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Quality Metric Guided Portrait Line Drawing
Generation From Unpaired Training Data

Ran Yi", Yong-Jin Liu™, Senior Member, IEEE, Yu-Kun Lai*, Member, IEEE, and Paul L. Rosin

Abstract—Face portrait line drawing is a unique style of art which is highly abstract and expressive. However, due to its high semantic
constraints, many existing methods learn to generate portrait drawings using paired training data, which is costly and time-consuming
to obtain. In this paper, we propose a novel method to automatically transform face photos to portrait drawings using unpaired training
data with two new features; i.e., our method can (1) learn to generate high quality portrait drawings in multiple styles using a single
network and (2) generate portrait drawings in a “new style” unseen in the training data. To achieve these benefits, we (1) propose a
novel quality metric for portrait drawings which is learned from human perception, and (2) introduce a quality loss to guide the network
toward generating better looking portrait drawings. We observe that existing unpaired translation methods such as CycleGAN tend to
embed invisible reconstruction information indiscriminately in the whole drawings due to significant information imbalance between the
photo and portrait drawing domains, which leads to important facial features missing. To address this problem, we propose a novel
asymmetric cycle mapping that enforces the reconstruction information to be visible and only embedded in the selected facial regions.
Along with localized discriminators for important facial regions, our method well preserves all important facial features in the generated
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drawings. Generator dissection further explains that our model learns to incorporate face semantic information during drawing
generation. Extensive experiments including a user study show that our model outperforms state-of-the-art methods.

Index Terms—Face portrait, drawing, style transfer, unpaired image translation, generative adversarial network, quality metric

1 INTRODUCTION

ACE portrait line drawing is a highly abstract and expres-
Fsive art form, which compresses the rich information in
human portraits into a sparse set of graphical elements (e.g.,
lines) and has high semantic constraints. Usually only
skilled artists can generate delicate portrait line drawings
and different artists have diverse styles. However, the
hand-made drawing process is time consuming and chal-
lenging. Recently, a few state-of-the-art works develop ele-
gant algorithms to automatically generate face portrait line
drawings [1], [2], [3], which show some interesting progress
on the aspect that artificial intelligence can learn to create
human art. In this paper, we take a step forward by address-
ing the following problem: Can artificial intelligence learn the
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artistic style space of face portrait line drawings and generate por-
trait drawings of “new styles” unseen in the training data?

This challenging problem has not been studied in previ-
ous research, possibly due to two outstanding issues. First,
artistic portrait line drawings (APDrawings) are quite dif-
ferent from the previously tackled image styles. Image style
transfer has been a longstanding topic in computer vision.
In recent years, inspired by the effectiveness of deep learn-
ing, Gatys et al. [4] introduced convolutional neural net-
works (CNNSs) to transfer the style from a style image to a
content image, and opened up the field of neural style trans-
fer. Subsequently, generative adversarial networks (GANSs)
have achieved much success in solving image style transfer
problems [5], [6]. However, existing methods are mainly
applied to cluttered styles (e.g., oil painting style) where (1)
a stylized image is full of fragmented brush strokes and (2)
the requirement for the quality of each individual element
is low. APDrawings are completely different, and generat-
ing them is very challenging because the style is highly
abstract: it (1) only contains a sparse set of graphical ele-
ments, (2) is line-stroke-based and disables shading, and (3)
has high semantic constraints. Therefore, previous texture-
based style transfer methods and general image-to-image
translation methods fail to generate good APDrawing
results (Fig. 1).

The second outstanding issue is to use unpaired training
data. The artistic style space of APDrawings contains diverse
styles and collecting paired training data for each style is
impossible. APDrawingGAN [1] and APDrawingGAN+
+ [2] are the only methods that explicitly deal with APDraw-
ings by using a hierarchical structure. However, these meth-
ods require paired training data that is costly to obtain.
Compared to paired training data, APDrawing generation

0162-8828 © 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 01,2023 at 09:40:51 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-1858-3358
https://orcid.org/0000-0003-1858-3358
https://orcid.org/0000-0003-1858-3358
https://orcid.org/0000-0003-1858-3358
https://orcid.org/0000-0003-1858-3358
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0002-4965-3884
https://orcid.org/0000-0002-4965-3884
https://orcid.org/0000-0002-4965-3884
https://orcid.org/0000-0002-4965-3884
https://orcid.org/0000-0002-4965-3884
mailto:ranyi@sjtu.edu.cn
mailto:liuyongjin@tsinghua.edu.cn
mailto:laiy4@cardiff.ac.uk
mailto:rosinpl@cardiff.ac.uk

906 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 1, JANUARY 2023

(f) DualGAN (g) CycleGAN (h) UNIT

(i) APDrawingGAN++

(j1) Ours (stylel) (j2) Ours (style2)

Fig. 1. Comparison with state-of-the-art methods: (a) input face photo; (b)-(c) style transfer methods: Gatys [4] and Linear Style Transfer [7]; (f)-(h)
single-modal image-to-image translation methods: DualGAN [8], CycleGAN [6], UNIT [9]; (d) multi-modal image-to-image translation methods
MUNIT [10]; (e) our previous conference version (Ours-pre) [3] that outputs three styles; (i) a portrait generation method APDrawingGAN++ [2] using
paired training data; (j) our method. Note that our method only uses unpaired training data. Due to this essential difference, we only compare APDra-
wingGAN++ with our method in Appendix A5.2, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TPAMI.2022.3147570.

learned from unpaired data is much more challenging. Previ-
ous methods for unpaired image-to-image translation [6], [8]
use a cycle structure to regularize training. Although cycle
consistency loss enables learning from unpaired data, we
observe that when applying them to face photo to APDraw-
ing translation, due to significant imbalance of information
richness in these two data types (accurately recovering a
photo from the corresponding line drawing is an impossible
task), these methods tend to embed invisible reconstruction
information indiscriminately in the whole APDrawing, caus-
ing a deterioration in the quality of the generated APDraw-
ings, such as important facial features partially missing
(Figs. 1f and 1g).

Our previous conference work [3] partially addressed the
unpaired training data issue by proposing an asymmetric
cycle structure and a truncation loss to prevent the model
from embedding invisible features in the generated
APDrawings. In this paper, we substantially improve
upon [3], and propose a novel quality-metric-guided
APDrawing generation model, which can generate (1)
“better looking” APDrawings according to human percep-
tion, and (2) “new style” APDrawings other than the styles
in the training data. Learning from unpaired data makes
our model able to utilize diverse APDrawing styles from
web data for training the style space. To exploit the natural

\

simple flowing lines
few dark regions

thick lines
(c) Style 3 large dark regions

(a) Style 1 thin parallel lines  (b) Style 2

Fig. 2. Representative images of the three styles in our collected web
portrait line drawing data. (a) The first style is from Yann Legendre and
Charles Burns who use thin parallel lines to draw shadows. (b) The sec-
ond style is from Kathryn Rathke who draws facial features using simple
flowing lines and uses few dark regions. (c) The third style is from vector-
portal.com where continuous thick lines and large dark regions are uti-
lized. Close up views are presented alongside for better comparison of
the three styles.

diversity of styles from web training images (see Fig. 2 for
some examples), our model can (1) learn multiple styles (as
well as the style space) of APDrawings from web data of
mixed styles, (2) generate “new styles” unseen in the train-
ing data, and (3) control the output style using a code in the
style space. The source code is available.!

In particular, we make the following contributions:

e We propose a novel quality metric for APDrawings
by learning from human perception. The new quality
metric is modeled by a regression network whose
input is APDrawing alone and the output is a quality
score.

e Based on the quality metric, we propose a quality
loss that is consistent with human perception, and
use it to guide the network toward generating better
looking APDrawings.

e We generate APDrawings of “new styles” unseen in
the training data by searching for a corresponding
style code in the style space.

e To interpret our model, we dissect the generator by
visualizing feature maps and comparing them to
face semantics, validating that our generator learns
to incorporate semantic face information during
APDrawing generation.

2 RELATED WORK

2.1 Neural Style Transfer

Inspired by the successes of CNNs in many visual percep-
tion tasks, Gatys et al. [4] proposed to use a pretrained CNN
to transfer the style in an image to the content of another
image in two steps. First, the content features and style fea-
tures are extracted from images. Second, the content image
is optimized by matching the style features from the style
image while simultaneously maintaining the content fea-
tures. In [4], the Gram matrix is used to measure style simi-
larity. This method opens up the field of neural style

1. https:/ / github.com/yiranran/QMUPD
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transfer and many follow-up methods are proposed based
on this.

Li and Wand [11] proposed to replace the Gram matrix
by a Markov Random Field (MRF) regularizer for modeling
the style. Stylized images are synthesized by combining
MRF with CNN. To speed up the slow optimization process
of [4], some methods (e.g., [12], [13]) use a feed-forward
neural network to minimize the same objective function.
However, these methods still suffer from the problem that
each model is restricted to a single style. To simultaneously
speed up optimization and maintain style flexibility as [4],
Huang and Belongie [14] proposed adaptive instance nor-
malization (AdalN) to align the mean and variance of con-
tent features to those of style features. In these example-
guided style transfer methods, the style is extracted from a
single image, which is not as convincing as learning from a
set of images to synthesize style (refer to GAN-based meth-
ods in Section 2.2).

In principle, some neural style transfer methods can gen-
erate images with styles unseen in the training data (e.g., [4]).
However, these methods model style as texture, and are not
suitable for our APDrawing style that has little texture.

2.2 GAN-Based Image-to-Image Translation

GANSs [15] have achieved much progress in many vision
applications, including image super-resolution [16], text-to-
image synthesis [17], [18], and facial attribute manipula-
tion [19], etc. Among these works, two unified GAN frame-
works, Pix2Pix [5] and CycleGAN [6], have boosted the
field of image-to-image translation.

Pix2Pix [5] was the first general image-to-image transla-
tion framework based on conditional GANSs, and was later
extended to high-resolution image synthesis [20]. Pix2Pix is
trained by paired data. Recently, more works focus on
learning from unpaired data, due to the difficulty of obtain-
ing paired images in two domains. In this direction, two
representative works are CycleGAN [6] and DualGAN [8],
which make use of the cycle consistency constraint. This
constraint enforces that the two mappings from domains A
to B and from B to A — when applied consecutively to an
image — revert the image back to itself. Different from
enforcing cycle consistency at the image level, UNIT [9]
tackles the problem by a shared latent space assumption
and enforcing a feature-level cycle consistency. These meth-
ods work well for general image-to-image translation tasks.
However, in the transformation from face photos to
APDrawings, we observe that cycle consistency constraints
lead to facial features partially missing in APDrawings,
because the information between the source and target
domains is imbalanced. In this paper, we relax the cycle
consistency in the forward cycle (i.e., photo — drawing —
photo) and propose additional constraints to avoid this
problem. The NIR-to-RGB method in [21] adopts a very dif-
ferent type of asymmetry — it uses the same loss for the for-
ward and backward cycles, and only changes the network
complexity — and targets a different task from ours.

The aforementioned unpaired translation methods are
also limited in the diversity of translation outputs. Unpaired
data such as crawled web data often naturally contains
multi-modal distributions (i.e., inconsistent styles). When

knowing the exact number of modes and the mode each
sample belongs to, the multi-modal image-to-image transla-
tion could be solved by treating each mode as a separate
domain and using a multi-domain translation method [19],
[22]. However, in many scenarios including our problem
setting, this information is not available. MUNIT [10] deals
with multi-modal image-to-image translation without
knowing the mode each sample belongs to. It encodes an
image into a domain-invariant content code and a domain-
specific style code, and recombines the content code with
the style code sampled from a target domain. Although
MUNIT generates multiple outputs with different styles, it
cannot generate satisfactory portrait line drawings with
clear lines. By inserting style features into the generator and
using a soft classification loss to discriminate modes in the
training data, our network architecture proposed in this
paper can produce multi-style outputs and generate better
looking APDrawings than state-of-the-art methods.

3 QuALITY METRIC FOR APDRAWINGS

Most image-to-image translation methods guide generation
towards the target domain using a discriminator which
decides whether an image is a real target-domain image or
not. When the target domain is APDrawings, we found it is
not sufficient to decide whether such a drawing is real or
fake; i.e., the generator needs further to be told the quality
of the synthesized drawing. To the best of our knowledge,
there lacks an optimization tool to encourage the network to
generate good looking portrait line drawings. The perception
of good APDrawings — e.g., fluent lines and avoiding
messy lines on the face — can be easily concluded by a
human, but has not been fully described in an optimization
goal. Thus, we introduce a new quality metric for portrait
line drawings by learning from human preference.

From previous user studies, we found that people can
easily decide the quality of a portrait line drawing without
knowing the original face photo. So our desired metric can
be modeled by a regression network whose input is an
APDrawing alone and the output is its quality score.

To obtain such a regression network to predict APDraw-
ing quality, we first generate many APDrawings using
existing methods and mix these generated drawings with
real artist drawings. Then a user study is conducted to col-
lect human preferences of these APDrawings. After calcu-
lating the quality score of each drawing based on human
preference, we train a regression network to predict the
quality score of an APDrawing.

3.1 Data Preparation

We use existing unpaired image-to-image generation meth-
ods including DualGAN [8], CycleGAN [6], UNIT [9], Com-
boGAN [22], DRIT [23] and our previous conference
work [3] to learn the three target styles (as specified in
Fig. 2). We then test the trained models on collected web
face photos and generate portrait line drawings for the three
target styles. The generated drawings are mixed with high-
quality APDrawings for subsequent human evaluation. To
facilitate the development of a good quality prediction
model, we include drawings with diverse quality in the
data (as shown in Fig. 3).
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Fig. 3. Samples of collected (including generated and artist) portrait line
drawings of target style 2 for quality metric model training. The drawings
from top to bottom have decreasing quality.

3.2 Human Preference Collection and Ranking
Considering pairwise comparison is one of the most practi-
cal and reliable methods to compare different results, we
design a user study based on pairwise comparison. From
the comparison results, we compute a ranking. However,
given n results, obtaining all n(n — 1)/2 comparisons from a
user study is time consuming and not feasible when n is
large. We seek to utilize as few pairwise comparisons as
possible to get a global ranking. The efficient ranking
method in [24] is suitable in our application. It randomly
conducts pairwise comparisons and estimates the score of
an object as the relative difference of numbers of preceding
items and succeeding items. By using this efficient ranking
strategy, an average of O(nlogn) pairwise comparisons are
sufficient to recover the true ranking.

User Study Design. Noting that it is difficult to compare
the quality of portrait line drawings of different styles due
to the style distractions, we therefore only enable pairwise
comparison between portrait line drawings of the same
style. Then we adopt the above efficient ranking strategy
and conduct three user studies based on pairwise compari-
son for three target styles. To simplify the answering pro-
cess, each user is shown three portrait line drawings of the
same style in a question and asked to rank the three draw-
ings (the answer to each question equals to three pairwise
comparisons). To balance the data amount and the effort for
human evaluation, we randomly choose 250 drawings for
each of the three target styles and collect 2,450~3, 450 ques-
tion responses for each style.

Score and Ranking Calculation. We calculate the scores and
global rankings for portrait line drawings of each style sepa-
rately. To compute the relative difference of numbers of pre-
ceding items and succeeding items in [24], for each question
answer, denote the ranking as I} < Iy < I3, then the score of
I, decreases by 2 (0 preceding and 2 succeeding), the score
of I3 increases by 2 (2 preceding and 0 succeeding) and the
score of I stays unchanged. By summarizing all question
responses for a style, we calculate the score for each draw-
ing of this style and get a global ranking based on the score.
The scores are then normalized to the range [0.1,1]* so that
drawing scores of the three styles have the same range.

2. The lower bound is greater than zero since even the worst exam-
ples of training data are better than random.

Generated Drawing Photo Reconstruction

Input Face Photo
4

Nonlinear
mapping

Fig. 4. CycleGAN reconstructs the input photo from generated drawings
using a strict cycle-consistency loss, which can potentially embed invisi-
ble reconstruction information anywhere in the whole drawings. A nonlin-
ear monotonic mapping of the gray values is applied in a local region
around the nose to visualize the embedded reconstruction information.

3.3 Quality Metric Prediction

Given the portrait drawing data and the normalized quality
score, we train a regression network to predict APDrawing
quality. The regression network is based on the Inception
v3 [25] architecture. It takes an APDrawing as input and out-
puts a quality value. We gather the drawing data of three tar-
get styles and train a unified prediction model M.

Since the quality metric model behavior is learned from
human evaluation, the predicted score can help guide the
drawing generator toward better quality. Furthermore, it
can also be used to choose which trained version of the
photo-to-APDrawing generator to use, e.g., when multiple
versions are trained using different hyper-parameters.

4 NETWORK ARCHITECTURE AND OPTIMIZATION

4.1 Overview

With the aid of trained quality metric model (Section 3), in
this section, we propose a GAN model with a novel asym-
metric cycle structure, that transforms face photos to high-
quality APDrawings, only using unpaired training data. Let
P and D be the face photo domain and the APDrawing
domain, and no pairings need to exist between these two
domains. Our model learns a function ® that maps from P
to D using training data S(p) = {p;[i =1,2,...,n,} C P and
S(d) ={d;|i=1,2,...,nq} CD. n, and ny are the numbers
of training photos and APDrawings. Our model consists
of (1) two generators, i.e., a generator G transforming face
photos to APDrawings, and an inverse generator F' trans-
forming APDrawings back to face photos, and (2) two
discriminators, i.e., Dp responsible for discriminating gen-
erated drawings from real drawings, and Dp responsible
for discriminating generated photos from real photos.

The information in the APDrawing domain is much less
than in the face photo domain. For example, in the cheek
region, there are many color variations in the original photo
but the cheek is usually drawn completely white (i.e., no
lines are included) in an APDrawing. As illustrated in
Fig. 4, enforcing a strict cycle-consistency loss like in Cycle-
GAN [6] on the reconstructed and input photos will cause
the network to embed reconstruction information in very
small variations in the generated APDrawings (i.e., color
changes that are invisible to the eye but can make a differ-
ence in network calculation); a similar phenomenon was
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=

Generator G

Input photo p t
Style feature s
Dp = {D, Dy, Dy, Dy}

Style loss Style classification

Generator F

Generated drawing G(p, s)

Generator F

Reconstruction F(G(p, s))

Discriminator

R 4 4
Nose Discrim Eye Discrim Lip Discrim
Dy, Die Dy

Real / Fake Adversarial loss

Generator G

T

Discriminator

Real / Fake

Adversarial loss

Style feature s

Strict cycle-consistency loss

Fig. 5. Our GAN model uses an asymmetric cycle structure, which consists of a photo to drawing generator G, a drawing to photo generator F, a
drawing discriminator Dp and a photo discriminator Dp. We use a relaxed cycle-consistency loss between reconstructed face photo F(G(p, s)) and
input photo p, while enforcing a strict cycle-consistency loss between reconstructed drawing G(F(d)) and input drawing d. We also introduce local
drawing discriminators D,,, D,., Dy for the nose, eyes and lips and a truncation loss. Our model deals with multi-style generation by inserting a style
feature vector into the generator and adding a style loss. A quality loss based on the quality metric model (Section 3) further encourages generation
of “good looking” APDrawings. The detailed architecture is illustrated in Appendix A2, available in the online supplemental material.

observed in [26]. Embedding reconstruction information in
very small variations achieves a balance between cycle-con-
sistency loss and GAN loss in CycleGAN; from the gener-
ated drawing G(p), a face photo similar to the input photo p
can be successfully reconstructed because of small color
changes, while at the same time G(p) tries to be similar to
real drawings and be classified as real by the discriminator.
However, in APDrawing generation, embedding invisible
reconstruction information indiscriminately in the whole
drawing will put a strong restriction on the objective func-
tion optimization. Moreover, it will allow important facial
features to be partially missing in the generated drawings.
To address this problem, our model utilizes a novel idea:
although cycle consistency constraints are useful to regular-
ize training, we are only interested in the one way mapping
from photos to APDrawings. Therefore, unlike CycleGAN,
we do not expect or require the inverse generator F' to
reconstruct a face photo exactly as the input photo (which is
a near impossible task). Instead, our proposed model is
asymmetric in that we use a relaxed cycle-consistency loss
between F(G(p)) and p, where only edge information is
enforced to be similar, while a strict cycle-consistency loss is
enforced on G(F(d)) and d. By tolerating the reconstruction
information loss between F(G(p)) and p, the objective func-
tion optimization has enough flexibility to recover all
important facial features in APDrawings. A truncation loss

is further proposed to enforce the embedded information to
be visible, especially around the local area of the selected
edges where relaxed cycle-consistency loss works. Further-
more, local drawing discriminators for the nose, eyes and
lips are introduced to enforce the significance of their exis-
tence and ensure quality for these regions in the generated
drawings. By integrating these techniques, our model can
generate high-quality APDrawings with complete facial
features.

Another benefit of our model is to generate multi-style
APDrawings. The APDrawing data we collected from the
Internet contains a variety of styles, of which only some are
tagged with author/source information. We select represen-
tative styles from the collected data (Fig. 2), and train a classi-
fier for the collected drawings. Then a learned representation
is extracted as a style feature vector and inserted into the gen-
erator to control the generated drawing style. An additional
style loss is introduced to optimize for each style.

Different from our previous conference work [3], we fur-
ther improve the APDrawing quality and alleviate
unwanted artifacts by utilizing the trained quality metric
model (Section 3). A human-perception-consistent quality
metric loss is proposed to guide the network toward gener-
ating good looking APDrawings.

The four networks in our model are trained in an adver-
sarial manner [15]: (1) the two discriminators Dp and Dp
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are trained to maximize the probability of assigning correct
labels to real and synthesized drawings and photos, and (2)
meanwhile the two generators G and F' are trained to mini-
mize the probability of the discriminators assigning the cor-
rect labels. The loss function L(G, F, Dp, Dp) contains six
types of loss terms: adversarial loss L. (G, Dp)+
Loay(F, Dp), relaxed cycle consistency 1oss Lyciazedneye(G, F),
strict cycle consistency 10ss Lyictcyc(G, F'), truncation loss
Liyunc(G, F), style loss Ly (G, Dp), and quality loss based
on the quality metric model L1, (G). Then the function ®
is optimized by solving the minimax problem with the loss
function

Igi}l 51731%; L(G, F, Dp, Dp)
= (Laav(G, Dp) + Laav(F, Dp))
—+ AlLrelaatedNCg/C(Gv F) + )\QL.strictN(:yC(G’ F)
+ A3 Ltrunc(G, F) + MLty (G, Dp) + As Lauatity (G). (1)

The network architectures for G, F, Dp and Dp are intro-
duced in Section 4.2. The detailed design of six loss terms
are presented in Section 4.3. An overview of our model is
illustrated in Fig. 5.

4.2 Network Architecture

Our GAN model consists of (1) a generator G and a drawing
discriminator Dp for face photo to APDrawing translation,
and (2) another generator /' and a photo discriminator Dp
for the inverse APDrawing to photo translation. Consider-
ing information imbalance between the face photo in P and
the APDrawing in D, we design different architectures for
(G, DD) and (F, Dp).

4.2.1 Face Photo to APDrawing Generator G

The generator G takes a face photo p and a style feature s as
input, and outputs an APDrawing G(p,s) whose style is
specified by s.

Style Feature Vector s. We first train a classifier C' (based
on VGG-19 [27]) that classifies APDrawings into three styles
(Fig. 2), using tagged web drawing data. Then we extract
the output of the last fully-connected layer and use a soft-
max layer to calculate a 3-dimensional vector as the style
feature for each drawing (including untagged ones).

Network Structure. G is an encoder-decoder with residual
blocks [28] in the middle. It starts with a flat convolution
and two down convolution blocks to encode face photos
and extract useful features. Then the style feature is mapped
to a 3-channel feature map and inserted into the network by
concatenating it with the feature map of the second down
convolution block. An additional flat convolution is used to
merge the style feature map with the extracted feature map.
Afterwards, nine residual blocks of the same structure are
used to construct the content feature and transfer it to the
target domain. Then the output drawing is reconstructed by
two up convolution blocks and a final convolution layer.

4.2.2 Drawing Discriminator Dp

The drawing discriminator Dp has two tasks: 1) discrimi-
nating generated APDrawings from real ones; and 2) classi-
fying an APDrawing into three selected styles, where a real

drawing d is expected to be classified into the correct style
label (given by C), and a generated drawing G(p,s) is
expected to be classified into the style specified by the 3-
dimensional style feature s.

For the first task, to enforce the existence of important
facial features in the generated drawing, in addition to a
global discriminator D that examines the full drawing, we
add three local discriminators Dy,, D;., D; to focus on dis-
criminating local drawings around the nose, eyes and lip
respectively. The inputs to these local discriminators are
masked drawings, where masks are obtained from a face
parsing network [29]. Finally Dp consists of D, Dy,, D;.
and DH.

Network Structure. The global discriminator D is based on
PatchGAN [5] and modified to have two branches. The two
branches share three down convolution blocks. Then one
branch D, includes two flat convolution blocks to output a
prediction map of real/fake for each patch in the drawing.
The other classification branch D, includes more down
convolution blocks and outputs probability values for three
style labels. Local discriminators Dy, D;., Dy also adopt the
PatchGAN structure.

4.2.3 APDrawing to Face Photo Generator F' and Photo
Discriminator Dp

The generator F' in the inverse direction takes an APDraw-
ing d as input and outputs a face photo F'(d). It adopts an
encoder-decoder architecture with nine residual blocks in
the middle. Photo discriminator Dp discriminates generated
face photos from real ones, and also adopts the PatchGAN
structure.

4.3 Loss Function
There are six types of losses in our loss function (Eq. (1)). We
explain them in detail as follows.

Adversarial Loss. The adversarial loss judges discrimina-
tor Dp's ability to assign correct labels to real and synthe-
sized drawings. It is formulated as

Liy(G,Dp) = Z Eges(a)[log D(d)]
DEDD

+ 3 Epespllog (1 - D(G(p.s)], @)

DeDp

where s is randomly selected from the style feature vectors
of APDrawings in the training data S(d) for each p. As Dp
maximizes this loss and G minimizes it, this loss drives the
generated drawings to become closer to real drawings.

We also adopt an adversarial loss for the photo discrimi-
nator Dp and the inverse mapping F'

La.dv(F7 DP) = Epes(p) [log Dp(p)]
+ Eges@llog (1 — Dp(F(d))]. 3

Relaxed Forward Cycle-Consistency Loss. As previously
mentioned, we observe that there is much less information
in domain D than information in domain P. We do not
expect the result from p — G(p,s) — F(G(p, s)) to be pixel-
wise similar to p. Instead, we only expect the edge informa-
tion in p and F(G(p, s)) to be similar. We extract edges from
pand F(G(p, s)) using HED [30], and evaluate the similarity
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Fig. 6. Results of interpolating between style feature vectors: (a) input photos, (b)-(d) results of three target styles, (e)-(f) results of interpolating target

styles. Close-up views are shown by the side.

of edges by the LPIPS perceptual metric proposed in [31].
Denote HED by H and the perceptual metric by Lj,,. The
relaxed cycle-consistency loss is formulated as

Lrelamedwcyc(Ga F) = EpES(p) [Llpips(H(p)7 H(F(G(p, 5))))]

4)

Strict Backward Cycle-Consistency Loss. On the other hand,
the information in the generated face photo is adequate to
reconstruct the APDrawing. Therefore, we expect the result
from d — F(d) — G(F(d), s(d)) to be pixel-wise similar to d,
here s(d) is the style feature of d. The strict cycle-consistency
loss in the backward cycle is then formulated as

Lstrictfcyc(Gv F) = EdES(d) H |d - G(F(d)7 S(d))”l] ®)

Truncation Loss. The truncation loss is designed to pre-
vent the generated drawing from hiding information in
small values. It is in the same format as the relaxed cycle-
consistency loss, except that the generated drawing G(p, s)
is first truncated to 6 bits’ to ensure that encoded informa-
tion is clearly visible, and then fed into F' to reconstruct the
photo. More specifically, we first scale the intensities to the
range [0,64), truncate the fractional part, and then scale
back. Denote the truncation operation as 7'[-], the truncation
loss is formulated as

Ltrmm(G> F) = IEpES(p) [Llpipx"‘(H(p)7 H(F(T[G(p, S)D))}
(6)

At the beginning of training process, the weight for the trun-
cation loss is kept low, otherwise it would be hard to opti-
mize the model. The weight gradually increases as the
training progresses.

Style Loss. It is introduced to help G generate multiple
styles with different style features. Denote the classification
branch in Dp as D;. The style loss is formulated as

Lstyle(G» DD) Zp IOg Dl’lg(c|d)]

Zp

Eges)

=+ EpES log Dcls C|G(pv 3))] (7)

3. Generally the intensity of a digital image is stored in 8 bits.

For a real drawing d, p(c) is the probability over style label ¢
given by classifier C, D;,(c|d) is the predicted softmax prob-
ability by D, over c. We multiply the term by the probabil-
ity p(c) in order to take into account those real drawings
that may not belong to a single style but lie between two
styles, e.g., with softmax probabilities [0.58,0.40,0.02]. For
generated drawing G(p,s), p'(c) denotes the probability
over style label ¢ and is specified by style feature s, and
Dus(c|G(p,s)) is the predicted softmax probability over c.
This classification loss drives D, to classify a drawing into
the correct style and drives G to generate a drawing close to
a given style feature.

Quality Loss Based on the Quality Metric Model. It is
designed for generating “good looking” APDrawings. The
quality metric model M (described in Section 3) predicts a
quality score of an APDrawing by how consistent it is with
human perception, where better looking drawings get
higher prediction scores (in the range [0.1,1]). We then
define the quality loss Lty as

Lquality(G) = EPGS(Z))[]' - M(G(p7 8))] ®

5 NEW STYLE GENERATION

In this section, we propose a solution to address the chal-
lenging problem of how to generate high-quality APDraw-
ings of “new styles” unseen in the training data. In our
multi-style generation setting, different style feature vectors
lead to different style outputs. The three target styles corre-
spond to vectors [1,0,0],[0,1,0],[0,0,1], respectively. An
interesting question is what results other style feature vectors
would generate and whether some style feature vectors could gen-
erate new styles unseen in the training data.

More specifically, the three target styles we used here are
representative styles of portrait line drawings, as shown in
Fig. 2. These three styles vary in line thickness, arrangement
and dark region ratio, etc. The key features in the three
styles are: 1) the drawings of stylel often use thin parallel
lines to draw shadows, 2) the drawings of style2 use simple
flowing lines and few dark regions, and 3) the drawings of
style3 use thick lines and large dark regions.
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I(b) Input

(a) Target

(c) Opt1rmzat10n process

(d) F 1nal result (e) Loss curve

Fig. 7. Examples of “new” style generation. Given a target “new” style portrait drawing (i.e., style unseen in training data) in (a), we find a proper style
feature vector that generates APDrawings similar to the target, by optimizing a histogram based style loss. The optimization process is shown in
(c) and the final generated APDrawing is shown in (d). The style loss change during optimization is shown in (e). Style feature vectors used for gener-
ation are shown under each generated APDrawing. Close-up views are shown by the side.

By interpolating between the style feature vectors, we
observe that the generated results show a combination of
target styles. As shown in Fig. 6e, the results of style feature
vector [0,0.5,0.5] exhibit a combination of styles 2 and 3, i.e.,
medium dark regions and flowing lines; in other words,
less dark regions compared to (d) and more compared to
(c). The result of vector [0.5,0,0.5] in Fig. 6f shows a combi-
nation of styles 1 and 3, i.e., a combination of thin parallel
lines and dark region shadows; in other words, hair regions
are more detailed (parallel lines) than (d) and more abstract
than (b). Close-up views are also provided for better
comparison.

Next we explore whether the network can generate some
“new” styles* unseen in the training data. Given a “new”
style APDrawing dyq-q¢ as a reference, we use the trained
APDrawing generator G to look for a style feature vector s
in the style space that generates APDrawings most similar
in style to the unseen target dy,.;- The best style feature vec-
tor s* is found by optimizing the style distance between the
generated APDrawing guided by this vector and the target
diarger. Denote the loss term to measure style distance as
L yie. The problem is formulated as

st = arg IIlsiIl Lstylc(G(pv 5)7 dta'r‘gat)» (9)

where p is a face photo in the training data. Examples of
“new” style generation and the corresponding “new” style
targets are presented in Figs. 7a, 7b, 7c, and 7d.

To model the style similarity, we explored existing style
losses [32] including Gram-matrix-based loss [4] and histo-
gram-based loss [33]. We found histogram loss is better for
measuring line drawing style differences. Given the gener-
ated APDrawing A and the target style APDrawing B, his-
togram matching is performed to match feature activations
of A to feature activations of B. We use VGG-19 [27] to
extract features and take five feature activations for style
representation (‘convl_1’, ‘conv2_1’, ‘conv3_1’, ‘conv4_1’,

4. Here, a “new” style portrait drawing means that the style is not
one of the three target styles and unseen in the training data.

‘conv5_1’). Denote the ith feature activation as O;, and the
Jjth channel in O; as O;;, we compute the normalized histo-
gram for O;; of A and match it to the normalized histogram
for O;; of B, thus obtaining the remapped activations. The
process is repeated for each channel in O;. Denote the ith
remapped activations as R;(O;, A, B). The histogram loss is
defined as

Lhmtogram A B (10)

ZHO

Then we set Ly in Eq. (9) to Lyistogram- We randomly ini-
tialize the style feature vector and use an Adam optimizer
with learning rate 0.05 to optimize the vector. Some exam-
ples of the optimization process and results are shown in
Figs. 7c and 7d.

Ri(0;, A, B)||.

6 GENERATOR DISSECTION

Our model can successfully learn to generate good looking
APDrawings in multiple styles using a single network, and
can generate APDrawings of “new styles” unseen in the
training data. To better interpret our model, we explore the
semantic meaning of convolution layers in the APDrawing
generator G by visualizing feature maps and analyzing their
relation to face semantics. Following [34], we measure the
spatial agreement between thresholded feature map and
facial part segmentation with intersection-over-union (IoU).
For a convolution layer unit v and a facial part region r
(e.g., upper lip, left eye, etc.), denote the feature map of u as
F,, the upsampled feature map as F, and the facial part
region 7’s segmentation” as S;. The IoU is calculated as

1ol JE,,@ > tur) NSk (p)]
Ey|(Fu > tu,)US(p)]
I(F! >t 8,

by = argmax 2L > 650D

t H(F, > t;5:(p))

(11)

5. A face parsing network [29] is used for facial part segmentation.
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Layer resblock5 1 unit #33 thresholded feature map matches category “nose” segmentation with average IoU=0.05

» o«

Fig. 8. Visualizing interpretable units. The rows from top to bottom show units that best match “upper lip”, “eye”, and “nose” categories, respectively.
The loU is measured over the full test set of 154 images. For each unit, eight images with top loU are shown, and the masks of thresholding the

upsampled feature map (F] > t,.) are outlined in yellow.

where p denotes face photos sampled from the face photo
domain P, the IoU is measured over a test set of face photos.
The map F| > t,, produces a binary mask by thresholding
the upsampled feature map at a fixed level ¢,,,.. S, is a binary
mask in which the foreground contains pixels belonging to
the facial part region r. The threshold ¢,, is computed by
maximizing the information quality I/H where H is the
joint entropy and [ is the mutual information [35].

We use IoU,, to find the facial parts related to each con-
volution layer unit and label each unit with the facial part
that best matches it. The units with max,IoU,, > 0.05 are
called “interpretable” units. Fig. 8 shows some examples of
interpretable units with different labels. Among 5,505 con-
volution units in our generator G, 594 of them are interpret-
able units, showing that face semantic information is
learned and incorporated during APDrawing generation.

7 EXPERIMENTS

We implemented our model in PyTorch. All experiments
are performed on a computer with a Titan Xp GPU. The
parameters in Eq. (1) are \; =5 — 42, Xy =5, \y =33, )\, =
1, A5 = 0.5 - 1f;5 1003 (1), where 1 is the indicator function, i
is the current epoch number, and N is the total epoch num-
ber (N = 300). We apply the quality loss after 100 epochs so
that the model can learn a proper drawing first and is then

optimized towards better quality.

7.1 Experiment Setup

Data. We collect face photos and APDrawings from the
Internet and construct (1) a training corpus of 798 face pho-
tos and 625 delicate portrait line drawings, and (2) a test set
of 154 face photos. Among the collected drawings, (1) 84 are
labeled with artist Charles Burns, 48 are labeled with artist
Yann Legendre, 88 are labeled with artist Kathryn Rathke, and
212 are from the website vectorportral.com, and (2) others
have no tagged author/source information. We observed
that both Charles Burns and Yann Legendre use similar thin

parallel lines to draw shadows, and so we merged drawings
of these two artists into stylel. We choose the drawings of
Kathryn Rathke as style2 and the drawings of vectorportral
as style3. Styles 1 and 2 have distinctive features: Kathryn
Rathke uses flowing lines but few dark regions, while vec-
torportral uses thick lines and large dark regions. All the
training images are resized and cropped to 512 x 512 pixels.

Training Process. It includes two steps: (1) training classi-
fier C' and (2) Training our model. We first train a style clas-
sifier C' (Section 4.2.1) with the tagged drawings and data
augmentation (including random rotation, translation and
scaling). To balance the number of drawings in each style,
we take all drawings from the first and second styles, but
only part of the third style in the training stage of C, in order
to achieve balanced training for different styles. In the sec-
ond step, we use the trained classifier to obtain style feature
vectors for all 625 drawings. We further augment training
data using synthesized drawings. Training our network
with the mixed data of real and synthesized drawings
results in high-quality generation for all three styles; see
Figs. 9, 10, and 11 for some examples, where our results of
styles 1, 2, 3 are generated by feeding in style feature vectors
[1,0,0],]0,1,0],[0,0,1], respectively.

7.2 Comparisons

We compare our method with two state-of-the-art neural
style transfer methods: Gatys [4], LinearStyleTransfer [7],
and six unpaired image-to-image translation methods:
DualGAN [8], CycleGAN [6], UNIT [9], MUNIT [10], Com-
boGAN [22] and DRIT [23].

For the two neural style transfer methods, i.e., Gatys [4]
and LinearStyleTransfer [7], their inputs are a content image
(face photo) and a style image (one of the collected artist line
drawings). For the six unpaired image-to-image translation
methods, ie., DualGAN [8], CycleGAN [6], UNIT [9],
MUNIT [10], ComboGAN [22] and DRIT [23], we retrained
each comparison model using our training set, which
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(a) Input Content (b) Input Style

Fig. 9. Comparison with two state-of-the-art neural style transfer meth-
ods, i.e., Gatys [4] and LinearStyleTransfer [7].

consists of 978 photos, and both 625 collected real drawings
and 353 synthesized drawings.

Comparisons with neural style transfer methods are
shown in Fig. 9. Gatys’ method fails to capture APDrawing
styles because it uses the Gram matrix to model style as tex-
ture, but APDrawings have little texture. LinearStyleTrans-
fer produces visually better results, although they are still
not desired APDrawings: the generated drawings have
many thick lines and they are produced in a rough manner.

Compared to these example-guided style transfer methods,
our method learns from a set of APDrawings and generates
delicate results for all three styles.

Comparisons with single-modal unpaired image-to-
image translation methods are shown in Fig. 10. DualGAN
and CycleGAN are both based on strict cycle-consistency
loss. This causes a dilemma in photo-to-APDrawing transla-
tion: either a generated drawing looks like a real drawing
(i.e., close to binary, containing large uniform regions)
which cannot properly reconstruct the original photo, or a
generated drawing has good reconstruction with grayscale
changes but which does not look like a real drawing. Mean-
while, compared to CycleGAN, DualGAN is more gray-
scale-like, less abstract and worse in line drawing style.
UNIT adopts feature-level cycle-consistency loss, which less
constrains the results at the image level, making the face
appear deformed. In comparison, our results both preserve
face structure and have good image and line quality.

Comparisons with unpaired image-to-image translation
methods that can deal with multi-modal or multi-domain
translation are shown in Fig. 11. Results show that MUNIT
does not capture the APDrawing styles and the results are
more similar to a pencil drawing with shading and many
gray regions. ComboGAN fails to capture all three represen-
tative styles, which performs slightly better on styles 2 and 3
than style 1. DRIT also fails to capture all three representa-

Fig. 10. Comparison with three single-modal unpaired image-to-image translation methods: DualGAN [8], CycleGAN [6], UNIT [9]. All methods are
trained using the same training corpus with both real and synthesized drawings.

(a) Input (b) MUNIT (c) ComboGAN (stylel, 2, 3)

(e) Ours (stylel, 2, 3)

(d) DRIT (stylel, 2, 3)

Fig. 11. Comparison with three unpaired image-to-image translation methods that can deal with multi-modal or multi-domain translation: MUNIT [10],
ComboGAN [22], DRIT [23]. All methods are trained using the same training corpus with both real and synthesized drawings.
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TABLE 1
User Study Results
ComboGAN  CycleGAN  Ours-pre Ours
Rankl 23.7% 8.1% 23.1% 45.1%
Rank2 12.2% 8.9% 46.4% 32.6%
Rank3 35.1% 27.9% 21.9% 15.1%
Rank4 29.0% 55.2% 8.6% 7.2%

The ith row shows the percentages of different methods (ComboGAN [22],
CycleGAN [6], our conference version (Ours-pre) [3] and Ours) being ranked
as the ith among four methods.

tive styles; the results of all three styles look similar and
only approximate the target styles 1 and 3. In comparison,
our method generates distinctive results for three styles and
reproduces the characteristics for each style well.

7.3 Quantitative Evaluation
User Study. Considering the artistic merits of portrait line
drawings, we conduct a user study to compare our method
with CycleGAN [6], ComboGAN [22] and our conference
version (Ours-pre) [3]. LinearStyleTransfer, Gatys, Dual-
GAN and UNIT are not included because of their lower
visual quality. MUNIT and DRIT are not included because
they obviously do not capture the target styles. We ran-
domly sample 60 groups of images/drawings from the test
set: 20 for stylel comparison, 20 for style2 and 20 for style3.
Before the test, the participants went through some practice
examples, and were given guidelines about the standard of
good portrait line drawings. During the test, participants (1)
were shown a photo, a real drawing (the style reference)
and 4 generated drawings at a time, and (2) were asked to
sort 4 results from best to worst. 54 participants attended
the user study and 3,240 votes were collected in total.
Results of the percentages of each method ranked as 1st,
2nd, 3rd and 4th are summarized in Table 1. Our method
ranks the best with 45.1% of the votes, which is higher than
the other methods, i.e., ComboGAN, CycleGAN and our
conference version, which rank the best in 23.7%, 8.1% and
23.1% of the votes. The average rank of our method is 1.84,
lower compared to CycleGAN’s 3.30, ComboGAN’s 2.69
and our conference version’s 2.16. We then conduct analysis
of variance (ANOVA) between our method and each of
other methods on the percentage of being ranked best by
individual users. Pairwise ANOVA results are shown in
Table 2. All of the p-values are < 0.01, justifying that the
rejection of the null hypothesis and the differences between
the means of our method and each of other three methods
(ComboGAN, CycleGAN or our conference version) are sta-
tistically significant. A test boxplot of four methods is
shown in Fig. 12. These results demonstrate that our

TABLE 2
Analysis of Variance (ANOVA) Results for Pairwise
Comparisons
Pairwise comparison Ranked Best
Ours vs. ComboGAN p=3.57e-7
Ours vs. CycleGAN p=1.32e-22
Ours vs. Ours-pre p=2.09e-11
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Fig. 12. Test boxplot [36] of four methods. In each box, the central red
line indicates the median, and the bottom and top blue edges of the box
indicate the 25% and 75% percentiles respectively. The dashed black
line extends to the extreme data points.

method outperforms other methods. All generated draw-
ings evaluated in the user study are presented in the appen-
dix, available in the online supplemental material.

GAN Metric Evaluation. We adopt the Fréchet Inception
Distance (FID) [37] to evaluate the similarity between the
distributions of two drawing sets — one is the set of gener-
ated APDrawings for one style and the other is the set of col-
lected true drawings for this style — where lower FID
indicates better similarity. By changing the input style fea-
ture vector, we transform all face photos in the test set into
three styles of APDrawings. The FID values between the set
of generated APDrawings of each style and the collected
drawings of the corresponding style are computed and
summarized in Table 3. The results show that compared
with the other multimodal generation methods
(MUNIT [10], ComboGAN [22], DRIT [23] and our confer-
ence version [3]), our method has lower FID on all three
styles, indicating our method generates a closer distribution
to the distribution of true drawings.

Quality Metric Model Evaluation. We apply the trained
quality metric model M on generated drawings of different
methods, and the quality scores are listed in Table 4. The
score for each method is averaged on the test set. Our
method achieves the highest score, indicating that our gen-
erated results have the best perceptual quality according to
the trained metric model.

More Test Results. In addition to photos collected from
Internet, we also test our method on photos from the CelebA-
Mask-HQ Dataset [38]. The results are summarized in Appen-
dix A5.3, available in the online supplemental material.

TABLE 3
Fréchet Inception Distance (FID) of Our Method and Four
Multi-Modal Image Translation Methods

Methods Stylel | Style2 | Style3 |
MUNIT [10] 194.3 267.4 242.8
ComboGAN [22] 184.9 144.1 141.4
DRIT [23] 82.8 135.0 119.9
Ours-pre [3] 88.3 139.0 108.2
Ours 81.2 114.3 89.7

The FID values are computed between the set of generated APDrawings of each
style and the collected true drawings of the corresponding style.
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TABLE 4
The Scores Predicted by Quality Metric Model M on the Results of Different Methods
Methods Gatys LST DualGAN CycleGAN UNIT
Quality score 0.37 0.35 0.35 0.35 0.36
Methods MUNIT ComboGAN DRIT Ours-pre Ours
Quality score 0.33 0.40 0.44 0.45 0.51

The score for each method is averaged on the test set. Higher quality score indicates better quality.

-’,.
(a) Input

(b) W/o Lyeigxea(€) W/0 Lyeiaxed (¢) w/o HED

w/o Dy,

(d) w/o Dy,

Fig. 13. Ablation study: (a) input photos, (b) results of removing relaxed
cycle-consistency loss (i.e., using L, loss) and removing local discrimi-
nators, (c) results of removing relaxed cycle-consistency loss, (d) results
of removing local discriminators, (e) results of removing HED in calculat-
ing relaxed cycle-consistency loss, (f) our results.

7.4 Ablation Study

We perform an ablation study based on the four key ingre-
dients of our model: (1) relaxed cycle consistency loss, (2)
the quality loss based on the quality metric model, (3) local
discriminators, and (4) HED edge extraction. Results show
that they are all essential to our model. In Appendix A4,
available in the online supplemental material, three more
ablation studies are presented: the first focuses on the style
feature vector and style loss, the second focuses on the

(b) w/o Lquality [3] (style 1,2, 3)

truncation loss, and the third focuses on how face region
information is utilized in the discriminator.

As shown in Fig. 13b, without relaxed cycle consistency
loss and local discriminators, facial features are often miss-
ing, e.g., the nose is missing in all three rows, and eye
details are missing in the first and third rows. Removing
only relaxed cycle consistency loss (Fig. 13c) preserves more
facial feature regions (e.g., the nose in the second row)
when compared to Fig. 13b, but some parts (e.g., the nose in
the third row) are still missing compared to our method
(Fig. 13f). Removing only local discriminators (Fig. 13d) pro-
duces few missing parts: although the results are much bet-
ter than Fig. 13b in terms of preserving facial structure,
some facial features are not drawn in the desired manner,
i.e., some black regions or shadows (that are usually drawn
near facial boundaries or hair) appear near the nose. When
both relaxed cycle consistency loss and local discriminators
are used, results (Fig. 13f) preserve all facial feature regions
and no undesired black regions or shadows appear in faces.
These results show that both relaxed cycle consistency loss
and local discriminators help to preserve facial feature
regions and are complementary to each other : (1) the
relaxed cycle loss works in a more global and general way,
it alleviates the need to hide information and helps preserve
outlines (since lines are more easily missing in nose, eyes
and lips regions, their effects on these regions are more visi-
ble), and (2) as a comparison, the local discriminators work

(c) Ours (style 1, 2, 3)

Fig. 14. Ablation study on quality loss: (a) input photos, (b) results of removing quality loss, (c) our results. Artifacts are highlighted in red boxes.
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TABLE 5

Fréchet Inception Distance (FID) of the Ablation Studies
Methods Stylel | Style2 | Style3| AvgA
W/0 Lyeiazed, W/ 0 Dy 102.9 126.8 105.1 16.53
W/0 Lyelaged 88.0 132.9 107.0 14.23
w/o Dy, 89.4 142.3 101.4 15.97
w/o HED 84.1 114.8 103.4 5.70
W/0 Lguatity [3] 88.3 139.0 108.2 16.77
Ours 81.2 114.3 89.7 /

The FID values are computed between the set of generated APDrawings of each
style and the collected true drawings of the corresponding style.

in a local way, dedicated to eyes, nose and lips, improving
drawings and eliminating artifacts in these local regions.

As shown in Fig. 13e, without HED edge extraction in the
relaxed cycle consistency loss calculation (i.e., calculating
LPIPS perceptual similarity between the input and recon-
structed photo), the lines are often discontinuous or blurred,
e.g., the nose outlines in the second row are discontinuous
(upper right), and the noses in the first and third rows are
blurred and messy. In comparison, our results have clear,
sharp and continuous lines, demonstrating that using HED
edge extraction helps the model to generate clearer and
more complete lines.

As shown in Fig. 14b, without the quality loss, the results
contain more artifacts including undesired dark regions
and parallel lines on the face (highlighted in red boxes). In
comparison, our results in Fig. 14c are cleaner and of better
quality.

The quantitative evaluation of the above ablation studies
are reported in Table 5. FID scores of our results are lower
(better) in all three styles than the ablated versions. We fur-
ther compute the average difference between our FID and
each ablated version, shown as “Avg A”.

Contributions of Each Component. (1) Qualitative and quan-
titative results show that cycle consistency loss and local
discriminators are complementary to each other, and work
together to better preserve facial features:

e without both components, the average A is larger
than without a single component;

e without a single component, the average A is also
large, indicating these two components contribute
largely to the final results.

(2) In addition, the visual differences between results of
removing the quality loss and ours are easily visible, and
the quantitative difference is also large, indicating the qual-
ity loss helps remove undesirable artifacts and improves
quality. (3) Compared to these three components, HED itself
has smaller impact on the final results.

8 CONCLUSION

In this paper, we propose a method for high quality
APDrawing generation using asymmetric cycle mapping.
Our method can learn multi-style APDrawing generation
from web data of mixed styles using an additional style fea-
ture vector input and a soft classification loss. In particular,
our method makes use of unpaired training data and
improves upon [3] in the following four aspects: (1) a novel

quality metric for APDrawings is proposed; (2) based on
the quality metric, a new quality loss that is consistent with
human perception is introduced to guide the model
toward better looking drawings; (3) a “new” style
APDrawing generation mechanism is proposed; and (4)
the model is dissected by visualizing feature maps and
exploring face semantics. Experiments and a user study
demonstrate that our method can (1) generate high quality
and distinctive APDrawing results for the styles in training
data and new unseen styles, and (2) outperforms state-of-
the-art methods.
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