(2022)
2D video-based methods [51] (2019), [52] (2021)
3D-based methods [53] (2018), [54] (2020), [55] (2019), [56] (2021)

3D facial reconstruction
Facial reconstruction from 3D input [33] (2017), [2] (2020)
Facial reconstruction from 2D input [3] (2020), [57] (2019), [58] (2021), [59] (2023), [60] (2022), [61]

(2022), [62] (2023)

3D facial expression generation
GANs-based methods [63] (2020), [7] (2019), [64] (2019), [65] (2020)
Global-local multilinear models [66] (2020)

3D facial animation generation
Audio-based animation generation [67] (2021), [68] (2021), [69] (2022), [70] (2022)
Neutral face-based animation generation [4] (2020), [71] (2022)

Facial registration Least-squares conformal mapping based-methods [72] (2008)
Encoder–decoder based methods [73] (2021)

Facial recognition
Space–time triplet loss network [74] (2021)
Time-deformable shape models [75] (2021)
FaceGCN [8] (2022)

Facial disease diagnosis AU detection-based methods [76] (2022)
best-performing features. Finally, a nearest-neighbor classifier is
used for expression classification. In the experiment, the average
recognition rate for the six facial expressions in the BU-4DFE
dataset was 78.8%, significantly improving recognition rates for
the three easily confused expressions including anger, fear, and
sadness.

Methods based on in-depth features Duh et al. [40] first
onverted 3D mesh vertices into depth frames and extracted
istograms of Oriented Gradient (HOG) and Histograms of Op-
ical Flow (HOF) for Space-Time Interest Points (STIPs) from the
epth sequences. Then, they used naive Bayes information max-
mization and constrained matching pairs to calculate Mutual
nformation Score (MIS) and Weighted Matching Score (WMS),
espectively. Finally, the MIS and WMS results were concatenated
nto a feature vector and input into SVM for facial expression clas-
ification. This method was tested on the six facial expressions in
he BU-4DFE dataset, achieving an average classification accuracy
f 77.7%.

2) Learning-based methods
Li et al. [41] proposed a Dynamic Geometrical Image Net-

ork (DGIN) for automatic 4D facial expression recognition. This
ethod first extracts a set of 3D facial scan sequences from
3D video for each facial expression, generates depth image

DPI), normal component images (NCI), and shape index im-
ges (SII) using projection and interpolation techniques as the
nput of DGIN network. The DGIN network comprises a short-
erm pooling layer, multiple groups of convolution+RELU+pooling
ayers, a long-term pooling layer, a full connection layer, and a
oss function layer. Among them, the short-term pooling layer is
esponsible for generating dynamic geometric images DGI, and
he long-term pooling layer is responsible for integrating dynamic
eature maps. During the testing phase, it achieved a recognition
ccuracy of 92.22% on the BU-4DFE dataset.
Behzad et al. [42] proposed a new Multi-view transformer

MiT) that transforms multi-view 2D images into fixed-size multi-
iew images(left, front, and right), and then combines patches
nd position embeddings from different views to obtain a vec-
or sequence. Then, a multi-view Transformer encoder predict
he expression based on the vector sequence. During training,
novel multi-view loss term is proposed to facilitate gradient

pdates across multiple views during backpropagation. In the
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experimental section, four datasets were used for experiments,
among which 4D facial expression recognition achieved recog-
nition accuracies of 99.66% and 91.67% on the BU-4DFE and
BP4D-Spontaneous datasets, respectively.

Except for a few learning-based methods, early facial expres-
sion recognition tasks mostly relied on manually extracting fea-
tures from facial curves, feature points/regions, frequency do-
main, or optical flow to form feature vectors or descriptors and
then combining them with classifiers such as SVM or HMM for
expression recognition. When the extracted features are exactly
effective for a specific task, the results are often better. However,
such methods are often time-consuming, labor-intensive, and
have poor robustness. Learning-based methods are limited by the
network input of deep learning. They only use geometric images
or projection methods for training, which results in information
loss for the 3D model. Table 5 summarizes the above works’
datasets, data types, methods, advantages and disadvantages. It
is worth noting that the inputs of these methods or models are
generally static 3D facial models or dynamic 3D sequences, except
that the methods based on 2D projection convert the triangle
mesh sequence into a deep image sequence as input. This differs
from the recent AU detection tasks, which will be discussed in
the next section. Table 6 gives the facial expression recognition
results for the above work on the 4D dataset.

4.1.2. Expression retrieval
Danelakis et al. [43–45] explored the field of dynamic 3D

facial expression retrieval and proposed three works. In 2014,
the authors first proposed the GeoTopo descriptor [43], which
captures the geometric and topological information of the face.
The geometric information is captured by a 2D function G(i,j)
that captures the maximum curvature of eight facial landmarks.
Another 2D function, T(i,j), represents the topological informa-
tion, which selects ten features, including one angle, four areas,
and five distances features. The authors used 3D dynamic se-
quences of three expressions (anger, happiness, and surprise)
from 101 subjects in the BU-4DFE dataset for experiments and the
retrieval results are used for unsupervised 3D facial expression
recognition, as shown in Table 6.

In 2015, the author improved the descriptor [44] by changing
the T(i,j) function that captures topological information from ten
to six features, including two facial area features and four facial
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Table 5
Summary of 4D facial expression recognition methods.
Literature Dataset Input data Method Advantages Disadvantages

Maalej et al. [35] BU-3DFE, BU-4DFE 3D mesh sequence Iso-geodesic + HMM Low cost calculation based on
shape analysis method

Manual feature extraction,
traditional classification
method HMM

Amor et al. [36] BU-4DFE 3D mesh sequence DSF+LDA+HMM/Random
Forest

The radial curve to represent
the face shape can effectively
capture the subtle deformation
of the face

Nose tip detection in
non-frontal view or in the
presence of occlusion

Berretti et al. [37] BU-4DFE 3D mesh sequence Local features based on
facial landmark points +

HMM

Automatically detects facial
marker points and considers
their local features to form
feature descriptors

Not suitable for detection in
low resolution and obscured
situations

Xue et al. [39] BU-4DFE Triangular mesh 3D-DCT+Nearest Neighbor Extraction of spatio-temporal
features of expressions by
frequency domain

Facial marker point detection
still uses 2D texture image
information

Duh et al. [40] BU-4DFE Depth sequences Extracts HOG and HOF of
STIPs from depth
sequences + SVM

Contains in-depth information Depth maps have information
loss

Zhen et al. [38] BU-3DFE, BU-4DFE 3D static meshes
or 4D faces

MMM + HMM Solve face segmentation, shape
representation and feature
fusion problems

Non-end-to-end

Li et al. [41] BU-4DFE 2D geometric
images

Dynamic geometry Image
Network

Generating geometric images
from estimated Differential
geometry quantities to
describe 3D faces

Geometric images have
information loss compared to
the original 4D data

Behzad et al. [42] Bosphorus, BU-3DFE,
BU-4DFE,
BP4D-Spontaneous

2D images of left,
front and right
views

Multi-view transformer Multi-view based transformer,
no need to extract features
manually

Projection of the input from a
3D/4D grid to a 2D image,
with loss of information
Table 6
Expression recognition rates(RRs) of different methods on different datasets.
Author Dataset Overall

Maalej et al. [35] (2012) BU-4DFE 93.83
Berretti et al. [37] (2013) BU-4DFE 79.44
Amor et al. [36] (2014) BU-4DFE 93.21
Xue et al. [39] (2015) BU-4DFE 78.8
Duh et al. [40] (2016) BU-4DFE 77.7
Zhen et al. [38] (2016) BU-4DFE 87.06
Danelakis et al. [43] (2014) (3 expressions) BU-4DFE 96.67
Danelakis et al. [44] (2015) (3 expressions) BU-4DFE 99.67
Danelakis et al. [44] (2015) BU-4DFE 90.83
Danelakis et al. [45] (2016) BU-4DFE 90.0
Danelakis et al. [45] (2016) BP4D-Spontaneous 88.56
Rashid et al. [6] (2018) BP4D-Spontaneous 93.7
Danelakis et al. [53] (2018) (24AUs) BP4D-Spontaneous 90.60
Li et al. [41] (2018) BU-4DFE 92.22
Behzad et al. [42] (2021) BU-4DFE 99.66
Behzad et al. [42] (2021) BP4D-Spontaneous 91.67

distance features. They also applied Discrete Cosine Transform
(DCT) to map the features from the temporal domain to the
frequency domain to construct the final descriptor ST. The ex-
periments showed that the improved method achieved better
retrieval results on the three expressions in the BU-4DFE dataset.

In 2016, the author proposed the enhanced version of the
eoTopo descriptor: GeoTopo+ [45]. GeoTopo+ consists of three
arts: the first part is the geometric descriptor, which uses a vari-
nt of the typical heat kernel signature (HKS) and applies appro-
riate constraints in the temporal domain to prevent shape per-
urbation invariability and to capture shape perturbations better
han scalar curvature. The second part is the geometric descriptor,
hich represents the normal vectors of the jth facial landmark
oint in the ith facial frame. The third part is the topological

descriptor, the same as the T(i,j) function in the GeoTopo de-
scriptor. In the experimental section, six expressions from the BU-
4DFE dataset and eight expressions from the BP4D-Spontaneous
431
Fig. 5. Basic AUs (3D models and corresponding 2D images) [45].

dataset were used for experiments, achieving 90.00% and 88.56%
accuracy, respectively.

Table 7 summarizes the above works’ datasets, data types,
methods, advantages and disadvantages.

4.1.3. AU detection
Friesen and Ekman proposed the Facial Action Coding System

(FACS) [77] in 1978, which classifies the movement of specific
muscles or the activation of a muscle group in facial expressions
by combining facial muscle action units (AUs) (see Fig. 5). Initially,
they defined 46 different AUs [78], which can be combined in over
7000 ways to describe the details of facial expressions. Table 8
shows the relationship between basic emotion categories and
action units [79,80].
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Table 7
Summary of 4D facial expression retrieval methods.
Literature Dataset Input data Method Advantages Disadvantages

Danelakis et al. [43] BU-4DFE 4D GepTopo + KNN Capturing face topology and
geometry information

Artificially defined descriptors,
search accuracy needs to be
improvedDanelakis et al. [44] BU-4DFE 4D Frequency domain Descriptors

from 10 features to 8
Frequency domain Descriptors
saved space requirements
compared to GepTopo

Danelakis et al. [45] BU-4DFE,
BP4D-Spontaneous

4D Descriptor GeoTopo+ Introducing HKS in GeoTopo+
Table 8
The basic action units observed in each basic emotion category.
Emotion Action units Description

Anger 4, 7, 24 Brow lowerer, Lid tightener, Lip pressor
Disgust 9, 10, 17 Nose wrinkle, Upper lip raiser, Chir raiser
Fear 1, 4, 20, 25 Inner brow raiser, Brow lowerer, Lip stretcher, Lips part
Happiness 12, 25 Lip corner puller, Lips part
Sadness 4, 15 Brow lowerer, Lip corner depressor
Surprise 1, 2, 25, 26 Inner brow raiser, Outer brow raiser, Lips part, Jaw drop
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Compared to the coarse-grained classification of several basic
acial expressions, AUs can express a variety of human facial ex-
ressions, such as embarrassment and awkwardness. Therefore,
any researchers have started to use various methods to carry
ut tasks of AU detection or recognition. These methods can be di-
ided into three categories: 2D image-based methods [6,46–50],
D video-based methods [51,52], and 3D-based methods [53–56].
2D image-based methods Rashid et al. [6] proposed using

apsule networks for facial AU detection. Tu et al. [46] pro-
osed an IdenNet algorithm that is a multi-task network cascade
onsisting of two sub-tasks: facial clustering and AU detection.
tinou et al. [47] proposed a heatmap regression method for
oint modeling of the localization and intensity of AUs. Li et
l. [48] proposed a new framework to unify all semantic re-
ationships and temporal contexts. Shao et al. [49] proposed a
ramework called JÂA-Net, for joint learning of AU detection and
acial alignment tasks. Ge et al. [50] proposed a Multi-level Graph
elational Reasoning Network (MGRR-Net) for facial AU detec-
ion. The proposed method was compared with ARL [81] based on
lobal feature learning and JÂA-Net based on local region feature
earning.

Literature [6] demonstrates the effectiveness of capsules for
odeling AU detection. Literature [46] addresses a problem
here appearance changes caused by identity may exceed the
ne generated by expressions, allowing the trained classifier
o support predicting the correct AUs of new subjects. Litera-
ure [47] first proposed using variable size heat maps to jointly
imulate AUs localization and intensity estimation, which is a
imple and effective method. Literature [48–50] uses a self-
ttention mechanism in the AU detection task to better learn
he facial features between different areas or between multiple
cales. But the above methods only use a single frame 2D image
s the input of the network, lacking the expression of temporal
eatures of facial expressions. The comparison results are shown
n Table 9.

2D video-based methods Yang et al. [51] proposed a FACS3D-
et, which integrates 3D and 2D convolutional neural networks.
he 3D CNN learns spatiotemporal representations, while the 2D
NN learns spatial representations for each frame. The fully con-
ected layers combine spatiotemporal and spatial representations
o achieve multi-label AU detection for each video frame. Chen
t al. [52] proposed CaFNet, which uses the context modeled in
aFGraph to extract facial graphic representations that distin-
uish context, thereby improving AU recognition performance. In
ddition to learning the spatial features of a single frame image,
432
the above two methods respectively use 3D CNN and spatiotem-
poral graph convolution to learn temporal context information to
improve the performance of AU detection.

3D-based methods According to our survey, only a few ex-
sting methods [53–55] directly process 3D data, while liter-
ture [56] uses range image. Danelakis et al. [53], based on
heir previous works on facial expression retrieval, proposed a
escriptor consisting of 16 features composed of angles, areas,
nd distances. Yang et al. [54] proposed an adaptive multimodal
usion model (AMF), demonstrating that the multimodal fusion
ethod outperformed the single-modal-based methods in AU
etection tasks. Reale et al. [55] proposed a new architecture
alled Local Continuous Point Network (LCPN). This is the first
ork to use a 3D points cloud for facial expression analysis.
CPN combines the global features of PointNet [82] with local
eatures from PCCN [83], introducing a single PCCN layer after the
oordinate transformation layer into PointNet. Zhang et al. [56]
roposed an end-to-end Multi-Head Fused Transformer (MFT)
lgorithm.
Table 10 summarizes the different AU detection methods.

able 11 presents the F1 score results for AU detection on the
P4D-Spontaneous dataset using the above mentioned methods.
t can be observed that AMF [54] performs better than other
ethods in most AU F1 scores, except for [53–55], which are
ased on 3D data processing instead of 2D data as input in other
ethods. The method proposed in literature [55] takes 3D point
louds as input. It only uses the position of points as features,
acking information about point neighborhood relationships, so
ts results are not optimal. In comparison, AMF [54] designs a
ultimodal fusion approach, using 2D images and depth maps
btained from the projection of 3D meshes as inputs to the
etwork on the BP4D-Spontaneous dataset. However, the depth
ap loses information about the 3D face model, so future works
an explore further deep learning based on 3D models to achieve
igher AU detection results.

.2. Generation tasks

Inspired by the tremendous success of GANs and other gener-
tive models in various 2D image generation tasks, researchers
ave begun to explore research based on 4D facial data, such
s 3D facial reconstruction, 3D facial expression generation, and
D facial animation generation. These studies can be applied to
omputer games, virtual reality (VR), film production, video con-
erencing, and 3D simulation. Based on research on 4D datasets,
e divide generative studies into three categories: 3D facial re-
onstruction, facial expression generation, and facial animation
eneration.
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Table 9
Comparison of average F1-frame and average accuracy of AU detection on each dataset.
Methods Avg F1-frame(%) Avg Accuracy(%)

ARL [81] JÂA-Net [49] MGRR-Net [50] ARL [81] JÂA-Net [49] MGRR-Net [50]

BP4D-Spontaneous 61.1 62.4 63.7 78.2 78.6 79.7
DISFA 58.7 63.5 68.2 93.3 94 95.2
GFT / 53.7 / / 90.5 /
BP4D+ 54.6 56.8 / 79.6 82.1 /

Note: / indicates that no experiments were performed.
Table 10
Summary of different methods of AU detection.
Literature Method Dataset Data type Advantages Disadvantages

Danelakis
et al. [53]
(2018)

Feature
Descriptors +

SVM

BP4D-Spontaneous 3D mesh
sequences

The resulting descriptors are defined
using only eight extracted facial marker
points to represent 24 AUs

Limited by the extraction of facial
landmark points

Rashid et al.
[6] (2018)

Capsule network BP4D-Spontaneous,
DISFA

2D images Detection of AU using capsule networks
with more expressive capsules

Capsule networks are slow due to
dynamic routing protocols

Reale et al.
[55] (2019)

Local Continuous
PointNet (LCPN)

BP4D-Spontaneous,
BP4D+

Point cloud Combining the advantages of PointNet
and PCCN is less restrictive compared to
triangle grid methods

Only point locations are used as
features, currently using static
data

Tu et al.
[46] (2019)

IdenNet BP4D-
Spontaneous,UNBC-
McMaster,
DISFA

2D images Subtracting identity features in AU
detection networks better presents
differences in AUs

Non-3D data

Yang et al.
[51] (2019)

FACS3D-Net BP4D+ 2D images Added consideration for temporal
context, better detection performance
for subtle AU

2D images add temporal
dimension for 3D convolution, the
input is not 3D

Yang et al.
[54] (2020)

Adaptive
multimodel fusion
model

BP4D-Spontaneous,
BP4D+

2D multimodal
images

Adaptive feature fusion from different
modalities

3D facial model uses 2D depth
map as input, with information
loss

Ntinou et al.
[47] (2021)

Heat map
regression
network

FERA2015, DISFA,
FERA2017

2D images Combined AU localization and AU
intensity tasks for direct regression of
AU intensity levels with heat maps

Non-3D data

Chen et al.
[52] (2021)

CaFNet BP4D-Spontaneous,
DISFA

2D images CaFGraph can be used for almost all
fine-grained facial behavior analysis
tasks

Non-3D data

Li et al. [48]
(2021)

Integrated
network of
semantic and
temporal
relationships

BP4D-Spontaneous,
DISFA

2D images Simultaneously considering the
correlation of facial muscles and the
temporal context dependence of facial
features

Non-3D data

Zhang et al.
[56] (2021)

Multi-Head Fused
Transformer

BP4D-Spontaneous,
BP4D+

2D images,
depth maps,
thermal images

End-to-end AU detection without a
priori such as facial marker points, AU
semantic descriptions, etc.

The depth map is used, no 3D
feature representation is used

Shao et al.
[49] (2021)

Local Continuous
PointNet (LCPN)

BP4D-Spontaneous,
BP4D+

2D images Joint learning for AU detection and
facial alignment tasks

Non-3D data

Ge et al.
[50] (2022)

MGRR-Net BP4D-Spontaneous,
DISFA

2D images Multi-level feature learning from local
area and global face

Non-3D data
Table 11
F1 scores of different methods for AU detection in BP4D-Spontaneous dataset (%).

Action
Unit

Rashid et al.
[6] (2018)

LCPN [55]
(2019)

IdenNet [46]
(2019)

AMF [54]
(2020)

CaFNet [52]
(2021)

Li et al. [48]
(2021)

MFT [5] (2021) JÂA-Net [49]
(2021)

MGRR-Ne
[50]
(2022)

AU1 46.8 43.6 50.5 55.1 55.1 54.0 51.6 53.8 52.6
AU2 29.1 41.7 35.9 58.3 49.3 46.0 49.2 47.8 47.9
AU4 52.9 56.7 50.6 62.0 57.7 55.7 57.6 58.2 57.3
AU6 75.3 74.7 77.2 82.5 78.3 79.4 78.8 78.5 78.5
AU7 77.6 71.2 74.2 75.6 78.6 78.8 77.5 75.8 77.6
AU10 82.4 81.0 82.9 87.2 85.1 84.5 84.4 82.7 84.9
AU12 81.2 84.5 85.1 89.6 86.2 87.0 87.9 88.2 88.4
AU14 55.5 55.5 63.0 60.9 67.4 67.0 65.0 63.7 67.8
AU15 32.6 40.7 42.2 59.1 52.0 55.6 56.5 43.3 47.6
AU17 60.6 57.6 60.8 62.4 64.4 63.1 64.3 61.8 63.3
AU23 41.3 39.3 42.1 45.0 48.3 50.7 49.8 45.6 47.4
AU24 – 44.1 46.5 52.0 56.2 55.3 55.1 49.9 51.3
Avg 57.6 57.6 59.3 65.8 64.9 64.8 64.8 62.4 63.7
433
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Fig. 6. DI-MeshEncoder structure [2] (courtesy of Prof. Huibin Li).

.2.1. 3D facial reconstruction
3D facial reconstruction can be divided into two categories

ased on the type of input data: one is based on a 3D facial
odel as input and aims to design models that can separate the

dentity and expression of 3D facial meshes to achieve different
acial expression reconstruction effects; the other is focused on
econstructing the 3D geometric shape of the face from one or
ore 2D images.

1) Facial Reconstruction from 3D input
Li et al. [33] proposed a 3D facial modeling model called

LAME by learning facial models from thousands of accurately
ligned 3D scans. FLAME applies the SMPL [84] body modeling
ethod to the head and adds expression-mixed shapes. It learns

he linear shape space of the face from 3800 frames of scanned
ata of facial heads, combines other global expression-mixed
hapes from 4D facial sequences in the D3DFACS dataset and
ther 4D sequences, and uses 33,000 scans for learning. The
esulting FLAME model is highly expressive and can be applied
o facial modeling, expression conversion, and 2D-to-3D facial
econstruction tasks.

Zhang et al. [2] proposed a Distribution Independent Varia-
ional MeshEncoder (DI-MeshEncoder) method. DI-MeshEncoder
onsists of a shared encoder, two decoders, and a discriminator,
s shown in Fig. 6. First, a shared encoder based on Graph Con-
olutional Networks (GCN) is designed to output the latent space
istribution of the identity and expression of the given 3D facial
hape separately. Then, two decoders consisting of fully con-
ected layers reconstruct the identity and expression parts of the
nput 3D face from the two distributions. Meanwhile, a discrim-
nator composed of two fully connected layers enhances the po-
ential distribution independence between expression and iden-
ity. The experiments were conducted on three datasets, CoMA,
3DFACS, and BU-3DFE, and the results showed that the pro-
osed method had excellent applications in facial decomposition,
econstruction, and expression conversion.

Both of the above works belong to the first category, which
s to perform attribute decomposition on 3D facial models to
ecouple them into shape features, pose features, and expression
eatures or identity and expression features for 3D facial recon-
truction. The visualization results of the reconstructed faces are
hown in Fig. A.1.

2) Facial Reconstruction from 2D input
Another 3D facial reconstruction problem aims to restore the

D geometric shape of the face from 2D images or videos. Cheng
t al. [3] proposed a lightweight framework based on GCN. The
ramework consists of two connected sub-networks. The method
as tested on the Florence [85], BU-3DFE, and 4DFAB datasets,
nd the results showed that the authors’ method was fast and
ightweight. Liu et al. [57] proposed an encoder–decoder network
tructure that can directly learn the raw 3D scan data for facial
odeling in multiple 3D datasets. Zhang et al. [58] proposed a

eal-time 4D facial expression capture solution to generate per-
onalized 4D faces using only a consumer-grade RGB-D camera
434
and CPU-based computation. As shown in Fig. 7, the method
consists of three steps. The method’s main advantage is its speed,
with an average time of only 40 ms required to obtain the target
face with 3D facial landmarks. The reconstructed visualization
results of the above methods are given in Fig. A.7.

Recently, with the development of VR/AR technology, the 3D
head avatar generation has opened up a wide range of appli-
cations in communication and entertainment. Sun et al. [59]
proposed a new GAN framework called Next3D. It can synthesize
high-quality and 3D consistent facial portraits from unstructured
2D images and achieve precise control of full head rotation, facial
expressions, eye blinking, and gaze direction. Grassal et al. [60]
proposed an explicit 3D human head model: Neural Head Avatars.
This method accurately reconstructs the geometry and appear-
ance of the human head from the monocular RGB sequence. This
method combines the parametric head model with a Multilayer
perceptron, and the resulting 4D head image is robust to large
changes in posture, view, and expression. Fig. A.2 shows the
qualitative results of this method on the synthetic subject. Zheng
et al. [61] combined the ideas of 3DMM and implicit modeling
to implement an iterative 3D facial reconstruction method based
on the monocular video: IMavatar. The synthetic dataset obtains
FLAME expression parameters from the VOCA dataset and fits
head posture from real videos. Build a test set with more ex-
treme expressions from CoMA. The resulting 3D facial model is
realistic and can be edited in a 3DMM manner. Fig. A.3 shows
the qualitative results of this method on the synthetic data. Sub-
sequently, the author decomposed the source color into intrinsic
albedo and normal dependent shading and proposed a point-
based deformable representation: PointAvatar [62]. This method
can generate animated 3D avatars from hand-held smartphones,
laptop webcams, and internet videos for monocular videos. The
method has demonstrated effectiveness for eyeglasses, volumi-
nous hair, skin details, and extreme head positions. The above
works all mentioned are related to the work of (neural radi-
ance fields) NeRF [86] or head avatars based on NeRF, indicating
the enormous potential of NeRF in the field of 3D head avatar
generation.

Table 12 summarizes the different reconstruction methods.
Table 13 summarizes the quantitative results of the above meth-
ods regarding reconstruction error according to Average Vertex
Distance (AVD), Normalized Mean Error (NME) or Mean Shape
Error (MSE).

4.2.2. 3D facial expression generation
Early facial expression generation methods often required a lot

of manual work. With the development of dynamic 3D scanning
technology, facial geometric movements of dense point clouds
can be accurately obtained. Wang et al. [87] proposed a data-
driven expression synthesis method. This method first captures
high-speed and high-accuracy moving faces, then uses a multi-
resolution deformable mesh to track facial movements, and then
separate expression styles through a unified low dimensional
dynamic facial motion mapping, thereby synthesizing novel facial
expressions. In this method, the goal of expression synthesis is
to learn a decomposable generative model, that is, to transform
human expression style without changing the internal facial con-
figuration of the face. In recent years, with the development of
deep learning, existing 3D works [7,63–65] on facial expression
generation are primarily implemented based on GANs and have
achieved significant results.

Liu et al. [63] proposed a local attentive conditional generative
adversarial network (LAC-GAN) based on facial action unit (AU)
annotation, as shown in Fig. 8. Cheng et al. [7] proposed the
first GAN structure that operates on 3D meshes, called MeshGAN.
This method uses convolution on meshes to generate 3D meshes.
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Table 12
Summary of different reconstruction methods.
Literature Method 4D Dataset Advantages Disadvantages

Li et al. [33]
(2017)

FLAME D3DFACS Realized feature decoupling of shape, posture,
and expression

Only considered the face’s outer surface,
without considering the correlation
between the face and the head bones

Zhang et al. [2]
(2020)

DI-MeshEncoder CoMA, D3DFACS Using the structure of encoder–decoder to
reconstruct identity and expression
information separately

Further improvements can be made to
apply the learned features to facial
recognition, retrieval and other areas

Cheng et al. [3]
(2020)

GCNs 4DFAB Fast and lightweight (with MobileNet-V2
backbone, the model size is only 37 MB)

–

Liu et al. [57]
(2019)

Encoder–decoder
structure network

BU-4DFE Ability to learn potential representations of
nonlinear identity and expression features of
3D faces

–

Zhang et al. [58]
(2021)

Face mesh
deformation

BU-4DFE Fast, fully automated, low computational and
system costs

Kinect data accuracy low

Sun et al. [59]
(2023)

Next3D – Supports precise control of full head rotation,
facial expressions, blinking, and gaze direction

It struggles to model some expressions
with full consistency, such as one-side
mouth up, sticking tongue out, etc.

Grassal et al. [60]
(2022)

Neural Head
Avatars

– The parameterized head model is combined
with the Multilayer perceptron so that the
Perceptron can refine geometric shapes and
synthesize realistic textures

Limited by fixed topology

Zheng et al. [61]
(2022)

IMavatar CoMA, VOCASET 3DMMs provide fine-grained expression
control, while implicit surfaces provide the
high fidelity geometry and texture details

The method relies on accurate face tracking
and performance degenerates with noisy
3DMM parameters

Zheng et al. [62]
(2023)

PointAvatar – Decompose source color into intrinsic albedo
and normal-related shading

The method cannot faithfully model the
reflection of eyeglass lenses
Table 13
Summary of quantitative results of reconstruction error (mm).
Methods CoMA D3DFACS 4DFAB BU-4DFE

Mean AVD Median AVD Per-vertex error Mean AVD Median AVD NME MSE

Li et al. [33] 1.451 ± 1.649 0.871 1.615 1.038 ± 1.141 0.748 / /
Zhang et al. [2] 0.665 ± 0.748 0.434 / 0.604 ± 0.759 0.38 / /
Cheng et al. [3] / / / / / 7.15 /
Liu et al. [57] / / 1.474 / / / /
Zhang et al. [58] / / / / / / 3.59|1.06

Note: / indicates that no experiments were performed.
Fig. 7. Real-time 4D facial expression capture solution framework [58].
he network structure is shown in Fig. 9. The expression model
as trained on the 4DFAB dataset. Abrevaya et al. [64] proposed
ecoupling the identity and expression of 3D facial models using
AN to generate realistic 3D faces. The method architecture is
hown in Fig. 10. Model training uses BU-3DFE and Bosphorus
o provide identity variability and uses BP4D-Spontaneous and
U-4DFE to provide expression variability. Moschoglou et al. [65]
roposed 3DFaceGAN (Fig. 11). The primary purpose of the gen-
rator in 3DFaceGAN is to retrieve a facial UV map as input
nd generate a fake facial UV map. An autoencoder is used as
he discriminator to distinguish between real and fake facial UV
aps. The visualization generation results of the above methods
re shown in Figs. A.4, A.5, and A.6 in the Appendix.
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Unlike the GANs-based methods mentioned above, Wang et
al. [66] proposed a global–local multilinear model-based method.
The method first uses a global multilinear model (blue in Fig. 12)
to estimate the input neutral mesh and obtain the rough defor-
mation of the new expression. Then, the local model (green in
Fig. 12) is optimized through the sparse sampling of the global
model results, fitting the rough deformation constraints of the
local expression model, but this cannot guarantee the approx-
imate identity of the target object. Therefore, dense sampling
is performed on the expression shape. The local identity model
is fitted to the generated constraints, producing the final face
that retains the predicted identity and expression details. Fig. A.8
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Fig. 8. The general framework of LAC-GAN [63].

Fig. 9. Network structure of MeshGAN [7].

Fig. 10. The methodological structure of the literature [64] (courtesy of Victoria
Fernández Abrevaya).

Fig. 11. 3DFaceGAN network structure [65].

Fig. 12. Global–local multilinear model framework [66].
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shows this method’s visualized results of 3D facial expressions
synthesized.

Table 14 summarizes different methods for facial expression
generation. It is worth noting that many methods, whether recon-
struction methods in Table 12 or expression generation methods
in Table 14, are based on feature decoupling and use 4D datasets
to train and learn expression feature information. Because 4D
datasets include temporal information, they can show more facial
expression details, an advantage that 3D datasets do not have.
Therefore, having a sufficiently large number of samples and
expression categories in 4D datasets is extremely important for
facial analysis research.

4.2.3. 3D facial animation generation
3D facial animation generation can be divided into two types

based on different inputs: audio-based animation generation and
neutral face-based animation generation. Audio-based animation
generation mainly uses audio or combined with the text as net-
work input to generate a 3D dynamic head model. Neutral face-
based animation generation also aims to generate a 3D dynamic
head model. However, this type of method considers that audio-
driven methods ignore the importance of facial expressions and
emphasize conducting facial animation generation research using
neutral 3D facial mesh combined with audio or target expressions
as network input.

(1) Audio-based animation generation
Audio-based head animation generation method is currently

more popular in the field of facial animation generation. This
type of method combines the speech information from the au-
dio with head movements to generate realistic head animations.
Zhang et al. [67] proposed a model combining PoseGAN and
PGFace, which takes audio streams as input and outputs 3D
talking head sequences with dynamic head movements. PoseGAN
consists of a Gpose3D head poses sequence generator and a
Dpose discriminator, which generates head pose sequences for
3D heads. Then PGFace generates facial shape parameters, using
audio and pose information to generate natural 3D dynamic facial
models. Lahiri et al. [68] proposed an end-to-end network called
LipSync3d for synthesizing personalized 3D talking faces. This
method decouples 3D geometric shape, head pose, and texture
and decomposes the prediction problem into regression problems
of 3D facial shape and corresponding 2D texture images. Fan et al.
[69] proposed a Transformer-based autoregressive model called
FaceFormer, which formulates the problem of speech-driven 3D
facial animation as a sequence-to-sequence (seq2seq) problem
and uses the self-attention mechanism of the Transformer to
model the short- and long-term relationships in speech-driven
3D facial animation. Fan et al. [70] also proposed a model based
on the encoder–decoder structure that uses audio and text as
network input to generate 3D facial animation sequences.

(2) Neutral face-based animation generation
Potamias et al. [4] proposed the first model for generating

realistic 3D facial animation with a given target expression and a
neutral 3D facial mesh. The method adopts an encoder–decoder
network structure, where a recursive LSTM encoder encodes the
expected facial movements of the target expression into the la-
tent expression space, which is then decoded by a frame decoder
into mesh deformations and output to the neutral facial mesh.
In the experiment section, the authors trained the model on
153 samples from the 4DFAB dataset, with 27 used for testing,
and set up four stages (neutral, onset, apex, offset) for six basic
expressions. Additionally, the authors conducted an in-the-wild
expression generation experiment by collecting images of neutral
and various expressions of the same individuals and fitting 3D
expressions using the method proposed in [88], which resulted
in a series of realistic 3D expression sequences.
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Table 14
Summary of different expression generation methods.
Literature Method 4D Dataset Advantages Disadvantages

Liu et al. [63]
(2020)

AU + GAN BP4D-Spontaneous Using AU for facial expression synthesis tasks Design network with 2D image data,
non-3D data

Cheng et al. [7]
(2019)

MeshGAN 4DFAB The first 3D mesh generation model using
convolutional GANs architecture directly on the
mesh

/

Abrevaya et al.
[64] (2019)

2D UV map +

GAN
BP4D-
Spontaneous,
BU-4DFE

Able to capture nonlinear changes caused by
expressions and the relationship between identity
and expression subspaces

The method is limited by the diversity of
training data and the accuracy of labels

Moschoglou et al.
[65] (2020)

3DFaceGAN 4DFAB The first GAN network for 3D face distribution
modeling that preserves high frequency details of
3D faces

/

Wang et al. [66]
(2020)

Global-local
multicollinear

4DFAB Results of global and local multilinear methods;
separation of local identity and local expression

The training data needs to be a
complete data tensor
model models
Table 15
Summary of different animation generation methods.
Literature 4D Dataset Input Output Method Advantages Disadvantages

Zhang et al.
[67]

– Audio stream 3D face
sequence

PoseGan
+PGFace
modules

End-to-end audio generation of 3D
head animation network

For large movements of the
head posture, the generated
facial deformation is obvious

Lahiri et al.
[68]

– Audio stream 3D face
sequence

LipSync3d
network

Decoupling of 3D poses, geometry,
textures and lighting;

–

Fan et al. [69] VOCASET Audio stream 3D animation FaceFormer
network

Transformer-based model for
long-term audio context encoding
with autoregressive prediction of 3D
face mesh animation

Not suitable for online
streaming, which requires
access to the full audio
sequence

Fan et al. [70] – Audio stream
and text

3D animation
sequence

Encoder-
Decoder
network

Combining acoustic and text
modalities to predict 3D talking head
geometry

–

Potamias et al.
[4]

4DFAB Single neutral
3D mesh,
target
expression

3D animation Encoder-
Decoder
network

The first synthetic facial model from
a single neutral face

The next step could be to try
to extend to texture prediction

Otberdout et al.
[71]

CoMA,
D3DFACS

Neutral 3D
face, expression
labels

3D animation Motion3DGAN
and S2D-Dec
decoder

Decoupling the temporal modeling of
expressions and the deformation of
neutral meshes into two problems

S2D-Dec generates
expression-specific
deformations, so identity

cannot be modeled
Otberdout et al. [71] proposed the Motion3DGAN model,
hich decouples the time modeling of expressions and the de-

ormation of neutral meshes into two sub-problems of dynamic
D facial expression generation. Motion3DGAN explains the dy-
amics of expressions by generating temporally consistent move-
ents of 3D facial landmarks corresponding to the input labels

rom noise. The movements of facial landmarks are encoded
sing the square root velocity function (SRVF) and compactly
epresented as points on a hypersphere. Then, the S2D-Dec de-
oder is proposed to generate a dense 3D face guided by the
ovements of facial landmarks for each sequence frame. The
uthors conducted experiments using the CoMA and D3DFACS
atasets. Fig. A.9 shows the ability of Motion3DGAN in 4D facial
xpression generation.
Table 15 provides a summary of generative methods. The table

hows that most audio-based animation generation methods do
ot require support from 4D datasets but use audio streams as
nput to the model. However, it is difficult to generate the head
osture of the large movement and is not suitable for online
treaming media. On the other hand, neutral face-based methods
chieve realistic facial animation by deforming the neutral mesh
nput from 4D datasets.

.3. Other tasks

In addition to the expression recognition and generation tasks,
everal other tasks are based on 4D datasets, such as alignment,
acial recognition, and facial disease diagnosis.
437
4.3.1. Facial registration
Wang et al. [72] proposed an automatic non-rigid registra-

tion algorithm based on least-squares conformal mapping. The
algorithm first maps the 3D face surface to the 2D domain with
global optimization through the least-square conformal map-
ping theory. It simplifies the 3D surface registration problem to
the 2D registration problem. Then, the Active Appearance Model
(AAM) [89–91] is used to obtain the initial inter-frame feature
correspondence of the 3D dynamic face. Then, the least squares
conformal maps (LSCMs) of the initial corresponding features are
calculated to achieve inter-frame registration of the face surface.
In addition, based on the proposed non-rigid registration method,
this paper also proposes a new framework for dynamic facial
expression synthesis and transfer.

Mehdi et al. [73] conducted a face registration task using nine
3D or 4D large-scale face datasets, including BU-4DFE and 4DFAB.
They treated the registration task as a face-to-face transforma-
tion problem and designed the Shape My Face (SMF) network
structure, an encoder–decoder structure based on an improved
PointNet. SMF directly captures the latent geometric information
(3DMM parameters) from the original 3D face scans for encoding
and decoding registration. The network structure is shown in
Fig. 13. During the network training process (indicated by dashed
lines), the authors measure the registration fit between the net-
work output and the dynamically sampled input point cloud to
ensure that the reconstructed vertices can match any point on
the scanned surface.
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Fig. 13. SMF Network Structure [73] (courtesy of Mehdi Bahri).

Fig. 14. TDSM method overview diagram [74].

.3.2. Facial recognition
Due to the complexity of 3D facial data, the 3D facial recog-

ition algorithm needs more complex and fine feature extrac-
ion and matching algorithms to achieve better performance.
iterature [8,74,75] proposed three different networks.
Jannat et al. [74] proposed a Temporal Deformable Shape

odel (TDSM). This model first detects 83 facial landmarks on
D data. Then align the centroid of the face and the original point
n the 3D space. The transformed 3D facial features are used to
bject recognition. The authors experimented with SVM, Random
orest (RF), and LSTM on the BU-4DFE, BP4D-BP4D-Spontaneous,
nd BP4D+ datasets, achieving recognition accuracy of over 99%.
ig. 14 provides an overview of the method. An example demon-
trates the correct identification of subject F001 from BP4D+
sing an LSTM trained based on 3D facial data detected from
DSM on an invisible 3D mesh model.
Kacem et al. [75] proposed a Space-Time Triplet Loss Network

or dynamic 3D face verification. First, the 3D facial features are
ncoded into a low-dimensional representation that describes
ocal deformations of the face relative to the mean face. Then, the
ncoded versions of the 3D faces along the sequence are stacked
nto a 2D array for temporal modeling. The resulting 2D array is
ed into a triplet loss network for dynamic sequence embedding.
inally, cosine similarity is used to compare the output of the
riplet loss network for face verification. Fig. 15 provides an
verview of the method.
Papadopoulos et al. [8] proposed a graph convolutional net-

ork for 3D dynamic facial recognition, called FaceGCN, as shown
n Fig. 16. The method first estimates 3D facial landmarks using
D texture facial images and their mappings to 3D facial meshes.
spatiotemporal graph is constructed using the 3D facial land-
arks, where the nodes contain appearance and shape features
xtracted from the neighborhood of each facial landmark. Then,
spatiotemporal graph convolutional network (ST-GCN) [92] is
sed for facial classification. The average recognition accuracy
esults of the above three facial recognition methods on the
U-4DFE dataset are given in Table 16.
438
Fig. 15. Overview of the literature [75] methodology.

Fig. 16. Overview of the Face-GCN [8].

Table 16
Average recognition accuracy of different methods in BU-4DFE.
Method Average accuracy (%)

Kacem et al. [74] 96.82
TDSM(SVM) [75] 99.9
TDSM(RF) [75] 100
TDSM(LSTM) [75] 100
Face-GCN [8] 88.45

4.3.3. Facial disease diagnosis
As stated in Section 4.1.2, AU detection is crucial in detecting

overall and local muscle region changes in the face and facial
expression. This makes AU detection widely applicable, such as
in the automatic estimation of facial paralysis. Ge et al. [76]
proposed an end-to-end model called Adaptive Local-Global Rela-
tional Network (ALGRNet). Specifically, the network first extracts
global features based on meshes using a Stem Network composed
of multiple convolutional layers and extracts local AU features
from calculated regions based on detected AU centers. Then, a
facial landmark point localization network is used to detect facial
landmarks. Next, the Skip-BiLSTM module mines positive and
negative relationships between different AU branches through
different information transmission options. Then, each branch’s
feature fusion and refinement module helps complement local AU
regions under the guidance of global features based on meshes.
Finally, a multi-label binary classifier is used to predict the prob-
ability of single AU activation, and experiments were conducted
on the BP4D-Spontaneous and DISFA datasets. To evaluate the
effectiveness of ALGRNet in estimating the severity of facial paral-
ysis, the authors used a facial paralysis dataset from the UK
National Health Service (NHS) called FPara, which includes 89
videos showing facial paralysis patients performing various types
of facial paralysis exercises, ranging from grade 1 to grade 6,
where one is normal and six is the most severe. The authors
further divided it into four levels: normal, mild, moderate, and
severe. The method achieved the best results for estimating facial
paralysis at the four levels, with an average F1-frame score of
75.4%. This method demonstrates the effectiveness of AU detec-
tion and the transferability from AU detection to the automatic
estimation of facial paralysis.
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Table 17
The main advantages and disadvantages of 2D, 3D and 4D methods.
Comparison 2D 3D 4D

Illumination change, pose
change

2D images and videos will be
affected

3D data is unaffected by illumination and is
robust to attitude changes

4D data is not affected by illumination and
is robust to attitude changes

Data acquisition Easy access, digital cameras,
cell phones and other 2D
imaging devices

Three-dimensional imaging equipment such
as three-dimensional scanners

Professionally built 4D imaging equipment

Available data volume Large public datasets A certain number of data sets are available
and are expected to continue to grow

Few datasets available

Calculation costs and storage
costs

Very low High data dimensionality, high storage and
computational costs

Increased timing information and higher
storage and computational costs than 3D

Facial surface measurement Inaccuracy 3D enables realistic facial surface
measurement

Enables moving measurement of the same
part over time

AU detection End-to-end deep learning
network methods are
abundant, and the mainstream
methods at this stage

A small number of methods using static
point clouds or depth maps, or multimodal
(2D images, depth maps, thermal imaging
images) as network inputs perform best

Limited by the development of deep
learning networks for 3D data and the
limited availability of 4D datasets, there is
currently a lack of end-to-end network
learning methods

Real-time Small amount of data, easy to
real-time

High data volume and equipment
requirements

Continuous processing of each frame of 3D
data, poor real-time

Expression analysis Inability to render
three-dimensional facial

Show the face in 3D, easy to extract
three-dimensional spatial features

Easy to extract the temporal characteristics
of expressions and facial muscles
features
5. Discussion

5.1. 2D, 3D and 4D advantages and disadvantages

3D facial data overcomes problems encountered in solutions
ased on 2D models, but 3D technology also has disadvantages.
D data provides more information than 3D static data due to
he addition of temporal information. Table 17 lists the main
dvantages and disadvantages of 2D, 3D, and 4D methods.
A study [93] pointed out that when a person tilts their head

pward, it is often accompanied by emotions such as contempt,
ride, and happiness. Conversely, tilting the head downwards
s often associated with sadness, inferiority, shame, embarrass-
ent, and guilt. This study preliminarily determined that human
motions will be affected by changes in head viewpoints. We
now that 2D images or videos are always presented from a fixed
iewpoint. In contrast, changes in viewpoint in 3D or 4D data
ay be more helpful for improving the recognition performance
f human emotions.

.2. Influence of different datasets attributes on 4D applications

Through the aforementioned research on existing 4D datasets,
t is illustrated that different attributes of the dataset, such as col-
ected data modes, scanned head coverage, etc. al., has different
mpacts on various applications.

4D facial datasets scanned head coverage is different, some are
nner faces, and others are full head models, which play different
oles in various tasks. For early facial expression recognition and
etrieval tasks, we found that the 4D dataset used by the re-
earchers in the experiment was not a full head scan. All 4D facial
atasets collect facial information, and the main reason is that
acial features are the main research object for facial expression-
elated tasks. In the AU detection task, the main research is the
ovement state of facial muscles. Therefore, for the expression-

elated tasks, the inner face or whole head dataset will not affect
he AU detection results. For the generation task, we believe
hat the dataset used is mainly related to the purpose of the
eneration task itself. The generation technology based on GANs
nd full head 4D facial datasets(such as CoMA and VOCASET) has
radually appeared. For the generation of 3D head avatars, its
ain application scenario is in communication or entertainment,
nd it is more inclined to generate full-head faces. For facial
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reconstruction from the 2D image as input, the input 2D image
itself is only the inner face information of the face. Therefore, this
kind of task mainly uses inner face data sets (such as BU-4DFE and
4DFAB) for experiments.

In contrast, the diversity of data modes has a more significant
impact on various 4D facial applications. Audio, as important
information for 3D virtual humans, 3D animation generation, and
other applications, was first collected in the B3D(AC)ˆ2 dataset.
In addition, including both audio and 3D facial information is
also crucial for studying emotions and their correlations. BP4D+
collects high-definition 3D geometric facial sequences, 2D fa-
cial videos, thermal videos, and physiological data sequences,
which are significant for expression classification, AU detection,
and thermal imaging data classification. For example, the AMF
method adopts the multimodal fusion method in AU detection.
Table 11 shows that the multimodal method is helpful for AU
detection tasks. Therefore, we encourage future 4D datasets to
support more information (multimodal, multi-expression, well-
annotated, multi-physiological signals, etc.).

5.3. Challenges and future directions

Despite the significant progress made so far in 4D facial anal-
ysis, several issues still need to be further explored. Below we
summarize some potential future directions.

5.3.1. 4D facial dataset
We think the key issues in the development of the 4D facial

dataset will be discussed as follows.
(1) Early 4D datasets generally only included posed expres-

sion data, which had high recognition accuracy but tended to
exaggerate movements and could not fully represent daily facial
movements. BP4D-Spontaneous and other spontaneous expres-
sion 4D datasets were subsequently created by setting tasks to
elicit spontaneous emotions from participants. However, creat-
ing a natural environment for facial expression capture while
ensuring spontaneity remains a significant challenge.

(2) Currently, 4D datasets have relatively few Asian partici-
pants, and different races may have different spontaneous emo-
tional responses to the same elicitation task. Therefore, we
believe that future 4D datasets need to consider differences in

race when constructing datasets.
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(3) There are currently many 4D datasets available, but due to
he lack of normative standards for evaluating different datasets,
omparing them is challenging.
(4) We found that few 4D datasets have a specific time interval

or each subject. To our knowledge, only 4DFAB has designed four
ollection records. We believe the time interval may be beneficial
or studying the stability of facial expressions in response to
pecific events or changes in behavior over time. It may also be
n exciting direction for medical research on individual emotional
tability.
(5) 4D data plays an essential role in micro-expression

atasets. Macro-expressions and micro-expressions are two dif-
erent types of facial expressions. 4DME is currently the only 4D
icro-expression dataset, and the authors have found that facial
xpression recognition based on 4D micro-expressions has ad-
antages over 2D-based methods through preliminary research.
his may be because micro-expressions are very subtle move-
ents that occur in a small area of the face and are not always
isible in 2D single-view videos. Therefore, we believe that 4D
atasets are more necessary for micro-expression because micro-
xpression is more difficult to recognize than macro-expression,
nd the duration is shorter. We look forward to the emergence of
ore 4D micro-expression datasets.

.3.2. 4D facial research methods
According to our survey, 4D facial research methods have

hanged from the previous method based on geometric features
o the method based on the combination of geometry and deep
earning, from the method of studying single image and geomet-
ic model to the multimodal method of integrating text, image,
ound, video, mesh, thermal imaging and so on. Some of which
e think are the key issues in the development of 4D facial
esearch will be discussed as follows.

(1) 4D facial representation method
Currently, 4D facial representation methods mainly convert

ach 4D facial frame into 2D images through depth mapping
r UV unfolding to facilitate the use of mainstream deep learn-
ng frameworks. Currently, there is limited research directly on
D mesh, point clouds or graphs (such as MeshGAN [7], DI-
eshEncoder [2], GCNs [3]). These methods consider each frame
f 4D facial data separately, without incorporating the time di-
ension into the overall consideration. Although Li et al. [33]
roposed a face statistical model FLAME can be used on 4D facial
ata, it is still representing each frame separately. In the future,
ow to incorporate time dimensions into 4D facial data to explore
he overall 4D facial data research is to be expected. In terms of
onverting the 3D model to a 2D image, using conformal mapping
which can preserve the angle and is a less distorted way of
epresenting the conversion from 3D to 2D) to generate geometry
mages [94] can store 3D information (such as curvature, nor-
al and etc.), thereby reducing information loss from 3D to 2D
onversion, will become a promising representation. At the same
ime, more direct representation methods for 3D or 4D data are
till expected to be further explored.
(2) 4D facial data compression method
Due to the massive amount of data involved in 4D facial

ata, storing and processing this data poses significant challenges.
herefore, compressive representations of 4D data are crucial. It is
n interesting explore in literature [71], the square root velocity
unction (SRVF) was used to define shape space by encoding the
otion of 3D facial landmark points as points on a hypersphere
f Hilbert space. As we know that optical flow can estimate
ixel motion in image sequences. In addition, superpixels have
eplaced traditional pixels in many computer vision tasks [95].
ompared to traditional pixels, superpixels contain the structural
eatures of the image and have a smaller scale of data. Supervox-
ls can view videos as a three-dimensional manifold embedded
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in color and spatiotemporal space [96]. Therefore, we are eagerly
anticipating the development of 4D data compression algorithms
based on optical flow, superpixels, or super-voxels.

(3) 4D facial recognition and classification method
Currently, there are two mainstream methods of 4D facial

recognition and classification. One is based on encoder–decoder
[75] or attention [49,50,56] structures to learn the latent repre-
sentation of facial features. The other emphasizes learning the
temporal features of facial expressions through networks such
as LSTM [74] or GCN [8]. In the future, we predict that more
methods will be combining AU with static face models for 4D
facial analysis.

(4) 4D facial data generation method
Several 4D facial generation methods are based on GAN, such

as MeshGAN [7], 3DFaceGAN [65], LAC-GAN [63], and
Motion3DGAN [71]. However, as is well known, GANs are difficult
to train and may encounter problems such as gradient vanishing
or mode collapse during the training process. Recently, diffusion
models [97,98] have emerged with more stable training processes
and some theoretical interpretability, demonstrating great poten-
tial over GAN in generating tasks. We look forward to seeing the
performance of the diffusion model in 4D facial generation tasks.

5.3.3. Potential applications based on 4D facial dataset
As we summarized in Section 5.1, the differences between

4D and 2D, and 3D data suggest that the following potential
applications are based on 4D facial datasets.

(1) Research based on AUs or combinations of AUs, such as
AU annotation, emotion recognition based on AUs, analysis of
spontaneous AUs, and micro-expression recognition based on
AUs, will still have significant research value.

(2) For tasks such as predicting depression or automatic es-
timation of facial paralysis, which involve non-primary emo-
tions, research based on AUs detection results for facial paralysis
analysis has already emerged. Compared to mainstream basic
emotional expression, datasets for non-primary emotions such as
depression or facial paralysis are rarer. However, we believe that
4D facial data will have a more significant impact on such tasks.

(3) Generation tasks, such as multimodal conversion and gen-
eration between neutral faces or single-frame RGB-D images to
generate facial, sound, text, etc., are a trend in future research.

(4) Micro-expression research. 4DME [21] conducted a com-
parative experiment on multi-view AU detection and three sepa-
rate single-view AU detections, which showed that in the case
of multi-view, the average F1-score and average accuracy of
AU recognition were significantly higher than any of the three
single views. There is no doubt that 4D data carries more in-
formation, improving AUs’ detection performance. Therefore, we
recommend using 4D micro-expression datasets to study micro-
expression.

6. Summary

This paper provides a review of 4D facial datasets. We first
point out the advantages of 4D facial datasets and their differ-
ences from 2D and 3D datasets. Then, we briefly review the
timeline of existing 4D facial datasets. We then provide a detailed
introduction to the collection equipment, participant information,
collection methods, data processing, and database organization
of 4D datasets. Next, we categorize the applications developed
based on existing 4D facial datasets. We also collect and classify
various features used in facial analysis, including methods before
and after the emergence of deep learning. Finally, we discuss
the advantages and disadvantages of 2D, 3D, and 4D methods,
the influence of attributes of different datasets on 4D applica-
tions, and the future directions for building datasets and potential
applications based on 4D datasets.
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Appendix

See Figs. A.1–A.9.

Fig. A.1. Reconstruction of visualization results.
441
Fig. A.2. Qualitative results on the synthetic subject by Neural Head
Avatars [60].

Fig. A.3. Qualitative results on synthetic data by IMavatar [61].

Fig. A.4. Results of different expression generation by MeshGAN [7].
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Fig. A.5. Qualitative visualization results from the literature [64]. From top to bottom: randomly generated samples (dark gray), random samples with a same
expression code (light gray), random samples with a same identity code (purple).

Fig. A.6. Visualization results generated by 3DFaceGAN [65].

Fig. A.7. The above method reconstructs the visualization results.
442
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R

Fig. A.8. The results of the expression visualization generated in the literature [66].
Fig. A.9. Generated 4D expression visualization results [71].
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