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Positional Attention Guided Transformer-like
Architecture for Visual Question Answering

Aihua Mao, Zhi Yang, Ken Lin, Jun Xuan, Yong-Jin Liu, Senior Member, IEEE

Abstract—Transformer architectures have recently been in-
troduced into the field of visual question answering (VQA),
due to their powerful capabilities of information extraction
and fusion. However, existing Transformer-like models, including
models using a single Transformer structure and large-scale
pre-training generic visual-linguistic models, do not fully utilize
both positional information of words in questions and positional
information of objects in images, which are shown in this paper
to be crucial in VQA tasks. To address this challenge, we
propose a novel positional attention guided Transformer-like
architecture, which can adaptively extracts positional information
within and across the visual and language modalities, and use this
information to guide high-level interactions in inter- and intra-
modality information flows. In particular, we design and assemble
three positional attention modules into a single Transformer-
like model MCAN. We show that the positional information
introduced in intra-modality interaction can adaptively modulate
inter-modality interaction according to different inputs, which
plays an important role for visual reasoning. Experimental results
demonstrate that our model outperforms the state-of-the-art
models and is particularly good at handling object counting
questions. Overall, our model achieves the accuracy of 70.10%,
71.27%, 71.52% on the datasets of COCO-QA, VQA v1.0 test-
std and VQA v2.0 test-std, respectively. The source code will be
publicly available at https://github.com/waizei/PositionalMCAN.

Index Terms—Visual question answering, Positional attention,
Transformer-like models.

I. INTRODUCTION

V ISUAL question answering (VQA) [1] is a task in which
a machine automatically provides an appropriate answer

to a natural language question about a given image. Vision and
language are two major modalities in human communication,
and many representative works have been proposed for the in-
formation fusion and processing of these two madalities, e.g.,
image caption [2], image-text matching [3], and multimodal
compatibility modeling [4], etc. Compared to the tasks in these
representative works, VQA is a much difficult task that needs a
deep understanding of image semantic scenes and fine-grained
multimodal reasoning [5] to get accurate answers.

So far, most existing researches on VQA are mainly based
on the attention mechanism. Many of them adopt shallow
co-attention layers to relate questions to key objects in im-
ages (e.g., [2], [6]). State-of-the-art VQA models, such as
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Q1: What is the bird standing on?
Answer: branch

Q2: What is standing on the bird?
Answer: nothing

Q3: What is above the cabinet?
Answer: television

Q4: What is to the right of the cabinet?
Answer: guitar

(a) Example 1

(b) Example 2

Fig. 1. Examples of the importance of positional information in VQA tasks.
In (a), due to the semantic difference between Q1 and Q2, the positional
information of the words “standing on”is crucial to correctly answer both
questions. In (b), to answer Q3 and Q4 correctly, we must determine the
positional relationship between the cabinet, television and guitar to check
whether the conditions “above” and “right” are met.

MCAN [7], DFAF [8] and large-scale pre-training models [9],
[10], [11], further adopt Transformer-like architectures which
greatly improve the results on VQA tasks. However, these
Transformer-like models either do not consider positional
information, or simply use partial positional information in
a straightforward way; e.g., MCAN possibly encodes some
positional information by convolutional neural networks in the
image pre-processing stage [12] and some BERT[13]-model-
inspired large-scale pre-training models directly concatenate
positional features to semantic features before the attention
operations, which usually generate potential noises [14].

All above VQA works do not make full use of the positional
information in both natural language questions and images.
In principle, positional information are very useful for visual
reasoning [15]. As illustrated in Figure 1, our study presented
in this paper is based on two key observations: (1) the position
of words in a sentence is crucial to understanding natural
language questions; for instance, although Q1 and Q2 use the
same words, their semantics are completely different due to
the different locations of the phrase “standing on”, and (2)
the position of objects in an image is indispensable for visual
reasoning; for instance, to answer Q3 and Q4, we must find
the cabinet first and then determine what is on top and what
is on the right side, that is, the positional relationship between
the cabinet, TV and guitar is the basis for reasoning. The
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Fig. 2. The framework of our proposed positional attention guided Transformer-like architecture. We adopt an encoder-decoder Transformer-like structure
and replace the core attention mechanisms with our proposed PWA, POA and PMA. Specifically, we stack PWA six times as the encoder, and stack six layers
of POA followed by PMA as the decoder.

key challenge in our study is that when using co-attention
to fuse the information in vision and language modalities,
how to extract and maintain correct positional information for
fusion and reasoning in a novel structure compatibly with a
Transformer-like model.

In this paper, we propose a novel positional attention guided
Transformer-like model to improve the visual reasoning in
VQA. To embed the positional information in a Transformer-
like model, we use the attention weights obtained by posi-
tional features to modify the attention weights of semantic
features, inspired by Relation Networks in object detection
[16]. Specifically, as shown in Figure 2, we design three
positional attention modules: (1) a positional word-to-word
attention module (PWA), which focuses on improving the
understanding of natural language questions, (2) a positional
object-to-object attention module (POA), which can construct
accurate positional relationship between objects; POA is also
able to handle the questions related to object-counting type
well, which is one of major challenges in current VQA
research, and (3) a positional multi-modality fusion attention
module (PMA), which guides our VQA model to fuse vision
and language modalities appropriately. The ablation study in
Section IV-D shows that each of these three modules can boost
performance well.

We make the following contributions in this paper:

• We propose a novel positional attention structure which
consists of three modules of PWA, POA and PMA, and is

compatible with the Transformer-like architecture to fully
take account of the positional information.

• Our proposed positional attention guided Transformer-
like architecture, to the best of our knowledge, is the
first to use the attention map obtained from positional
information to modify the attention map of semantic fea-
tures for tackling VQA tasks. Such operation enables the
positional information to guide the interactions in intra-
and inter-modality information flows and thus achieve
performance improvement.

• Extensive evaluations on three benchmark datasets in-
cluding COCO-QA, VQA v1.0 and v2.0, demonstrate that
our proposed modules can effectively outperform state-
of-the-art models, especially in handling the questions
related to object counting.

II. RELATED WORK

A. Early VQA Work

VQA has attracted increasing attention in the past few years.
In the early studies of VQA, the most straightforward method
is to directly combine image features and question features
for classification. Ren et al. [17] adopted LSTM to predict
the answer, and used the image features extracted by CNN
as its initialization parameters. DppNet [18] replaces the last
layer of VGG [19] by a fully connected layer with dynamic
parameters, allowing it to change according to different input
questions. However, these methods treat all objects in an image
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equally, and possibly lose focus on the key objects. Module
networks [20] [21] were also proposed to imitate the process of
human reasoning in VQA tasks, by introducing several jointly-
trained neural modules with different functions (e.g., attention,
measurement) and then parsing the question into some parts
which can be processed by these modules. However, these
models only work well in the datasets containing artificial
images, since the module networks cannot accomplish the
analysis for the questions about complicated situations in the
real images.

B. Attention Mechanism for VQA

Recently attention-based approaches have become popular
because they allow the model to focus on critical components
or parts. SAN [22] used a stacked attention module for
multi-step reasoning. HieCoAtt [23] analyzed the language
modality using three dimensions: word, phrase and question,
and proposed a novel co-attention module for multimodal
reasoning.

Different from the above CNN-based attention networks,
detection-based VQA networks made use of refined features
obtained by attention maps, which were generated through
comparison between questions and objects in an image. BUTD
[2] introduced a pre-processing strategy to extract object
features from images with Faster RCNN [24], so that the
model can focus on the key objects by assigning large
attention weights. Inspired by the success of BUTD [2],
most subsequent models attempted to optimize the attention
mechanism applied in VQA tasks. CVA [25] selected crucial
features in both channel and spatial dimensions. ODA [26]
calculated the probability of attention between objects. DenIII
[27] modeled dense inter-, and intra-modality interactions.
BAN [28] adopted the low-rank bilinear pooling technique to
model full interaction between vision and language modalities,
and achieves fast inference speed. Dual-MFA [29] leveraged
both grid-level and object-level features for reasoning. ALSL
[30] used the annotations of VQA-HAT [31] to supervise the
obtained attention map, and applied adversarial learning be-
tween free-form-based and detection-based attention modules.
RE-ATT [32] made use of attention twice, and can pay atten-
tion to high-order features. AttReg [33] applies regularization
approach for better visual grounding in VQA. However, these
methods still ignored the dense relations between each word
in questions and each object in images. As a comparison, our
method is based on the dense co-attention structure (i.e., a
Transformer-like model) and can more accurately account for
attention features.

C. Transformer-like Architecture in VQA

Since the pioneering Bert model [13] was proposed, Trans-
former structures have been introduced into many important
research areas. Recently, several Transformer-like models have
been proposed for VQA tasks, which achieved remarkable
progresses. Representative works that used single Transformer-
like structure include MCAN [7] and DFAF [8], both of
which use self-attention in vision and language modalities and
use co-attention for modality fusion. MCAN [7] adopted an

encoder–decoder structure, in which self-attention for the lan-
guage modality was used for the encoder, and self-attention for
the vision modality and co-attention were used for the decoder.
DFAF [8] stacked several layers and executed co-attention
before self-attention in vision and language modalities in each
layer. MCAoA [34] introduced a secondary attention and a
new fusion module based on MCAN.

Another Transformer-like solution for VQA tasks is to
use pre-training generic visual–linguistic representations. After
accomplishing some large-scale pre-training tasks, such as
masked language modeling and masked visual-feature clas-
sification, these representations can be easily generalized for
various downstream tasks, such as VQA, visual commonsense
reasoning, and grounding referring expressions. Some recent
works such as VL-BERT [9], ViLBERT [10] and LXMERT
[11] are all based on the backbone of Transformer but with
different structures. VL-BERT [9] is a single cross-modal
Transformer, and ViLBERT [10] adopts one single-modality
Transformer (i.e., language a modality) and one cross-modal
Transformer with restricted attention pattern. LXMERT [11]
uses two single-modality Transformers (i.e., vision and lan-
guage modalities) and one cross-modal Transformer.

Both single and large-scale pre-training Transformer-like
models apply self-attention and co-attention units of Trans-
former [35] as their basic modules but still pay insufficient
attention to positional information in natural language ques-
tions and images.

D. Processing of Positional Information

In natural language processing, positional features are im-
portant for Transformer [35] since it processes input sentences
in a parallel manner. The positional information of words must
be introduced additionally so that Transformer can understand
the sentence appropriately. Several studies have attempted to
improve the way of handling word positions in Transformer.
Shaw et al. [36] replaced the encoding of absolute positions
with efficient representations of relative positions. Raffel et
al. [37] simplified the method in [36] by adding relative
positional encoding as inductive bias. Wang et al. [38] ex-
tended positional encoding to a complex-valued domain so that
the representation of words can shift smoothly with updated
positions. Ke et al. [14] decoupled the original method that
directly adds position and word embeddings to avoid the
introduction of noise. The processing of word positions in
Transformer can also be extended to the positions of bounding
boxes extracted from images. Hu et al. [16] modeled the
relation of objects in images with their appearance feature
and geometry, and eliminated the parts that require manual
intervention in the current object detection pipelines. Swin
[39] projected absolute and relative positional information with
indexes into attention maps.

However, in the field of VQA, there are only a few re-
searches which specially consider positional information, in-
cluding both the word positions in natural language questions
and the location of objects extracted from images. REGAT
[40] used the graph attention network [41] and geometric
positions to explore explicit relations between objects. Zhang
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et al. [6] used the object locations in images to produce
counting features by eliminating duplicate bounding boxes in
a differentiable manner. Huang et al. [42] built a relational
graph through the distance between objects. Although these
methods achieved good performance by introducing positional
information, these methods are not compatible with state-of-
the-art Transformer-like models. Because [40] and [42] are
both based on a graph neural network, and [6] takes counting
as a single module, they all need to be used independently
and thus cannot be connected into multi-head attention of
Transformer. As a contrast, our method is the first to make full
use of positional information in a Transformer-like model for
VQA tasks, which enables the model to capture more effective
correlations between natural language questions and images.

III. OUR METHOD

Aiming to introduce positional information appropriately for
VQA and avoid noise generation, we propose novel positional
attention modules use them to replace the core attention mech-
anisms in a Transformer-like architecture (Figure 2). Our key
idea is to fuse the attention maps of semantic and positional
features, and thus both of them contribute to determine which
objects in image or words in question should be focused.
In particular, our proposed positional attention modules are
compatible with Transformer-like models. We first summarize
the whole pipeline of our model and then present our proposed
positional attention modules in detail.

A. Pipeline of Transformer-like Architecture

Transformer-like models usually adopt bottom-up and top-
down features [2] for visual representation. In our method, we
use the Faster RCNN model with ResNet-101 as the backbone
and conduct the pre-training on the Visual Genome dataset
[43]. Then we extract the intermediate features and apply
non-maximum suppression. Finally, we obtain the features
of objects I ∈ Rm×2048 for each image, where m is the
number of objects and we set its range1 to be 100. We pad
or truncate the given question to a certain length (i.e., 14
in our implementation) to facilitate subsequent processing.
After that, we initialize a recurrent neural network with LSTM
by GLoVe word embeddings [44] to encode the question by
Q ∈ R14×n, where n is a hyperparameter and 1 × n is the
dimension of text features. Since the semantic features of both
questions and images are available, we are readily to obtain
the positional information of words (i.e., their positions in
a sentence) and objects (i.e., the locations of their bounding
boxes in an image).

We follow MCAN [7] to use an encoder-decoder structure
in our pipeline (Figure 2): we use the PWA module as the
encoder, and use POA and PMA modules as the decoder.
It is worth noting that since our proposed module design
takes self-attention and co-attention as basic units, these mod-
ules are compatible with all Transformer-like architectures.
Specifically, we stack PWA modules six times as the encoder,

1For the number of objects less or larger than 100, the feature representation
is padded or truncated to m = 100.

which corresponds to self-attention for language modality
in Transformer. The decoder has six layers and each layer
consists of a POA module and a PMA module. Similarly,
POA modules correspond to self-attention for vision modality
and PMA modules corresponds to co-attention in vision and
language modalities. Finally, the encoder outputs question
features E ∈ R14×d, and the decoder outputs image features
D ∈ R100×d (we pad the number of objects in each image
to be 100), where d is a hyperparameter representing the
dimension size of a single feature in attention, which is
determined in the training process.

Then we combine these features as a composite features
for prediction. Let E = [E1, ..., E14], Ei ∈ Rd, and D =
[D1, ..., D100], Di ∈ Rd. We compute the middle features E

′

and , D
′

as follows:

E
′
=

14∑
i=1

softmax(MLP (Ei))Ei

D
′
=

100∑
i=1

softmax(MLP (Di))Di

(1)

The final composite feature F used for prediction is defined
as:

F = LayerNorm(E
′
WT

E +D
′
WT

D) (2)

where WT
E ,WT

D ∈ Rd×dF denote projection matrices, and
layer normalization [45] is used for numerical stability. With
the composite feature F , we use the sigmoid activation func-
tion to predict a score s̃ for each candidate answer:

s̃ = σ
(
ωoF

)
(3)

where σ is the sigmod function and ωo denotes a linear
mapping. Finally, following the strategy in [46], we use the
binary cross-entropy (BCE) loss function to train the model
on a N -way classifier:

L = −
M∑
i

N∑
j

sij log(s̃ij)− (1− sij)log(1− s̃ij) (4)

where N is the number of candidate answers (see Section
IV-B), M is the batch size, s̃ is the soft accuracies (see Section
IV-A) of the ground-truth answers and s is the accuracy of
predicted results.

B. General Structure of Positional Attention Modules

Our pipeline makes use of three types of positional attention
modules, namely, PWA, POA and PMA. To be compatible
with Transformer-like architectures, we design these modules
based on a general structure. Before presenting the design
details of the three positional attention modules in Sections
III-C-III-E, we first present the general structure adopted by
them.

Refer to Figure 3. Xsem and Ysem represent the semantic
features of X and Y modalities, and Xpos and Ypos represent
their positional features. Since it is a general structure, X
and Y can be similar or different, corresponding to self-
attention and co-attention respectively. The general structure
uses Xsem, Ysem, Xpos, Ypos as input, and then Y modality
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Fig. 3. The general structure of proposed positional attention modules. This
structure takes the semantic features (Xsem, Ysem) and the positional features
(Xpos, Ypos) of X and Y modalities as input and outputs the composite
features Z for X guided by Y. X and Y can be same or different modalities,
corresponding to self-attention and co-attention. The input ‘key’ and ‘value’
needed for PMA are obtained from the output of the encoder (see Figure 2).

guides the X modality to perform several attention operations
and output the composite feature Z.

Multi-head attention [35] is a kind of scaled dot-product
attention with several parallel heads, which aims at enhancing
the representation capability. It is the core mechanism of
Transformer and is adopted in all our proposed modules. The
input of scaled dot-product attention consists of queries Q ∈
Rm×dquery , keys K ∈ Rn×dkey and values V ∈ Rn×dvalue .
For simplicity, we set dquery = dkey = dvalue = d. Here,
we explain how the i-th object of X obtains the composite
feature Zi under the guidance of Y, and Z can be easily
obtained through tensor operations in Pytorch. For a given
query q ∈ R1×d and K, the raw attention map is obtained by
measuring the similarity between the query and keys:

f(q,K) =
qKT

√
d

(5)

To strengthen the representation ability of the modules, the
multi-head operation, which has h heads corresponding to
independent attention maps of the query, is performed as:

ai = Concat[headi1, ..., headih], for i ∈ [1,m] (6)

headij = f(QiW
Q
j ,KWK

j ) (7)

where WQ
j ,WK

j ∈ Rd×dh are the projection matrices for the
j-th head, dh denotes the dimension of output features for
each head, which is set to be dh = d/h, and ai ∈ Rh×n is
the attention map of Qi to K.

As illustrated in Fig. 3, when receiving Xsem and Ysem, the
structure performs the computation in Eq. (6) to obtain the raw
semantic attention map Asem

i ∈ Rh×n of Xi to Y. For the input
of Xpos and Ypos, if both X and Y are the vision modality,
they are further sent to geometry processing (Section III-D);
otherwise, they are undertaken the same method as Xsem and
Ysem (see details in Sections III-C and III-E). After that, we
obtain the raw positional attention map Apos

i ∈ Rh×n of Xi

to Y. In literature, to merge the raw positional attention map
and semantic attention map, Relation Networks [16] adopts
Ai = softmax(Apos

i ·exp(Asem
i )), indicating that the positional

relationship determines whether to use semantic features. As
a contrast, we use the scaled addition of Apos

i and Asem
i , so

that they both contribute to the obtained attention map Ai:

Ai = softmax(
Apos

i +Asem
i√

2
) (8)

The ablation study in Section IV-D demonstrates the effective-
ness of using Eq. (8). Then the output of the whole attention
operation Oi ∈ R1×h∗dh is a weighted average of the value
V ∈ Rn×d based on Ai. Based on the mechanism of the
multi-head attention, Oi is concatenated by all the parallel
heads Oij , j ∈ [1, h]:

Oij = Aij(VWV
j ) (9)

Oi = Concate[Oi1, ..., Oih] (10)

where Aij ∈ R1×n denotes the attention weight of the j-th
head in Ai, and WV

j ∈ Rd×dh is the projection matrix for V
in the j-th head. Then, we project the obtained Oi to R1×d

using WO ∈ Rh∗dh×d. In order to make the model stable, we
add a residual link and perform the layer normalization [45]:

Z
′

i = LayerNorm(Qi +OiW
O) (11)

Following the Transformer structure, we perform feed for-
ward and a residual link after layer normalization to get final
output of the module. Feed Forward Net (FFN) is constructed
by two fully connection layers with RELU activation:

Z = LayerNorm(Z
′
+ FFN(Z

′
)) (12)

Based on the above general structure, the three positional
attention modules, namely, PWA for improving question un-
derstanding, POA for capturing dense interaction between
objects in an image, and PMA for fusing vision and language
modalities, are built up. Next, we introduce their instantiations
one by one.
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C. Positional Word-to-Word Attention (PWA) Module

The PWA module corresponds to self-attention of language
modality in Transformer. In this module, the input modalities
X (Xsem, Xpos) and Y (Ysem, Ypos) in the general structure
(Figure 2) are both the language modality. Specifically, re-
ferring to the positional features which are described by the
position of words in a sentence, Xpos and Ypos are represented
by a learnable embedding with dimension R14×d. For the
semantic features Xsem and Ysem, we use learnable word
features to represent them in the first layer, while in the next
layers, they are the output of previous PWA because PWA is
stacked six times in the encoder. With the input of positional
and semantic features, the raw positional attention map and
raw semantic attention map are obtained respectively using
multi-head attention (refering to Eq. (6)). Finally, we adopt Eq.
(8) to fuse the two raw attention maps, so that the positional
information can guide the semantic interaction between words
in the information flow of language modality.

D. Positional Object-to-Object Attention (POA) Module

The POA module corresponds to self-attention of vision
modality in Transformer. In this module, both X and Y are
the vision modality. We set the features extracted by Faster
RCNN as the input Xsem and Ysem in the first layer of
decoder. For other layers, Xsem and Ysem are the output of
previous layer (Figure 2). Similar to PWA, we take Xsem

and Ysem as input and use multi-head attention (Eq. (6)) to
obtain the raw semantic attention map. Since bounding boxes
are widely used as positional features by most state-of-the-
art works in multimodal learning (e.g., VL-BERT [47], M4C
[48] and Transrefer3d [49], which can achieve good results in
multimodal learning, we use them to represent the positional
features of images in our method.

According to the general structure, the raw positional atten-
tion map in POA is generated by going through the branch
of geometry processing. The raw positional attention weight
between two objects aGij is computed as:

aGij = EG(bi, bj)W
G (13)

where bi, bj denote the bounding box of objects i and j
respectively, and EG is a mapping function in which we
describe the relative geometry features between two objects
as:

Rij =
(

log(
|xi − xj |

wi
), log(

|yi − yj |
hi

), log(
wj

wi
), log(

hj

hi
)
)

(14)

where x, y are the coordinates of the center of the bounding
box, and w, h are the width and height of the bounding box.
Note that Rij in Eq. (14) makes the feature invariant to
translation and scaling. To compute EG, Rij is embedded
into a high-dimensional representation with the dimension
R1×d using the method in [35], which calculates the sine
and cosine functions of different wavelengths for absolute
positional representation. Finally, we employ WG ∈ Rd×1 to
map EG(bi, bj) to the raw positional attention map. Based on
the mapping method of a single head between objects i and j
as described in Eq. (13), we extend it to the multi-head version
by applying Eq. (6) so that the mapping results match the raw

semantic attention map with respect to the dimensions. Finally,
they are fused through Eq. (8) to construct the full interaction
between objects in the information flow of vision modality.

E. Positional Multi-Modality Fusion Attention (PMA) Module

The PMA module corresponds to co-attention in Trans-
former. This module serves to fuse the vision and language
modalities, and the input modalities X, Y refer to these
two different modalities respectively. Ysem is the output of
encoder (i.e., E in Eq. (1)) and Ypos is the same as in
PWA. As shown in Figure 2, PMA always follows POA,
so Xsem is the output of the POA in the same layer. We
use a different method to determine Xpos: given an image
consisting of a set of objects, the bounding box of each
object is defined as (xmin, ymin, xmax, ymax) which are de-
scribed using pixel values. We normalize these values by
the height and width of an image and then add the area of
a bounding box as a new feature; i.e., the obtained feature
is (xmin

W , ymin

H , xmax

W , ymax

H , Area). We linearly transform this
5D feature to a high-dimensional representation, so that Xpos

has the dimension of R100×d.
By now, we have specified Xsem, Xpos, Ysem, Ypos. Then

we use multi-head attention (referring to Eq. (6)) to get the
two raw attention maps which are modulated through the
intra-modality information flow. We further fuse the two raw
attention maps to capture the key word-object pairs by Eq. (8)
in this inter-modality information flow.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

We evaluate our transformer-like struture with proposed
modules on three benchmark datasets: COCO-QA, VQA v1.0
and VQA v2.0.

COCO-QA [17] contains 123,287 images collected from the
MS-COCO dataset, 78,736 training questions and 38,948 test
questions. The questions are divided into four types: ”Object”,
”Number”, ”Color”, and ”Location”. All the answers are one
word, and the number of total answers is 435.

VQA v1.0 [1] is built on the MS-COCO dataset. There are
3 types of questions in VQA v1.0, which are “Y/N”, “Num”,
and “Other”. It has 248,349 training questions (train split),
121,512 validation questions (validation split) and 244,302
testing questions (test-standard split). Moreover, 25% of the
test-standard set is collected into a test-dev split. Since the
annotations of test-standard split in VQA v1.0 are not given,
we have to evaluate our model by submitting the predicted
answers to the official sever. Because the test-standard set has
a limit on the number of submissions, we perform our ablation
study on the test-dev set and conduct an overall comparison
with other state-of-the-art models on the test-standard set.

VQA v2.0 [50], which is an advanced version of VQA
v1.0, is the largest and most widely used dataset in the VQA
community. VQA v2.0 adds an image with different answers
to each question, so that the model cannot achieve high
performance only by learning dataset priors. VQA v2.0 has
443,757 training questions, 214,354 validation questions and
447,793 testing questions. Similar to VQA v1.0, evaluations of
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VQA models are submitted online on the developing (test-dev)
and standard (test-std) subsets of testing questions.

For VQA v1.0 and VQA v2.0 datasets, we use the following
evaluation metric that is robust to inter-personal differences
in answer expression. In more details, each question was
answered by ten people, and the answer was consider correct
as long as more than three people gave the same answer as
provided by the model; i.e., the score of each question is
calculated by Acc(answer)=min((number of people who gave
the same answer as provided by the model)/3, 1). It means that
only when the predicted answer is consistent with the answer
provided by at least three people, we can get a 100% score for
the question. For COCO-QA dataset, we adopt the metric of
classification accuracy. Moreover, following [51], we use the
Wu-Palmer similarity (WUPS) in terms of WUPS@0.9 and
WUPS@0.0 as another metric. This metric is used to evaluate
the correlation between the predicted answers and ground-truth
answers.

Since not all state-of-the-art works have conducted experi-
ments on these three datasets, we have to choose representative
works which reported experimental results on COCO-QA,
VQA v1.0 and VQA v2.0 respectively for comparison. In
Tables I, II and III, the performance results of existing works
are cited from previous papers, and the settings of datasets are
the same for all the compared works.

B. Implementation Details
We choose MCAN [7] as the baseline model for compari-

son, since our model replaces its core attention mechanisms by
the newly proposed modules. Accordingly, our experimental
settings are consistent with that used in MCAN for a fair
comparison. Note that MCAN is only evaluated on VQA v2.0,
while our model is evaluated on COCO-QA, VQA v1.0 and
VQA 2.0.

First we use the pretrained Faster RCNN model with
ResNet-101 as the backbone to perform object feature ex-
traction in images. The dimensions of object features and
question word features are 2,048 and 300 respectively. Before
input into the encoder-decoder structure, the object features are
linearly transformed into the general hidden size (d = 512),
and the question is encoded as a d-dimensional feature by
LSTM, where d is also the dimension for multi-head attention
as described in Eq. (5). The number of heads h is 8, so the
dimension for each head is dh = d/h = 64. The feed forward
layer shown in the Figure 3 is set to be the structure FC (512,
2048)-ReLU-Dropout (0.1)-FC (2048, 512). Both encoder and
decoder have six layers.

Then we choose Adam [52] with β1 = 0.9, β2 = 0.98 as our
optimization algorithm. We train our model for 13 epochs with
the batch size 64. In addition, according to [35], we perform
the warm up operation at the beginning of the training process.
Specifically, the learning rate is set as 2.5e−5, 5e−5, 7.5e−5 for
the first three epochs. After that, the model is trained with the
learning rate 1.0e−4 for seven epochs. Finally, we adopt the
learning rate decay operation, i.e., we set the learning rate of
the last three epochs as 2e−5, 2e−5, 4e−6 respectively.

With these settings, we perform open-ended tasks on VQA
v1.0 and VQA v2.0 datasets. We generate our answer vocab-

TABLE I
COMPARISON OF OUR METHOD AND STATE-OF-THE-ART METHODS ON

THE COCO-QA DATASET. W@0.9 AND W@0.0 STAND FOR WUPS@0.9
AND WUPS@0.0, RESPECTIVELY.

Model Accuracy Object Number Color Location W@0.9 W@0.0
VSE[1] 55.09 58.17 44.79 49.53 44.37 65.34 88.64

DPPnet [18] 61.19 - - - - 70.84 90.61
SAN [22] 61.60 64.50 48.60 57.90 54.00 71.60 90.90

HieCoAtt [23] 65.40 68.00 51.00 62.90 58.80 75.10 92.00
Dual-MFA [29] 66.49 68.86 51.32 65.89 58.92 76.15 92.29

CVA [25] 67.51 69.55 50.76 68.96 59.93 76.70 92.41
MCAN [7] 68.08 69.39 54.19 71.52 60.17 77.34 92.58
ODA [26] 69.33 70.84 54.70 74.17 60.90 78.29 93.02
ALSA [30] 69.97 71.59 54.83 72.74 61.78 79.43 94.15
MCAN+PA

(ours)
70.10 71.13 55.97 74.85 62.07 79.75 93.94

TABLE II
COMPARISON RESULTS OF OUR METHOD AND STATE-OF-THE-ART

METHODS ON THE VQA V1.0 DATASET

Model
test-dev test-std

Y/N Num Other All Y/N Num Other All
VSE [1] 78.94 35.24 36.42 53.74 79.01 35.55 36.80 53.96

DPPnet [18] 80.71 37.24 41.69 57.22 80.28 36.92 42.24 57.36
SAN [22] 79.30 36.60 46.10 58.70 79.11 36.41 46.42 58.90

HieCoAtt [23] 79.70 38.70 51.70 61.80 - - - 62.10
Dual-MFA [29] 83.59 40.18 56.34 66.01 83.37 40.39 56.89 66.09

CVA [25] 83.73 40.91 56.36 65.92 83.79 40.41 56.77 66.02
ODA [26] 85.82 43.03 58.07 67.83 85.81 42.51 58.24 67.97
MCAN [7] 86.98 46.25 60.8 69.97 86.97 45.85 60.98 70.12
ALSA [30] 87.12 42.94 59.06 69.52 86.94 43.84 58.21 69.32
DenIII [27] 86.70 44.10 59.70 69.10 86.80 43.30 59.40 69.00
MCAN+PA

(ours)
87.34 49.92 61.91 71.05 87.31 49.46 62.30 71.27

ulary using the strategy in [46], i.e., collecting the answer that
appears at least eight times in the training and validation sets.
To obtain the answer on test-standard splits, three datasets
including the train split, the validation split and some samples
of Visual Genome [43] are used for training. We also use the
VQA samples from Visual Genome dataset for training, by
noting that many state-of-the-art models adopt this dataset as
the augmented dataset (e.g., BAN [28] and DFAF [8]). For the
COCO-QA dataset, we train our model on the train split, and
perform the evaluation on the test split by collecting a total of
435 different one-word answers as the answer vocabulary.

C. Comparison with State-of-the-art Methods

Most state-of-the-art models in VQA, such as ALSA [30],
MCAN [7], DenIII [27], ODA [26], RE-ATT [32], ViLBERT
[10], and MCAoA [34] are based on the attention mechanism.
Here, we compare our method with them on three benchmark
datasets, i.e., COCO-QA, VQA v1.0 and VQA v2.0.

Table I reports the comparison results on COCO-QA. It is
observed that our method (MCAN+PA) improves the accuracy
of VSE, DPPnet, SAN, HieCoAtt, Dual-MFA, MCAN, CVA
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Q: How many fruits are on top?

MCAN: 4

MCAN + PA: 2

(a) MCAN (b) MCAN + PA(ours)

9 10

6

2

11

13

Fig. 4. Visualization of the learned attention map which corresponds to A in Eq. (8) for MCAN and our model (MCAN+PA), respectively. We visualize
SA(Y), SA(X) and GA(X,Y) in MCAN, and PWA, POA and PMA in our method. We only visualize the attention map in the 6-th layer since it is learned in
the last layer of each module, and represent the final analysis results of the model on the question. There are 14 objects detected by the Faster RCNN, and
we highlight the six fruit objects in the image with orange rectangles. Detailed analysis is presented in Section IV-F.

and ODA by 15.01%, 8.91%, 8.50%, 4.70%, 3.61%, 2.02%,
2.59%, 0.77% respectively. Note that in addition to COCO-
QA, ALSA also uses the VQA-HAT dataset [31], and the
result of our method on COCO-QA is still competitive to
its result. That is, our method outperforms ALSA in five
out of seven categories. Moreover, our method significantly
outperforms ALSA on VQA v1.0 test-std and VQA v2.0 test-
dev respectively (see the comparison below).

It is worth noting that our proposed positional attention
modules are good at handling object counting questions,
as shown in the “Number” column in Table I. Our model
outperforms all the previous state-of-the-art models by at least
1.14% on this category. The reason is that in many counting
questions, the positional information of objects in the image is
needed to get the correct counting result. For example, given
the image shown in Figure 4 and the question “how many
fruits are on top?”, our method can update the final composite
features based on the positional information to include the
correct counting information.

Table II shows the comparison results on VQA v1.0.
Our method outperforms the state-of-the-art methods includ-
ing VSE, DPPnet, SAN, HieCoAtt, Dual-MFA, CVA, ODA,
MCAN and ALSA by 17.31%, 13.91%, 12.37%, 9.17%,
5.18%, 5.25%, 3.3%, 1.15%, 1.95% on accuracy (test-std),
respectively. Although DenIII can achieve dense interactions
in inter- and intra-modalities, our method outperforms it by
improving 2.27% overall on VQA v1.0 test-std. Again, our
method significantly outperforms the state-of-the-art methods
on the object counting questions by at least 3.61%.

TABLE III
COMPARISON RESULTS OF OUR METHOD AND STATE-OF-THE-ART

METHODS ON VQA V2.0 TEST DATASET.

Model
test-dev test-std

Y/N Num Other All All
ALSA [30] 85.73 48.98 59.17 69.21 -

BAN+Counter [28] 85.42 54.04 60.52 70.04 70.35
REGAT [40] 86.08 54.42 60.33 70.27 70.58
RE-ATT [32] 87.00 53.06 60.19 70.43 70.72
DenIII [27] 86.30 50.90 61.50 70.50 70.80
DFAF [8] 86.09 53.32 60.49 70.22 70.34

MCAN [7] 86.82 53.26 60.72 70.63 70.90
MCAoA [34] 87.05 53.81 60.97 70.90 71.14

MCAN+PA (ours) 86.99 54.86 61.09 71.05 71.52

Tables III and IV show the comparison results on VQA
v2.0. Our method uses the same training and testing datasets
with the comparison methods BAN+Counter [28], REGAT
[40], RE-ATT [32], DenIII [27], DFAF [8], MCAN [7], and
MCAoA [34]. As shown in Table III, our method outperforms
BAN+Counter, REGAT, RE-ATT, DenIII by 1.17%, 0.94%,
0.80%, 0.72% on the test-std split, respectively. Compared
to the models with single Transformer-like structure, our
method outperforms MCAN by 0.62% and DFAF by 1.18% on
accuracy. MCAoA is another work that improves the attention
mechanism in MCAN, and our method outperforms it by
0.38%. We also compare our method with the large-scale pre-
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TABLE IV
COMPARISON WITH LARGE-SCALE PRE-TRAINING MODELS ON VQA 2.0

TEST-DEV SPLIT. †MEANS WITHOUT PRE-TRAINING.

Model test-dev
All

VisualBERT [53] 70.80
ViLBERT [10] 70.55

VL-BERTBASE [47] 71.16
VL-BERTBASE [47]† 69.58

VL-BERTBASE [47]+PA† 69.97
MCAN+PA (ours)† 71.05

training Transformer-like models in Table IV and our method
is competitive to them. These large-scale pre-training models
need to be trained on other datasets in addition to VQA v2.0
and require substantial computational resources for generic
visual–linguistic representations, and thus it is actually unfair
to directly compare with them. Anyway, as shown in Table IV,
our method still outperforms VisualBERT [53] and ViLBERT
[10]. Although our model performs slightly worse than VL-
BERTBASE [47] (similar setting as our model) with pre-
training, our model still outperforms VL-BERTBASE without
pre-training by 1.47%. Furthermore, our method can also
be assembled into the large-scale pre-training Transformer-
like models because their basic modules are consistent with
MCAN. It can be observed in Table IV that the accuracy
is improved from 69.58% to 69.97% after assembling PA
(referring to our three PWA, POA, and PMA modules) into
VL-BERTBASE without pre-training. Note that VL-BERT
has two versions, i.e., base (VL-BERTBASE) and large (VL-
BERTLARGE) versions. Both versions have the same model
structure and only differ in quantity of parameters.

In addition, the results in Table III show that our model
is consistently good at handling object counting questions
on VQA v2.0. Although BAN+Counter [28] introduces a
special counting module [6] to improve the object-counting
performance, our model achieves an accuracy improvement of
0.82% in the “Num” category. Meanwhile, although REGAT
[40] specializes in using geometric relationships to build
graphs between objects, our model still achieves an accuracy
improvement of 0.44% in the “Num” category.

D. Ablation Studies

In this section, we examine the effectiveness of proposed
positional attention modules, i.e., PWA, POA and PMA mod-
ules, with respect to the baseline MCAN. We follow [8],
[7], [34] to conduct ablation studies on VQA v2.0 test-dev
split. The results are summarized in Table V, in which the
notations are explained as follows. PE denotes the positional
embedding method in BERT [13], which is a typical method
for processing positional information in the large-scale pre-
training models. PA denotes that the three attention mecha-
nisms of MCAN are replaced with our PWA, POA and PMA
modules. MCAN+PA∗ denotes that using Ai = softmax(Apos

i ·
exp(Asem

i )) in [16] instead of Eq. (8) in our method to merge
the raw positional attention map and the raw semantic attention
map.

TABLE V
ABLATION STUDIES OF OUR PROPOSED POSITIONAL ATTENTION

MODULES ON VQA V2.0 TEST-DEV SPLIT. PE IS POSITION EMBEDDING
USED IN BERT, PA=PWA+PMA+POA, AND ∗ MEANS USING THE FUSION

METHOD IN RELATION NETWORK [16].

Model Y/N Num Other All
MCAN 86.82 53.26 60.72 70.63

MCAN+PE 85.37 52.30 60.05 69.60
MCAN+PWA 87.06 53.53 60.83 70.81
MCAN+POA 86.87 54.77 60.88 70.89
MCAN+PMA 86.92 52.86 61.12 70.81

MCAN+PWA+POA 87.06 53.56 61.15 70.96
MCAN+PWA+PMA 87.01 53.33 61.07 70.87
MCAN+POA+PMA 86.91 54.24 61.03 70.92

MCAN+PA∗ 85.87 52.42 59.94 69.77
MCAN+PA (ours) 86.99 54.86 61.09 71.05

The results in Table V are analyzed as follows. First, we
show that it is not efficient to directly use PE in MCAN for en-
hancing positional information processing. That is, we change
the input of MCAN from semantic features to the combination
of semantic and positional features, and the performance of
MCAN+PE decreases compared with MCAN. Similar effects
have been reported in previous Transformer-like architectures,
such as DFAF [8]. On the contrary, our method (MCAN+PA)
with the newly designed positional attention modules can
clearly improve the performance of MCAN.

Second, we evaluate the effectiveness of the three posi-
tional attention modules. The results in Table V show that
they have different effects on different types of questions.
For example, POA improves the model performance on the
”Num” category, PWA has the best performance in ”Y/N”
questions, and the single PMA module helps to improve the
performance in the ”other” category. Meanwhile, we com-
bine any two of the three modules and evaluate their per-
formance, i.e., MCAN+PWA+POA, MCAN+PWA+PMA and
MCAN+POA+PMA. The results show that they can improve
the performance on some categories such as ”Num”, ”Y/N”
and ”Other”.

Finally, we note that when we adopt the fusion method
in [16] to merge the positional and semantic attention maps
(i.e., MCAN+PA∗ in Table V), the accuracy of each question
category decreases compared with the baseline MCAN. That
means it is not effective to directly apply the fusion method in
relation network [16] in our model. On the contrast, we design
new fusion strategy in our positional attention modules (i.e.,
MCAN+PA) that effectively improves the performance of the
baseline MCAN.

E. Analysis of Time and Space Complexities

In this section, we briefly summarize the number of pa-
rameters, floating-point operations per second (FLOPs) and
inference time in our model.

Compared to the baseline MCAN, our model mainly intro-
duces new parameters in W query

G ∈ Rd×d and W key
G ∈ Rd×d

which are projection matrices for positional embedding in
PWA and PMA modules. There are six layers built up in

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on October 27,2022 at 02:48:24 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) SA(Y)-1-1

(b) SA(X)-1-1

Fig. 5. Visualization of the four items (Eq. (15) on a well trained MCAN+PE model for a sampled question-image pair. SA(Y)-1-1 and SA(X)-1-1 denote the
first layer, second head in SA(Y) and SA(X) respectively. From left to right, these attention maps are semantic-to-semantic, semantic-to-positional, positional-
to-semantic, and positional-to-positional correlation matrices.

TABLE VI
COMPARISON OF TIME AND SPACE COMPLEXITIES.

Model Time Params FLOPs Inference per image
MCAN (baseline) 4150s 57.8M 5.35G 2.561s
MCAN+PA (ours) 5583s 68.5M 5.85G 2.672s

PWA and PMA modules, and then the number of introduced
parameters is 6M (6× 4× 512× 512, d = 512). In the POA
module, we do not employ multi-head attention for positional
embedding, and thus the number of introduced parameters
can be ignored. As summarized in Table VI, our method
introduces 18.5% additional parameters (see ‘Params’), but
the computation complexity (see ‘FLOPs’) only increases by
9.3%. In addition, the inference time of our method is similar
on each image compared with MCAN.

F. Qualitative Analysis

The object counting question is one of the most challenging
question types in VQA tasks. We choose such a question
for qualitative analysis in this section. Figure 4 visualizes
the learned attention maps in both MCAN and our method
(MCAN+PA), with the following notations. SA(Y), SA(X) and
GA(X,Y) are the modules in MCAN, which corresponds to
PWA, POA and PMA in MCAN+PA respectively. SA(Y)-6-2
denotes the attention map of the 2-th head of the 6-th layer
in SA(Y) module, and and other similar notations have the
same naming rules. Due to space limitation of the figure, we
only show two typical heads in each module. We have the
following observations:

Comparison between PWA and SA(Y). Both PWA and
SA(Y) can catch the key words. For example, in the third row
(i.e., the “fruits” row) of PWA-6-1, the columns of “how”,
“many”, “on” and “top” contain the largest values, indicating
that the question type is object counting and the model should

find the number of fruits on top. Similarly, as shown in the
third row of SA(Y)-6-2, the word “fruits” has the largest
correlations with “how”, “many” and “fruits”. SA(Y)-6-3 also
shows that “fruits” also has strong correlations with “how”,
“on” and “top” in the MCAN model.

Comparison between POA and SA(X). SA(X) can catch
the correlation between objects but possibly introduce some
noise. For example, as shown in SA(X)-6-1, many objects
have large correlation values with the object 3. However,
the bounding box of the object 3 overlaps with the fruit
objects 2, 10 and 11, and catching these redundant relations
is not helpful to answer the question. As a contrast, in our
model MCAN+PA, both POA-6-3 and POA-6-6 show that few
objects have relations with the object 3 due to the introduced
positional information. Similarly, as shown in the 2-th, 4-th,
6-th, 9-th, 10-th, 11-th, 13-th rows of POA-6-3 and the 2-th,
4-th, 6-th, 13-th rows of POA-6-6, MCAN+PA can catch the
key relations very well.

Comparison between PMA and GA(X,Y). The results
shown in the “fruits” column of GA(X,Y)-6-3 and in the
“top” column of GA(X,Y)-6-5 explain why MCAN provides
the wrong answer. Although MCAN can focus on the fruit
objects as indicated in the “fruits” column, MCAN fails to
identify which bounding box is at the top of the image due to
the lack of the positional information. As shown in GA(X,Y)-
6-5, many objects have strong correlation with the word “top”
but most of them are not actually on the top of the image.
As a contrast, in PMA-6-3, only the objects 7, 9 and 10
have strong correlation with the word “top”, which is more
consistent with the fact. Meanwhile, although the object 7 has
strong correlation with the word “top”, it does not affect the
final result because it does not generate strong correlation with
the word “fruits” (as shown in the “fruits” column of PMA-
6-0). In summary, with the help of the introduced positional
information, MCAN+PA successfully identifies which objects
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(a) PWA-1-1 (b) PWA-6-1

Fig. 6. Visualization of the raw attention map which corresponds to Asem
i and Apos

i in Eq. (8) for PWA in our model (MCAN+PA). In both (a) and (b),
the left and the right patterns are Asem

i and Apos
i , respectively. We observe that they are in the same level of magnitude so that they would affect each other

when determining the attention map corresponding to Ai in Eq. (8).

0.14

Q: Is the man in blue riding a horse?

Prediction: Yes          √

Q: What color is the truck?

Prediction: White          √

Q: Is this in Australia?
Prediction: No          

Q: What color is the cat?
Prediction: No cat          

Q: Is this airplane taking off or landing?
Prediction: Taking off          √

Q: What is the boy wearing?
Prediction: Shorts          √

Q: How many contrails are there?
Prediction: 2          

0.22
0.15

0.21 0.25

0.18

0.19

0.20

0.05
0.05

0.05

0.05

0.29

0.12 0.10

0.09

Q: What sport is this?

Prediction: Baseball          √

0.19

0.16
0.09

Fig. 7. Visualization of the learned attention map corresponding to Eq.(1) in some typical examples. For each example, “Q” represents the question, and
“prediction” is the answer provided by our model. We use rectangles to specify several objects with large attention weights, and these weights are annotated
in the image. In addition, underlined words indicate that they are captured by our model as keywords.

are related to the word “top” (see PMA-6-0), and recognizes
the fruit objects in the image through semantic information
(see PMA-6-3). Based on these two abilities, MCAN+PA
correctly provides the answer “2”, which denotes the fruit
objects 9 and 10.

Furthermore, to explore why the PE method cannot be
directly applied to MCAN (see MCAN+PE in Table V) and
explain why our method works well, we visualize the attention
maps of Eq. (15) and Eq. (8) in Figures 5 and 6, respectively.
In these figures, the darker the color on the attention map,
the more it affects the model. From Figures 5 and 6, we
can conclude that MCAN+PE does not make good use of
semantic information in the language modality and positional
information in the vision modality, while our model uses
both types of information very well. The detail analysis is
as following.

According to [14], the attention map of the first layer in
MCAN+PE can be written as:

Aij = f(SiW
Q, SjW

K) + f(SiW
Q, PjW

K)

+f(PiW
Q, SjW

K) + f(PiW
Q, PjW

K)
(15)

where Aij denotes the obtained attention map of i modality
guided by j modality, f is the function described in Eq. (5), S
and P stands for the semantic features and positional features,
respectively.

In Figure 5, four correlation matrices for language and
vision modalities are visualized as heatmaps using the same
range of values. We can observe that f(PiW

Q, PjW
K)

(i.e., the last column of SA(Y)-1-1 in Figure 5) and
f(SiW

Q, SjW
K) (i.e., the first column of SA(X)-1-1 in

Figure 5) dominate the obtained attention maps of SA(Y)-
1-1 and SA(X)-1-1 respectively. However, for SA(Y)-1-1, the
semantic information of words cannot be ignored. MCAN+PE
uses the positional-positional correlation matrix to deter-
mine the relations between words. Meanwhile in SA(X)-1-
1, MCAN+PE only uses the semantic-semantic correlation
matrix to determine the result, and thus the introduction of
positional information becomes meaningless. That fact causes
the performance of MCAN+PE to degrade.

In contrast, our proposed MCAN+PA handles such problem
well. As shown in Figure 6, we visualize two items in PWA-1-
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1 and PWA-6-1 that correspond to Asem
i and Apos

i in Eq. (8),
respectively. It is observed that both Asem

i and Apos
i contribute

to the obtained attention map Ai. We only show the first and
last layers of PWA in Figure 6, but in all six layers, both Asem

i

and Apos
i contribute to the obtained attention map Ai.

In Figure 7, we visualize some of the final obtained attention
maps learned by Eq.(1). The results show that our model can
capture the correct objects and keywords regardless of the
correct prediction samples or the wrong prediction samples. It
is also observed that there are some difficult questions that our
model cannot handle. For example, in the bottom right image,
the cloud and contrail are mixed together, making it difficult to
distinguish them. In addition, our model sometimes fails when
the answer to the question requires external knowledge (see
the second example of the second row) or when the image is
blur (see the third example of the second row).

V. CONCLUSION

In this paper, we propose an efficient positional attention
guided Transformer-like architecture for VQA tasks. We al-
low positional information to be passed between and across
language and vision modalities, so that it can guide high-
level interaction of semantic attentions in information flow
of intra- and inter-modalities. Specifically, we propose three
novel positional modules, i.e., PWA, POA and PMA, and
they are compatible with Transformer-like models in VQA.
Experimental results on COCO-QA, VQA v1.0 and VQA
v2.0 datasets show that our model outperforms state-of-the-art
methods, epspeically in handling object counting questions.

One limitation of our method is introducing additional
computational costs compared to the baseline model MCAN.
In the future work, we plan to optimize the model to reduce
training time without degrading performance. We will also
consider to explore the relative positional representation for
possible improvement of model performance.
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