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Abstract—Audio-driven talking face video generation has at-
tracted much attention recently. However, few existing works
pay attention to machine learning of talking head movement,
especially based on the phonetic study. Observing that real-
world talking faces often accompany natural head movement,
in this paper, we model the relation between speech signal and
talking head movement, which is a typical one-to-many mapping
problem. To solve this problem, we propose a novel two-step
mapping strategy: (1) in the first step, we train an encoder that
predicts a head motion behavior pattern (modeled as a feature
vector) from the head motion sequence of a short video of 10-
15 seconds, and (2) in the second step, we train a decoder that
predict a unique head motion sequence from both the motion
behavior pattern and the auditory features of an arbitrary speech
signal. Based on the proposed mapping strategy, we build a deep
neural network model that takes a speech signal of a source
person and a short video of a target person as input, and outputs
a synthesized high-fidelity talking face video with personalized
head pose. Extensive experiments and a user study show that our
method can generate high-quality personalized head movement in
synthesized talking face videos, and meanwhile, has comparable
facial animation quality (e.g., lip synchronization and expression)
with the state-of-the-art methods.

Index Terms—Generative models, Head motion behavior pat-
tern, Talking face video synthesis, Speech-driven animation.

I. INTRODUCTION

Isual and auditory modalities are two important sensory
Vchannels in human-to-human interaction. The informa-
tion in these two modalities are strongly correlated [1]. Re-
cently, cross-modality learning has attracted more and more
attention in interdisciplinary research, including computer vi-
sion, multimedia and computer graphics, e.g., [2]-[5].

In this paper, we focus on talking face video generation
that transfers a speech signal of a source person into the
visual information of a target person. This kind of audio-
driven vision models have a wide range of applications, such
as bandwidth-limited video transformation, virtual newsreader
and role-playing game generation, etc. Recently, an increasing
number of researches have been proposed for this purpose,
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TABLE I
COMPARISON WITH METHODS THAT PREDICT HEAD POSES FROM AUDIO
(RATHER THAN FIXED OR COPY FROM ANOTHER VIDEO). OPTION A: NO
NEED TO RETRAIN POSE MODULE FOR NEW CHARACTER; OPTION B:
ONE-TO-MANY MAPPING.

speech-to-pose network (pose module)

Methods inputs of pose module option A option B
TGRHM [6] speech+reference video v X
MakeltTalk [7] speech v X
HDTF [8] speech + face photo v X
3D-Talking-Face [9] | speech + initial pose X X
FACIAL-GAN [10] speech X X

LiveSpeechPortrait [11]{speech + history poses X v (history poses)
Ours speech + short video v v (motion behavior)

e.g., [2], [3], [12]-[16]. Most of these works either only
consider facial animation with fixed head pose (e.g., [2], [3],
[12], [13]), or simply copy the head pose from the given
video of the target person [14]-[16] or an additional pose
source video [17]. Some recent works [6]-[10] learn to predict
the head motion from audio. However, they did not address
the fundamental one-to-many problem for speech-to-head-pose
mapping as we point out below. A recent person-specific work
[11] predicts the head motion by assuming a one-to-many
mapping (conditioned on history poses). But it only models
the head motion of one target person, and fails to generate
head motion for multiple subjects (ref. Table I).

In real-world scenarios, natural head movement plays an im-
portant role in high-quality communication and psychological
studies had shown the evidence that head movement indeed
improves auditory speech perception [18]. In fact, humans
can easily feel uncomfortable in communication by talking
with a fixed head pose. In this paper, we propose a deep
neural network to model the relation between speech signal
and talking head movement in a short video.

Inferring head movement from speech has been studied in
the speech community, e.g., [19]. Although some measurable
correlations have been observed between speech and head
movement [4], it is well recognized that speech-to-head-pose
is a typical one-to-many mapping, and there is a lack of
theoretical support why a unique head motion sequence can
be predicted from a speech signal. In our study, we draw
a key observation from the phonetic study in [20]: there is
a correlation between some acoustic features of speech and
some components of head motion, but their coupling varies
from utterance to utterance; e.g., the fundamental frequency
Iy may correlate to the x-axis component of head rotation
in a very short speech, but in another short speech, Iy may
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correlate to the y-axis component of head rotation, even for
the same person.

In this paper, we characterize the basic unit of utterance
by a short video V' of 10-15 seconds, and propose a novel
two-step mapping strategy: (1) in the first step, we train an
encoder that predicts a head motion behavior pattern (modeled
as a feature vector x) from the head motion sequence of V,
and (2) in the second step, we train a decoder that predict a
unique head motion sequence from both z and the acoustic
features of an arbitrary speech signal. Our strategy elegantly
solves the one-to-many mapping problem: for the same speech,
given different short reference videos, our strategy can predict
different personalized head poses. It is worth noting that we
set the length of a short video to be 10-15 seconds, because for
a relatively long video (e.g., 2 minutes) it may mix multiple
inconsistent head motion behavior patterns and the decoder
cannot predict a unique one. Meanwhile, short videos of 10-
15 seconds have been widely used in many social media
applications (such as video sharing in the popular TikTok and
WeChat APPs).

Based on the proposed mapping strategy, we build a system
that can transfer the speech signal of an arbitrary source
person into the talking face video of an arbitrary target person
with learning-based personalized head pose. We model the
speech-to-head-pose mapping as a one-to-many problem, and
generate head motion for multiple subjects. The contributions
of this paper are three-fold:

¢ We propose a novel two-step mapping strategy that
efficiently solves the one-to-many problem for speech-
to-head-pose mapping and generates personalized head
motion for multiple subjects.

o We propose a novel talking face video generation sys-
tem that can transfer a speech signal of an arbitrary
source person into a high-quality talking face video of
an arbitrary target person, with personalized talking head
movement learned from a short video of 10-15 seconds.

o We propose a rendering-to-realistic GAN module which
can generate photo-realistic video frames for various face
identities, i.e., corresponding to different target persons in
different reference short videos.

II. RELATED WORK
A. Talking face video generation

Existing talking face video generation methods can be
broadly categorised into two classes according to the driven
signal: video-driven and audio-driven.

Video-driven methods (a.k.a face reenactment) transfer
expression and sometimes head pose from a driving frame to
a face image of target actor. Traditional optimization methods
transferred expression using 3DMM parameters [21] or image
warping [22]. Learning-based methods were also proposed by
training with videos of target actor or general audio-visual
data, using GAN model conditioned on different characteris-
tics, e.g., image [23], additional landmarks [24], or motion
representation [25].

Audio-driven methods take both auditory and visual infor-
mation as input, where the auditory data (from source person)
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provides the driving signal for facial movements and the visual
data provides the information of target person. Audio-driven
methods can be further categorized into following sub-classes,
based on the time span of input visual information:

(1) A single face image. Chung et al. [3] learned a joint
embedding of input face image and audio signal, and used
an encoder-decoder CNN model to generate a talking face
video. Similarly Zhou et al. [13] also learned a joint audio-
visual representation. Chen et al. [2] first transferred the audio
signal to facial landmarks and then generated video frames
conditioned on the landmarks. Song et al. [12] proposed a
conditional recurrent adversarial network that integrated audio
and image features in recurrent units. Recently, Zhou et al.
[17] proposed a pose-controllable audio-visual system which
takes head poses from another pose source video rather than
learning from audio. The above methods either focused on the
facial animation and fixed the head pose during animation, or
copy head motion from a reference video.

Some recent works explored learning head motions. Zhou
et al. [7] proposed MakeltTalk, which generates speaker-
aware talking-head animation from a face photo and a speech
signal. It proposed to disentangle speaker-agnostic content
and speaker identity information from audio, and designed
two branches to generate facial landmark offsets from audio,
for general and speaker-aware motion respectively. However,
it only extracted identity from audio, and ignored visual
information and head motion behavior in the target person’s
video. Zhang et al. [8] proposed a flow-guided talking face
generation system (HDTF) which learns a mapping from
audio and reference face image to head poses. It regarded the
reference face identity as the style for generating head poses,
but a single reference face is unable to provide information
about head motions. The above methods failed to address the
one-to-many mapping between audio and head motion caused
by different head motion behaviors.

(2) A short video of less than 15 seconds. Chen et al. [6]
proposes a head motion learner for talking head generation,
which learns the relation between audio ., and its paired
head motion h;.,, and predicts the head motion of subsequent
audio z,41.7. But it did not address the one-to-many mapping
problem and could not generate personalized head motion
of the target person given another person’s audio. Different
from that, we extract personalized head motion behavior
pattern from head motion sequence only, and predict a new
head motion sequence from the extracted pattern and acoustic
features. Observing that short videos of 10-15 seconds have
been widely used in popular free messaging APPs such as
TikTok and WeChat, we provide a method by making use of
this kind of video data.

(3) A short video of 2-3 minutes. Given a speech signal of a
source person, Thies et al. [14] proposed Neural VoicePuppetry,
which outputs high-quality talking video of a target person by
using a latent 3D face model. This method contains a general
audio-to-expression network and a specific neural rendering
network, where the specific network is trained on a target
person’s video of 2-3 minutes. Wen et al. [15] proposed
AudioDVP to first predict expression from audio and re-render
the face, and then use a neural renderer to transform the
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lower face regions of rendering images into realistic ones. The
network models in this method were also trained on a target
person’s video of 3 minutes. Both methods simply copied the
pose sequence from the reference video and did not consider
personalized head pose.

Recently, some person-specific methods [9]-[11] have been
proposed to generate head poses, i.e., a new model need to be
trained for each new character. Zhang et al. [9] proposed 3D-
Talking-Face, which generates 3D talking face with personal-
ized head pose. This method adopts personalized training: for
a new character, the pose generator needs to be trained using
a 2-3min video of the new person. Zhang et al. [10] proposed
FACIAL-GAN to jointly learn explicit (facial expression) and
implicit (head poses, eye blinks) attributes from audio features.
It utilizes a temporal correlation generator, a local phonetic
generator and a discriminator to learn mapping from audio
features to explicit and implicit attributes, where the speech-
to-head-pose is modeled as a one-to-one mapping. The model
is finetuned on a 2-3min reference video of the target person.
Lu et al. [11] proposed LiveSpeechPortraits, a person-specific
talking dynamic estimation method by learning from a 3-5min
video of the subject. It models the speech-to-head-pose as a
one-to-many mapping, but the model is trained for only one
target person. Different from [11], we learn an audio-to-head-
pose mapping for multiple subjects.

(4) Long video data of more than 10 hours. A representative
work in this sub-class is [5] in which a talking face video
generation method with personalized head pose was proposed
for a specified person, e.g., it used Obama’s weekly address
videos of 17 hours to train the model. The main obstacle in
this method is to collect high quality video training data of
many hours for a specified person.

(5) Video data without specified time constraint. Prajwal
et al. [16] proposed a speech-to-lip generation method, which
designed a novel lip-sync discriminator to achieve accurate lip
synchronization. This method can deal with the target person’s
video of any time lengths and thus cover the above sub-classes
(2-4). However, this method simply copied the head pose from
reference video to output synthesized video.

As a summary, none of the above methods solve the follow-
ing problems in a simple yet effective framework like ours:
1) predicting head pose from audio-visual information using
an one-to-many mapping model; 2) modeling head motion of
multiple characters; and 3) generate talking face video with
personalized head movement of an arbitrary target person
given an arbitrary audio (ref. Table I).

B. 3D face reconstruction

Another challenge in our work is that natural head move-
ment often causes out-of-plane head rotations, and it is difficult
to synthesize high-quality facial animation with smooth back-
ground transition. To address this challenge, we reconstruct
3D face animation and re-render it into video frames. Below
we summarize the related work.

3D face reconstruction aims to reconstruct 3D shape and
appearance of human face from 2D images. Many methods
have been proposed [26] and most of them were based on 3D
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Morphable Model, which learned a PCA basis from scanned
3D face dataset to represent general face shapes. Traditional
methods fit 3DMM by an analysis-by-synthesis approach,
which optimized 3DMM parameters by minimizing difference
between rendered reconstruction and the given image (e.g.,
[27]). Learning-based methods used CNN to learn a mapping
from face images to 3DMM parameters. To deal with the
lack of sufficient training data, some methods used synthetic
data, e.g., [28], [29], while others use unsupervised or weakly-
supervised learning, e.g., [30], [31]. In this paper, we adopt
the method [31] for 3D face reconstruction.

C. GANs

The video frames by re-rendering reconstructed 3D face
animation are often not very realistic. In the system proposed
in this paper, we propose a rendering-to-realistic GAN module
to fine tune these rendered frames into realistic ones with
smooth transition. Below, we summarize the related work.

Generative Adversarial Networks (GANs) have been suc-
cessfully applied to many computer vision problems (e.g.,
[23], [32]-[38]. The Pix2Pix proposed by [37] has shown great
power in image-to-image translation between two different
domains. Later it was extended to video-to-video synthesis,
e.g., [39]. It has also been applied to the field of facial
animation and texture synthesis. Wang et al. [23] applied a
GAN conditioned on rendered face images to generate realistic
video frames. Although this method achieved good results, it
was only suitable for a specific target person, and it needed
thousands of training samples related to this specific person.
In addition to generate image, [38] proposed a GAN model to
generate realistic dynamic facial textures.

III. PREDICTING HEAD MOVEMENT FROM MULTI-MODAL
INPUT

In this paper, we aim to generate high-quality talking face
video, given a speech signal of a source person and a short
video (about 10-15 sec) of a target person. In addition to
learning the transformation from the speech signal to lip
motion and facial expression, our system specially considers
the generation of personalized head movement of the target
person. Below we propose a novel two-step mapping strategy
to predict head movement from input speech signal and short
video. The whole system is presented in Section IV.

People naturally move their heads when speaking. It is
well recognized [18] that this accompanying head movement
conveys linguistic information and there is a weak correlation
between speech and head movement. Yehia et al. [20] explain
the meaning of weak correlation by that speech-to-head-
motion is a one-to-many mapping and the manner in which
speech and head motion are coupled changes from utterance
to utterance. For a simple example, they found that in a
short speech of a few seconds, the fundamental frequency
Fy is coupled with head rotation in the axial axis; while in
another short speech of a few seconds, Fj is coupled with head
rotation in the sagittal plane and translation in the vertical and
protrusion axes. Our analysis in the appendix A also supports
these findings in [20].
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In our study, we set the time length of input video to be
10-15 seconds, due to the following reasons: (1) based on the
study in [20] as well as our experiment in the appendix A,
we assume that a basic utterance unit (in which the mapping
from speech signal to head movement is one-to-one) ranged
from a few seconds to a dozen seconds; that is, for a video
of more than one minute, it may contain multiple inconsistent
styles of utterances, (2) a user study in the appendix B shows
that using a video of 4 or 8 seconds leads to relative bad fine-
tuning results from our GAN module, and using a video of 12
or 20 seconds has the same quality of fine-tuning results, and
(3) videos of 10-15 seconds are widely used in social media
such as TikToK and WeChat.

We characterize the head motion in each video of 10-15
seconds by a motion behavior pattern. Our modeling strategy
has the following characteristics. First, different people have
different motion behavior patterns. Second, since the coupling
between speech and head motion changes from utterance
to utterance, one person can have multiple motion behavior
patterns in multiple short videos, but most of the time one
short video of a person (which is 10-15 seconds and only
contains one basic utterance unit) only corresponds to one
motion behavior pattern. Finally, given one motion behavior
pattern of a target person and a speech signal of a source
person, our method can output a high-quality talking face
video with personalized head movement.

A. Motion behavior pattern

We represent the motion behavior pattern as a vector in
the feature space R*, where k is empirically set to be 16 in
our experiment. Given a short video of a target person, we
extract the head pose sequence using 3D face reconstruction,
and map the head pose sequence into a vector in R* (to
represent motion behavior pattern). We model the mapping
as a function g(y) : P* — RF, where P* is the domain of
all head pose sequences. The input to the function g(y) is
the head pose sequence y = {y(l), . ,y(T)} extracted from
the short video, and the output is a motion behavior pattern
x € R*. We construct a new dataset which contains different
types of head motions of different people to train the mapping.
The details of this new dataset are presented in Section V-A.

B. Speech to head pose prediction conditioned on motion
behavior pattern

We model the one-to-many mapping between speech and
head motion as a function f(a,z) : A* x RF — P*, where
A* is the domain of auditory features. The inputs to the
function f(a,z) include (1) an auditory feature sequence
a={a", ..., aM} € A*, and (2) a motion behavior pattern
x € RF. And the output of the function f(a,z) is a predicted
pose sequence yf = {y;l), ey y;T)} € pP*.

Given a fixed speech signal with audio feature a, if we
change the motion behavior pattern z, then using the function
f we can get different predicted head pose sequences. In
this way one speech signal can correspond to different head
motions. However, if we fix the motion behavior pattern x to
a specific pattern xp, only one predicted pose sequence will
be generated for each speech signal.
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C. Head motion encoder and head motion decoder

We design a head motion encoder E,, for g(y) and a head
motion decoder D,, for f(a,z).

Network design. The head motion encoder FE,, takes a
head pose sequence as input, and outputs the motion behavior
pattern (a k-dimension vector). It consists of (1) an LSTM
network to extract the head pose feature!, and (2) a multi-
layer perceptron (MLP) network to map the pose feature into
a motion behavior pattern in RF.

The head motion decoder D,,, takes the MFCC audio feature
a and a motion behavior pattern x as inputs. And the output
is a predicted head pose sequence. It consists of (1) an LSTM
to extract deep auditory features from MFCC features, (2) a
1D convolution layer to collect deep auditory features in each
window of 280ms, (3) a concatenation of the pattern x with
the collected audio features, and (4) a MLP network to predict
the pose sequence from the concatenated feature.

Loss function. We first pre-train the head motion encoder
E,, using the contrastive loss: given a triplet of head pose
sequences (y1,y2,¥s), where y; and y» are head pose
sequences extracted from the same video, and ys3 is head
pose sequence extracted from a different video, we minimize
the distance between E,,(y1) and E,,(y2) and maximize the
distance between F,,(y1) and E,,(ys). The loss function is

‘ccontra(Em) = E(y1,y2,y3){||Em(y1) - Em(y2)||2
+ [max(T - ||Em(Y1) - Em(YS)Hv 0)}2}7

where 7 is the margin, and we set 7 = 2 in the experiment.
We then train the head motion encoder and decoder jointly,
on a newly constructed head motion dataset. The pretrained
model provides the initial network state for the head motion
encoder. For each video in the dataset, we extract the MFCC
feature a from the audio track and the pose sequence y, from
the frames, which forms a pair (a,y,). We train the model to
recover the ground-truth pose sequence. The loss function is

»C(Ema Dm) = »Crecon(Ema Dm) + )\pl»csmooth(Ema Dm)

+ >\p2£contra(Em) + )\p3£contra2 (Ema Dm)(z)

)

which consists of a reconstruction term?,

ET@CO’VL (E'HLy Dm) = E(a7yr)[(}’r - Dm(aa Em(yr)))z]a (3)

a smooth term,

‘Csmooth(Emv Dm) = IE(a,yr) [Et(y;t+1) - y(t))Q
(t*l) (tJrl))Q]

t
+E2 vy -y -yl
where y is the predicted sequence D,,(a, E,(y-)), a con-
trastive term for pattern, i.e., Leontra(Erm) in Eq.(1), and a
contrastive term for predicted pose,

EcontraZ(Erru Dm) = IE(Q)l,[EQ,.’L‘g){HDm(a?l.l) - Dm(a7 $2)||2
+[max(ra — ||Dm(a, z1) — D (a, x3)|\,0)](2})~

“4)

'We take the hidden and cell states of the LSTM network as the pose
feature.

2The distance between two sets of rotation angles are calculated as mean
square error between elements in two rotation matrices.
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Fig. 1. Flowchart of our method. Stage 1: from audio-visual information to 3D facial animation, including (1) reconstructing 3D face of the target person
(Sec. IV-Al), (2) training a general mapping from speech to the facial expression (Sec. IV-A2), and (3) training an encoder and decoder for personalized
head movement for multiple subjects (Sec. IV-A3). Stage 2: from 3D facial animation to realistic talking face video generation, including (1) rendering 3D
facial animation into video frames using a lightweight graphic engine (Sec. IV-B1), (2) background matching (Sec. IV-B2), (3) fine tuning rendered frames
into realistic ones using a rendering-to-realistic GAN module (Sec. IV-B3), and (4) an enhancement module to obtain high quality results.

where 7 = 2 in the experiment, z1,x2,x3 are the pattern
encoding of y1,¥ys,ys respectively (note that z1,xo are the
encoding of the head pose from the same short video, 3 is the
encoding of a different video). In the term (5), for the same
auditory feature sequence a, we minimize the predicted pose
from (a,z1) and (a,x2), and maximize the predicted pose
from (a,z1) and (a,x3).

IV. TALKING FACE VIDEO GENERATION SYSTEM

Based on the two-step mapping strategy for head pose
prediction, in this section, we propose a talking face video
generation system with personalized head movement, when
given a speech signal of a source person and a short video
(about 10-15 sec) of a target person as input.

To achieve this goal, our idea is to use 3D facial animation
with personalized head pose as the kernel to bridge the gap
between audio-visual-driven head pose learning and realistic
talking face video generation. The flowchart of our method is
illustrated in Fig. 1, which consists of two stages:

Stage 1: from audio-visual information to 3D facial ani-
mation. First, we reconstruct 3D face of the target person.
Then we train a general mapping from the speech signal
to the facial expression on the LRW video dataset [40]. To
model personalized head motion behavior, we construct a
head motion dataset to train the head motion encoder (for
extracting a behavior pattern x) and the head motion decoder
(for establishing a mapping from speech to head movements,
conditioned on = and auditory features).

Stage 2: from 3D facial animation to realistic talking
face video generation. We render the 3D facial animation
into video frames using the texture and lighting information
obtained from input video. With these limited information,
the graphic engine can only provide a rough rendering effect
that is usually not sufficient to obtain realistic frames. We
then use a rendering-to-realistic GAN module that can refine
these rendered frames into realistic ones. This GAN module is
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trained in two steps: (1) first trained on the publicly available
LRW video dataset (for various identities) and then (2) fine
tuned using the input short video (for the specific target
person). Therefore, our GAN module can deal with various
identities and generate high-quality talking face video frames
that match the face identity of the target person in input video.
Finally we apply an enhancement module [41] to obtain high
quality results.

Our system contains six main components in two stages:
(1) stage 1 contains the 3D face reconstruction module, the
audio-to-expression mapping module, and the multi-modal-
input-to-head-pose mapping module, and (2) stage 2 contains
the rendering of 3D face module, the background matching
module, and the rendering-to-realistic GAN module. In par-
ticular, our novel GAN module can generate photo-realistic
video frames for various face identities. The details of each
module are introduced below.

A. Stage 1: from audio-visual information to 3D facial ani-
mation

1) 3D face reconstruction: We adopt a state-of-the-art deep
learning method [31] for 3D face reconstruction. It uses a
CNN to fit a parametric model (for 3D face geometry, texture
and illumination) to an input face photo I. This method recon-
structs the 3DMM coefficients x(I) = {c, 3,8, ~v,p} € R?%7,
where a € R® is the coefficient vector for face identity,
B € R% is for expression, § € R® is for texture, v € R?7
is the coefficient vector for illumination, and p € RS is
the pose vector including rotation and translation. Then the
face shape S and face texture 7' can be represented as
S =S+ Bjga + BeypB, T = T + By, 8, where S and T
are average shape and texture, B;q, Besyp and By, are PCA
basis for shape, expression and texture separately. Basel Face
Model [42] is used for B;4 and By..., and FaceWareHouse [43]
is used for Begyp.
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The illumination is computed using the Lambertian surface
assumption and approximated with spherical harmonics (SH)
basis functions [44]. The irradiance of vertex v; gvith normal
vector n; and texture t; is C'(n;,t;,v) = t; Zle Y% Pp(1;),
where ®, : R® — R are SH basis functions, 7, are SH
coefficients and B = 3 is the number of SH bands. The pose
is represented by rotation angles and translation vectors. A
perspective camera model is used to project the 3D face model
onto the image plane.

2) Audio-to-expression mapping: It is well recognized that
the audio signal has strong correlation with lip and lower-
half face movements. However, talking faces with only lower-
half face movements are stiff and far from natural. In other
words, upper-half face (including eyes and brows) movements
and head pose are also essential for a natural talking face.
Below we establish the mapping from the speech to the facial
expression.

We extract the Mel-frequency cepstral coefficients (MFCC)
feature of the input speech (using sample rate 16,000 and
window step 10 ms), and model the facial expression using
3DMM coefficients. To establish the mapping inbetween, we
design an LSTM network as follows. Given the MFCC features
of an audio sequence s = {s(M),... s}, and a ground-
truth expression coefficient sequence 8 = {1, ..., B(f)},
we generate predicted expression coefficient sequence 8 =
{pM, ..., B0}, Denoting the LSTM network as R, the
mapping can be formulated as

B0, 20, 0] = R(E(sM), b, 71),(6)

where E is an additional audio encoder (which is applied to
the MFCC feature of audio sequences s(*)), and h(*) and ¢*)
are hidden and cell states of LSTM unit at time ¢ respectively.

We design a loss function containing two loss terms to
optimize the network: a mean squared error (MSE) loss for
expression coefficients, and an inter-frame continuity loss
for dynamic expression. Denoting the shorthand notation of
Eq. (6) as B = ¢1(s), the loss function is formulated as:

L(R,E) = Es [(8 — 61(s))’]
T—1 7
+ A1 B[ D (61(5) D — ¢1(s)P)?,
t=0
where inter-frame continuity loss is computed by the squared
Ly norm of the gradient of expression coefficients.

3) Multi-modal-input-to-head-pose mapping: In this mod-
ule, we establish the mapping from the speech to the head
pose. In Section III, we propose a two-step mapping strategy
for head movement prediction: 1) characterize the head motion
in each short video by a motion behavior pattern (modelled by
mapping ¢(y) in Sec. III-A), and 2) predict head pose from
speech conditioned on the motion behavior pattern (modelled
by mapping f(a,z) in Sec. III-B). Then we propose a head
motion encoder E,, for g(y) and a head motion decoder D,,
for f(a,z) (Sec. HI-C).

We use the head motion encoder and the head motion
decoder to predict head pose. As shown in Figure 1, (1) the
head motion encoder first extracts a motion behavior pattern
from the head pose sequence of the input short video; (2) then
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Fig. 2. Comparison of the rendering effects using the low-frequency albedo
and the detailed albedo.

\(\

the head motion decoder predicts a head pose sequence from
both the audio features of the input speech and the motion
behavior pattern.

B. Stage 2: from 3D facial animation to realistic talking face
video generation

1) Rendering of 3D face with personalized pose: After
reconstructing the 3D face of the target person and generating
the expression and pose sequences, we obtain a sequence of
3DMM coefficients synchronized with the speech signal, in
which (1) expression coefficients are from the speech of source
person, (2) the identity, texture and illumination coefficients
are from the input video of target person, and (3) head pose
coefficients are determined by both the speech signal (of
source person) and the input video (of target person). Given
this sequence of 3DMM coefficients, we can render a video
frame sequence of a talking face with personalized head poses,
using the rendering engine [30].

If we compute the albedos from reconstructed 3DMM co-
efficients, these albedos are of low-frequency and too smooth,
resulting in the rendered face images that do not appear
visually similar to the input face images. An alternative is to
compute a detailed albedo from input video; that is, we first
project the reconstructed 3D shape (i.e., a face mesh) onto
the image plane, and then we assign the pixel color to each
mesh vertex. In this way, the albedo is computed by dividing
illumination. Finally, the albedo from the frame with the most
neutral expression and the smallest rotation angles is set as
the albedo of the video.

The rendering effect using the low-frequency albedo is a bit
far away realistic, while the rendering with the detailed albedo
is much better; see Figure 2 for two examples; see demo video
for visual comparison. In our system, we use both types of
albedos. We propose a GAN module which refines rendered
frames into realistic ones. Since the differences between the
rendered frames of low-frequency albedo and real frames
(in the facial region) are much larger than the differences
between the rendered frames of detailed albedo and real frames
(Figure 2), i.e., the domain gap is larger for low-frequency
albedo, training the GAN module from rendered frames of
low-frequency albedo to real frames needs more training data
than detailed albedo. To train this GAN module, two steps
are involved: (1) training on the common LRW dataset that
contains multiple identities, and (2) using the input video of
the target person to fine tune the GAN module. In the first
step, we use the detailed albedo for rendering, because the
common dataset contains few data (i.e., videos of only 1-2
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seconds) for each person, which is not enough for refining
the frames rendered with low-frequency albedo. In the second
step, we use the low-frequency albedo, since the input video
(about 10-15 seconds) can provide more training data of the
target person to fine tune the synthesized frames (rendered
with a low-frequency albedo) into realistic ones.

2) Background matching: So far the rendered frames only
contain the facial region, without the hair and background
that are also essential for a realistic talking face video. An
intuitive solution is to reuse a background from the input video
by matching the head pose. However, for a short video of
10-15 seconds, we only have about 300 frames to select a
suitable background, which is very few and can be regarded
as very sparse points in the possible high-dimensional pose
space. Our experiment also shows that this intuitive solution
cannot produce good video frames.

In our system, we propose to extract some keyframes
from the synthesized pose sequence, where the keyframes
correspond to critical head movements in the synthesized pose
sequence. We choose the key frames to be the frames with
largest head orientation in one axis in a short period of time,
e.g., the frame with leftmost or rightmost head pose. Then
we only match backgrounds for these keyframes. We call
these matched backgrounds as key backgrounds. For those
frames between two neighboring keyframes, we use linear
interpolation to determine their backgrounds (similar to the
background retiming technique in [45]). The pose in each
frame is also modified to fit the background. Finally the whole
rendered frames are assembled by including the matched
backgrounds.

3) Rendering-to-realistic GAN for refining frames: The
synthesized frames rendered by the light-weight graphic en-
gine [30] are usually a bit far from realistic. To refine these
frames into realistic ones, we propose to use a rendering-
to-realistic GAN. The differences between our method and
the previous GAN-based face reenactment (FR) methods (e.g.,
[23]) are:

« FR only refines the frames for a single, specified face
identity, while our method can deal with various face
identities; i.e., our GAN module can generate realistic
frames given rendering results of different identities.

o FR uses thousands of frames to train a network for a
single, specified face identity, while we only use a few
frames for each identity when pretraining on a common
LRW dataset containing over a thousand identities. After
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pretraining, we fine tune the network using the frames in
the input short video for the target person.

The difference between our GAN module and the previous
few-shot (FS) talking head method [24] is that FS deals with
head pose and expression transfer in realistic frames, while
we deal with rendering frame (less realistic) to realistic frame
transfer.

We model the frame refinement process as a function ¢
that maps from the rendered frame (i.e., synthesized frame
rendered by the graphic engine) domain R to the real frame
domain 7T using paired training data {(r;,¢9;)}, 7 € R and
gi € T. Given a real frame g;, the corresponding frame r;
in the training data is synthesized by rendering the 3D face
reconstructed from g;. To handle multiple-identity refinement,
we build a GAN network that consists of a conditional
generator (G, and a conditional discriminator D (Figure 3).
The conditional generator takes a window of rendered frames
(i.e., a set of 3 adjacent frames r;_o,7:—1,7¢) as input, and
synthesize a refined frame o; using the U-Net [46] with
attention mechanism. The conditional discriminator takes a
window of rendered frames and either a refined frame or a
real frame as input, and decides whether the frame is real or
synthesized.

Attention-based generator GG: We use an attention-based
generator to refine rendered frames into realistic ones. Given
a window of rendered frames (r;_2,7:—1,7¢) , the generator
synthesizes both a color mask C; and an attention mask A;,
and outputs a refined frame o, that is the weighted average of
the rendered frame and color mask:

op=A¢ -1+ (1—Ay) - Cy ¥

The attention mask specifies how much each pixel in the
generated color mask contributes to the final refinement. The
attention mask should attend to the regions that need to be
changed during the translation, and the output color for these
regions are mainly taken from the generated color mask. Since
the main differences between the rendered frames and realistic
frames are in the facial region, the attention mask A; should
attend to the facial region, and the color mask C; should learn
the realistic texture for facial region.

Our generator architecture is based on a U-Net structure
and modify the last convolution block to two parallel con-
volution blocks in order to generate two outputs (i.e., color
and attention masks), in which each one generates one mask.
Experimental results show that our network can generate
delicate target-person-dependent texture for various identities.
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Fig. 4. Comparison of real talking face videos and our generated videos.

Discriminator D: The conditional discriminator takes a
window of rendered frames and a checking frame (either a
refined frame or a real frame) as input, and determines whether
the checking frame is real or not. We adopt PatchGAN [37]
architecture as our discriminator.

Loss function: The loss function of our GAN model contains
three terms: an adversarial loss, an L loss, and an attention
loss [47] to prevent saturation of the attention mask A, which
also enforces the smoothness of the attention mask. Denoting
the input rendered frames as r, and the ground truth real frames
as g, the loss function is formulated as:

L(G, D) = (Eyg[log D(r, g)] + E[log(1 — D(r, G(r)))])
+MErg(llg = Gr)l[a] + AEr[[[All2]

HW
+ )\3ET[Z (Aig1 — Aig)* + (Aijr1 — Ai )]
0,J
©))
We train the GAN model to optimize the loss function:
G* = argminmax £(G, D) (10)
G D

V. EXPERIMENTS

We implemented our method in PyTorch. All experiments
are performed on a PC with a Titan Xp GPU. The comparison
to a video-driven method are presented in the appendix C.
Dynamic results can be found in the supplementary demo
video.

A. Datasets

Head motion dataset. Talking face videos in most public
lip reading datasets either are very short (e.g., about 1 second
in LRW [40] and 3 seconds in GRID [48]), or contain rich
camera movements (e.g., VoxCeleb [49] and LRS3-TED [50]).
They are not suitable for learning head motion, because too
short video does not contain sufficient head movement and
for videos with rich camera movements, it is hard to decouple
camera movement and head movement. Therefore, in our
study we build a new head motion dataset by collecting high-
resolution talking face videos from the Internet. The new
dataset consists of 751 single-person talking videos and each
video contains only one shot® without camera movements. The

3 A shot is a sequence of consecutive frames that was continuously captured
by the same camera.
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time length of these videos is in the range of 37-116 seconds
(the average is 56 seconds). Various types of head movements
(e.g. gentle, moderate and fierce) are contained in this dataset.
We use this dataset to train the multi-modal-input-to-head-pose
network.

LRW dataset. The LRW video dataset [40] is a publicly
available lip reading dataset including five hundreds of distinct
words, thousands of lip-reading instances for each word, and
over a thousand speakers. Each instance is of 29 frames (about
1.16 seconds). The training set contains about 489k instances,
and the test set contains 25k instances. We use this dataset to
train the audio-to-expression network and the GAN module.

B. Training and test settings

The audio-to-expression network is trained on the LRW
training set using the loss fuction in Eq.(7) for 20 epochs
(learning rate 0.0002). The parameter \.; in Eq.(7) is 0.0001.

The head motion encoder (i.e., the mapping g(y)) is first
pretrained on the head motion dataset using the contrastive
loss in Eq.(1) for 10 epochs (learning rate 0.0001). Then the
head motion encoder g(y) and head motion decoder (i.e., the
mapping f(a, x)) are trained jointly on the head motion dataset
using the Eq.(2) in main paper for 10 epochs (learning rate
0.0001); the parameters in the equation are A\p; =5, A\p2 =1,
Apz = 1.

The rendering-to-realistic GAN is trained in two steps. First,
it is trained on the LRW training set* using the loss function in
Eq.(9) for 1 epoch with learning rate 0.0001. The parameters
in Eq.(9) are A\; = 100, A\ = 2, A3 = le~>. Secondly, we
fine-tune the GAN module using the input short video of 10-
15 seconds (about 300 frames) using the same loss function
for 60 epochs (learning rate 0.0001).

C. Comparison with state of the arts

Our method is proposed with a focus on personalized
head pose predicted from an input short video (Fig.4), which
meanwhile has comparable talking facial quality (e.g., lip
synchronization and expression) as good as state-of-the-art
methods. Since our method takes a speech signal (of a source

4The training set includes 489k videos and each video contains 29 frames,
which are very large for GAN training. Then we randomly select a subset of
402k frames for training.
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Fig. 5. Qualitative comparison of our method and state-of-the-art open-source
methods using S+V inputs. AudioDVP (12 sec), Wav2Lip (12 sec) and ours
use the same 12-second-long video as input.

person) and a short video (of a target person) as input, we
compare our method with state-of-the-art methods that use
similar input (we denote this kind of input as S+V input, where
S for speech and V for short video).

It is worth noting that by removing (1) head motion encoder
and decoder and (2) the fine tuning step of the GAN module
from our system, our method (denoted as Ours-p) can take
a speech signal (of a source person) and a face photo (of a
target person) as input (which we denote as S+P input, where
S for speech and P for photo), and output a synthesized talking
face video without personalized head pose. We then compare
Ours-p with state-of-the-art methods that use the same S+P
input.

1) Comparison with methods using S+V input: The
state-of-the-art methods that use similar S+V (12s short video)
input consists of: A) Wav2Lip [16]: can use video of arbitrary
time length as input. So we can test it by inputting video of 12
seconds. B) AudioDVP [15]: is originally designed with input
of 3-minute-long video. We adapt the source code provided
by the authors to use input of 12-second-long video. So in
this section, we compare two versions, AudioDVP (3 min)
and AudioDVP (12 sec). C) Neural VoicePuppetry [14]: is also
designed with input of 3-minute-long video. D) TGRHM [6]:
takes audio and K reference frames from a short video
as inputs during test (we evaluate on its generated results
of K = 32). E) FACIAL-GAN [10]: trains a person-
specific model from a 2-3 minute video of a target person. F)
LiveSpeechPortraits [11]: trains a person-specific model from
a 3-5 minute video of a target person.

Wav2Lip, AudioDVP and NeuralVoicePuppetry methods
copy the head poses from the input video to synthesize
the output video. TGRHM learns the relation between audio
and its paired head motion at time ¢, and predicts the head
motion of subsequent audio at time ¢ + 1. It cannot generate
personalized head motion of the target person given another
person’s audio. LiveSpeechPortraits and FACIAL-GAN learn
person-specific models and learn head motion for each subject
separately. While our method propose a speech-to-head-pose
mapping that generates personalized head poses for various
identities, and can generate personalized head pose with any
person’s audio and generate high quality talking face video.

Comparison details:

o For A) and B), we retrain the models using the official
training code and the same input short video data of dif-
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TABLE II
SUBJECTIVE SCORE EVALUATION OF OUR METHOD AND
STATE-OF-THE-ART METHODS USING S+V INPUT. THE 2ND AND 3RD
COLUMNS SHOW THE PERCENTAGE OF PARTICIPANTS WHO CHOSE EACH
METHOD AS THE BEST FOR HEAD MOTION (HM) CONSISTENCY (WITH
THE SPEECH) AND OVERALL QUALITY, RESPECTIVELY. THE LAST
COLUMN SHOWS THE POSE VARIETY SCORE.

Methods HM consistency 1|Overall 1|Pose variety score 1
AudioDVP (3 min) 23.4% 26.8% 1.15
AudioDVP (12 sec) 5.1% 3.3% 1.16
Wav2Lip (12 sec) 15.9% 29.2% 1.31

Ours-P (12 sec) 55.6% 40.8 % 2.96

ferent subjects as ours, and generate comparison groups
to compare with ours. We compare with A) and B) using
a user study and quantitative evaluation.

« For others, either code is partial or only generated exam-
ples are available: for C) and D), we only have access to
the generated examples; and for E) and F), training code
is not released, only a few pretrained models (each for
one subject) are available.> So we use the results of given
subjects for quantitative evaluation.

User study. It is challenging to evaluate the visual quality
and naturalness of synthesized videos, in particular regarding
the human face and head pose. We designed a user study to
compare these methods based on subjective score evaluation.
Randomly selected thirteen short videos of different identities
were used as input to generate thirteen comparison groups
(two of which are illustrated in Figure 5) for evaluation. 33
participants attended the user study. Each of them compared
talking face videos generated by different methods and an-
swered three questions for each group. For a fair comparison,
each group was presented by a randomly shuffled order of four
videos, produced by AudioDVP (3 min), AudioDVP (12 sec),
Wav2Lip and our method.

Three questions used in the study: 1) The first question
was to ask participants to select the best video in term of
concordant head movement and speech. 2) The second
question was ask participants to select the best video in term of
overall quality (including head movement, lip synchronization
and video quality). 3) Finally, to evaluate the personalized
head movements, given a short video of the target person, we
generate two synthesized videos using two different speeches.
Then the third question was to ask the participants to watch
two generated videos side by side and rate the head motion
difference between them: 1 (exactly the same), 2 (slightly
different), 3 (quite different), and 4 (totally different). We
calculate the pose variety score as the average rating. High
pose variety score indicates that the method can generate
diverse head poses for different speeches.

The statistics data of 33 participants are summarized in
Table II. The results show that our method achieves the best
consistency between head motion and speech, the best overall
quality, and the best pose variety.

SFor C), source code is not available and synthesis request is disabled
in online demo, we can only use the generated examples provided in the
demo. For D), the source code for audio-driven scenario is partial, lacking
audio2expression module, we only have access to its generated examples. For
E) and F), the models are person-specific, since the training codes are not
released, only pretrained models for a few target subjects are available, we
can only test on the provided target subjects. (accessed 2021-Nov-26.)
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TABLE III
QUANTITATIVE EVALUATION OF DIFFERENT METHODS USING S+V INPUT.

Methods V length AV offset | CPBD 1

3-min video

LiveSpeechPortraits ~ 3-5 min 1.93 0.20

FACIAL-GAN 2-3 min 3.18 0.17

Neural VoicePuppetry 3 min 2.04 0.29

AudioDVP 3 min 1.65 0.31
12-sec video

TGRHM 32 ref frames 1.49 0.16

AudioDVP 12 sec 2.92 0.30

Wav2Lip 12 sec 2.00 0.26

Ours 12 sec 1.65 0.31

Quantitative evaluation. In addition to the user study,
we further evaluate different methods using the following
two quantitative metrics. Since the input speech and short
video are from different subjects, the ground truth are not
available, we adopt two widely used metrics to evaluate the lip
synchronization and visual quality: (1) AV offset: This metric
measures the quality of audio-to-video synchronization. We
use SyncNet [51], which is an audio-to-video synchronisation
network, to evaluate the audio and visual streams offset (AV
offset) of a video. Lower AV offset value indicates better
audio-to-video synchronization. 2) Cumulative probability
blur detection (CPBD) measure [52]: is a no-reference
objective sharpness metric. We use CPBD to evaluate the
sharpness of the results. Higher value indicates shaper results,
less blur and better visual quality.

For Wav2Lip, AudioDVP and Our method, we evaluate the
metrics on all comparison groups. For Neural VoicePuppetry
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TABLE IV
QUANTITATIVE RESULTS OF OURS-P AND STATE-OF-THE-ART METHODS
USING S+P INPUT.

Metric PSNR 7]SSIM T |LMD 1.
Chen [53] 29.65 0.73 1.73
Wiles [54] 29.82 0.75 1.60

You said that [3]| 29.91 0.77 1.63
SDA [55] 29.44 0.68 2.32
DAVS [13] 29.81 0.73 1.73
ATVG [2] 3091 0.81 1.37

MakeltTalk [7] | 30.21 0.72 2.11
PC-AVS [17] 28.77 0.57 2.59
Ours-p 31.19 0.76 1.56

and TGRHM, since we only have access to the generated
examples in their online demo or shared zipped files, we
only evaluate the metrics on provided examples. For FACIAL-
GAN and LiveSpeechPortraits (person-specific and training
not available), we test on the provided subjects.

The results are summarized in Table III, showing that (1)
TGRHM, Ours and AudioDVP (3 min) are better than other
methods on lip synchronization, (2) Ours and AudioDVP (3
min) are better than others on sharpness and visual quality.

2) Comparison with methods using S+P input: By a
simple adaption of our method, the model Ours-p can generate
a talking face video based on S+P input. In this section, we
compare Ours-p with state-of-the-art methods using S+P input,
i.e., Chen [53], Wiles [54], You said that [3], DAVS [13],
ATVG [2], SDA [55], MakeltTalk [7], PC-AVS [17] using
their pretrained models.

We evaluate these methods on the test set of LRW
dataset [40], which contains 25,000 videos. We use the first
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frame and the audio of each video as input to generate results
for each method®. In this setting, the real video provides the
ground-truth. We compare the generated results of different
methods with the ground-truth videos, and follow ATVG [2]
to use three widely-used metrics for the talking face gen-
eration evaluation: the classic PSNR and SSIM metrics for
image quality and identity preservation evaluation; and the
landmark distance (LMD) for lip synchronization. The results
are summarized in Table IV, showing that Ours-p has the best
PSNR, comparable quality with ATVG [2] on SSIM and LMD,
and outperforms the other seven methods on all three metrics.
Some qualitative comparisons are illustrated in Fig. 6.

In addition to the comparison with methods in the audio-
driven class, we also compare our method with a state-of-the-
art method [25] in the video-driven class. Details are in the
appendix C.

D. Head Pose Behavior Quantitative Analysis

To objectively evaluate the quality of personalized head
pose, we propose a new metric HS to measure the similarity
of head poses between the generated video and real video.
We follow [56] to use the three Euler angles to model
head movements, i.e., pitch, yaw, and roll corresponding to
the movement of head nod, head shake/turn, and head tilt,
respectively. We compute a histogram P,..,; of pose angles in
the input real video, and a histogram P.,, of pose angles in the
generated video. Then we compute the normalized Wasserstein
distance W [57] between P..q and Pge,. The lower the
distance, the more similar the two head pose distribution. Our
new metric HS is formulated as

HS:17W1(Prealanen) (1D

where HS is in the range [0, 1] and larger H S value indicates
higher similarity of head pose behavior. We evaluate the HS
metric on real videos and corresponding videos generated by
our method. The average HS score of our method is 0.871,
and the maximum and minimum score are 0.958 and 0.703,
respectively. While the average H.S score of MakeltTalk [7]
is 0.636, and the maximum and minimum score are 0.847 and
0.239, respectively. This shows that our generated videos have
a high similarity to real videos in term of head pose behavior.

E. Ablation study on head pose prediction

We predict personalized head pose from multi-modal input.
If we remove the head pose estimation, as shown in the
first row of Figure 7, the generated results are good in lip
synchronization, but look rigid due to the fixed head position,
which is not natural. In comparison, with the head pose
estimation network, our method generates natural head motion.

F. Ablation study on the rendering-to-realistic GAN module

We use the rendering-to-realistic GAN module to refine
rendered frames into realistic frames. If we remove the GAN

SFor PC-AVS, since it requires another pose source video besides S+P
input, we randomly take one video from the LRW test set as the pose source
for each S+P input.
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w/o head
motion
prediction

Ours

Fig. 7. Ablation study on head pose prediction. Row 1 shows the generated
results without pose estimation in the first stage. Row 2 shows the results of
our method. See demo video for animation.

w/o
rendering-
to-realistic

GAN module

Ours

Fig. 8. Ablation study on the rendering-to-realistic GAN module. Row 1
shows the generated results without the GAN module in the second stage.
Row 2 shows the results of our method.

module, i.e., taking the rendered frames and applying the
enhancement module, as shown in the first row of Figure 8, the
generated results lack many facial details, and look unreal. In
comparison, with the rendering-to-realistic GAN module, our
method generates much more realistic results.

G. Discussion and limitations

In our system, since we use 3DMM 3D face reconstruction,
which represents texture using low-dimensional coefficients
and makes the albedo too smooth and lack some facial details,
there is some gap between the rendered faces and the target
person. During experiments we found the GAN module can
bridge this gap and refine the less realistic renderings to
realistic frames for different people. However, if the 3D face
reconstruction fails, and the rendered faces are far away from
realistic frames, the system may not generate good quality
results.

VI. CONCLUSION

In this paper, to learn and predict personalized head pose
from the multi-modal input, we propose a novel two-step
mapping: 1) we extract a motion behavior pattern from the
head motion sequence of the input video; 2) conditioned on
the motion behavior pattern, we map the auditory feature of the
input speech signal to the personalized head pose sequence.
Based on the two-step mapping, we propose a talking face
video generation system. Since talking head movements often
contain in-plane and out-of-plane head rotations, to overcome
the difficulty, we reconstruct the 3D face and use the 3D
facial animation to bridge the gap between audio-visual-driven
head pose learning and realistic talking face video generation.
Experiments results and user studies show that our method
generates high-quality talking head video with personalized
head pose given an arbitrary audio. We generate personalized
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head motion using a one-to-many mapping based on head
motion behavior, which can apply to multiple subjects.
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