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Abstract. Point cloud denoising aims to restore clean point clouds from
raw observations corrupted by noise and outliers while preserving the
fine-grained details. We present a novel deep learning-based denoising
model, that incorporates normalizing flows and noise disentanglement
techniques to achieve high denoising accuracy. Unlike existing works that
extract features of point clouds for point-wise correction, we formulate
the denoising process from the perspective of distribution learning and
feature disentanglement. By considering noisy point clouds as a joint dis-
tribution of clean points and noise, the denoised results can be derived
from disentangling the noise counterpart from latent point representa-
tion, and the mapping between FEuclidean and latent spaces is modeled
by normalizing flows. We evaluate our method on synthesized 3D mod-
els and real-world datasets with various noise settings. Qualitative and
quantitative results show that our method outperforms previous state-
of-the-art deep learning-based approaches. The source code is available
at https://github.com/unknownue/pdflow.

Keywords: point cloud, denoising, normalizing flows

1 Introduction

As one of the most widely used representations for 3D objects, point clouds
have attracted considerable attention in many fields, including geometric anal-
ysis, robotic object detection, and autonomous driving. The rapid development
of 3D scanning devices, such as depth cameras and LiDAR sensors, has made
point cloud data increasingly popular. However, raw point clouds produced from
these devices are inevitably contaminated by noise and outliers, due to inher-
ent environment noise (e.g., lighting and background) and hardware limitation.
Hence, point cloud denoising, which is a technique to restore high-quality and
well-distributed points, is crucial for downstream tasks.

Despite decades of research, point cloud denoising remains a challenging
problem, because of the intrinsic complexity of the topological relationship and
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(a) Noisy data  (b) DMRDenoise [35] (¢) ScoreDenoise [36] (d) Ours

Fig. 1. The denoising results produced by (b) DMRDenoise [35], (c) ScoreDenoise [36]
and (d) our method from noisy input (a). Deeper color indicates higher error. Our
method preserves notably more fine details with less noise and outperforms others
especially in uniformity.

connectivity among points. Traditional denoising methods [2I3TI49I3733] per-
form well in some circumstances. However, they generally rely on prior knowledge
on point sets or some assumptions on noise distributions, and they may compro-
mise the denoising quality for unseen noise (e.g., distortion, non-uniformity).

Recent promising deep learning approaches [I3J45I18I35136] bring new in-
sight to point cloud denoising in a data-driven manner and exhibit superior
performance over traditional methods. These works can be classified into two
categories. The first class treats existing points as approximating the underlying
surface by regressing points [13], predicting displacements [45J56], or progres-
sive movement [36]. Nonetheless, the point features are extracted from the local
receptive field independently. Therefore, consistent surface properties may not
be preserved between neighborhood points, resulting in artifacts, such as out-
liers and scatter. The second class treats downsampling noisy data as a coarse
point set and resampling/upsampling points from the learned manifold with a
target resolution [I835]. However, the downsampling scheme inevitably discards
geometric details, leading to distorted distribution.

In this paper, we consider the noisy point clouds as samples of the joint dis-
tribution of 3D shape and corrupted noise. Based on this setup, it is intuitive
to capture the characteristics of noise and underlying surface in the form of
distribution. Thus, we can formulate the point cloud denoising problem as dis-
entangling the clean section from its latent representation. We can also interpret
this idea from the perspective of signal processing [39], where clean points and
noise are analogous to low- and high-frequency part of signals, respectively. We
can filter out the high-frequency contents and recover the smooth signal via the
low-frequency counterpart that encodes the major information of raw signal.

Our denoising technique mainly consists of three phases: 1) learning the dis-
tribution of noisy point clouds by encoding the points into a latent represen-
tation, 2) filtering out the noise section from the latent representation, and 3)
decoding/restoring noise-free points from the clean latent code. To realize this
process, we require a generative model that can simultaneously learn the la-
tent distribution and restore clean points. In this paper, we propose to exploit
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Fig. 2. Schematic illustration of the proposed method. We disentangle the noise factor
from the latent representation of noisy point clouds and leverage NF's to model the
transformation between Euclidean and latent spaces.

normalizing flows (NFs) in an invertible generative framework, to model the
distribution mapping of point clouds. The whole process is illustrated in Fig.

Compared with other popular deep learning models, such as generative ad-
versarial network (GAN) and variational autoencoder, NFs provide several ad-
vantages: (i) NFs are capable of transforming complex distributions into disen-
tangled code space, which is a desired property for point cloud denoising task,
(ii) an NF is an invertible and lossless propagation process, which ensures one-
to-one mapping between point clouds and their latent representations, and (iii)
NFs realize the encoding and decoding process in a unified framework and share
weights between forward and inverse propagations.

In summary, the main contributions of this work include:

— We propose a simple yet intuitive framework for point cloud denoising, called
PD-Flow, which learns the distribution of noisy point sets and performs
denoising via noise disentanglement.

— We propose to augment vanilla flows to improve the flexibility and expres-
siveness of the latent representation of points. We investigate various noise
filtering strategies to disentangle noise from latent points.

— To validate the effectiveness of our method, extensive evaluations are con-
ducted on synthetic and real-world datasets. Qualitative experiments show
that our method outperforms the state-of-the-art works on diverse metrics.

2 Related Works

2.1 Denoising Methods

Traditional denoising methods. Conventional methods for point cloud de-
noising can be coarsely classified into three categories: 1) Statistical-based filter-
ing methods generally apply statistical analysis theories, such as kernel density
estimation [46], sparse reconstruction principle [44937], principal component
analysis [38], Bayesian statistics [24] and curvature extraction [26]. 2) Projection-
based filtering methods first construct a smooth surface (e.g., Moving Least
Squares surface [2/T43]) from a set of noisy points. Then, denoising is imple-
mented by projecting points onto surfaces. According to projection strategies,
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this class of methods can be further divided into, e.g., locally optimal projec-
tion [3IU2002T], jet fitting [5], and bilateral filtering [10]. 3) Neighborhood-based
filtering methods measure the correlation and similarity between a point and
its neighbor points. Nonlocal-based methods [Q23I50/57] generally detect self-
similarity among nonlocal patches and consolidate them into coherent noise-free
point clouds. Graph-based denoising methods [I5JT947I55] naturally represent
point cloud geometry with a graph. All above methods generally require user in-
teraction or geometric priors (e.g., normals) and still lack the ability of filtering
various noise levels.

Deep-learning-based denoising methods. In recent years, several deep learn-
ing based methods [45/I8)35T336l40] have been proposed for point cloud de-
noising. PointCleanNet [45] first removes outliers and then predicts inverse dis-
placement for each point [I7]. It is the first learning-based method that directly
inputs noisy data without the acquisition of normals nor noise/device specifi-
cations. Hermosilla et al. proposed Total Denoising (TotalDn) [I8] to regress
points from the distribution of unstructured total noise. This allows TotalDn
to approximate the underlying surface without the supervision of clean points.
Pistilli et al. proposed GPDNet [40], which is a graph convolutional network, to
improve denoising robustness under high noise levels. In the denoising pipeline
of DMRDenoise [35], noisy input is first downsampled by a differentiable pool-
ing layer, and then the denoised points are resampled from estimated manifolds.
However, using the downsampling schema [45lJ35] to remove outliers may cause
unnecessary detail loss. Recently, Luo and Hu developed a score-based denoising
algorithm (ScoreDenoise [36]), which utilizes the gradient ascent technique and
iteratively moves points to the underlying surface via estimated scores.

Our method differs from the above methods in several aspects. First, we
formulate the denoising process as disentangling noise from the factorized rep-
resentation of noisy input. Second, instead of applying separate modules to ex-
tract high-level features and reconstruct coordinates, we unify the point encod-
ing/decoding process with a bijective network design.

2.2 Normalizing Flows for Point Cloud Analysis

NF's define a probability distribution transformation for data, allowing exact
density evaluation and efficient sampling. In recent years, NFs have become
a promising method for generative modeling and have been adopted into vari-
ous applications [42/29/34/1]. Representative models include discrete normalizing
flows (DNF) [1TJ12/27] and continuous normalizing flows (CNF) [7/16].

As the first NF-based algorithm for point cloud generation, PointFlow [53]
employs CNF to learn a two-level distribution hierarchy of given shapes. Point-
Flow is a flexible scheme for modeling point distribution. However, the expensive
equation solvers and training instability issues still remain to be open problems.
Sharing the similar idea, Discrete PointFlow [28] proposes to use discrete flow
layers as an alternative to continuous flows to reduce computation overhead.
Pumarola et al. [43] introduced C-Flow, which is a parallel conditional scheme
in the DNF-based architecture, to bridge data between images and point clouds
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domains. Postels et al. [41] recently presented mixtures of NFs to improve the
representational ability of flows and show superior performance to a single NF
model [28]. These works mainly focus on improving generative ability and are
evaluated on toy datasets. However, there are few works concentrating on flow-
based real-world point cloud applications.

In this paper, we take advantage of the invertible capacity of NFs, which
enable exact latent variable inference and efficient clean point synthesis. To the
best of our knowledge, no prior work has been proposed for the point cloud
denoising task by developing a new framework with NF's.

3 Method

3.1 Overview

Given an input point set P = {pi = pi + 0;} € RV*Pr corrupted by noise O =
{0;}, we aim to predict a clean point set P = {p;} € RVN*Pr where N is the
number of points, D, is the point coordinate dimension, and p; is the prediction
of clean point p;. In our study, we consider the coordinate dimension with D, = 3
and make no assumptions about the noise distribution of O.

In this paper, we propose to utilize NFs to model the mapping of point dis-
tribution between Euclidean and latent spaces, thereby allowing us to formulate
point cloud denoising as the problem of disentangling the noise factor from its
latent representation. The overall denoising pipeline is shown in Fig.

3.2 Flow-based Denoising Method

We consider the point cloud denoising problem from the perspective of distribu-
tion learning and disentanglement. We suppose the distribution of noisy point
set P is the joint distribution of clean point set P = {p;} and noise O. Given
a dataset of observation P, we aim to learn a bijective mapping fg, which is
parameterized by 6 to approximate the data distribution:

z=fo(P) = fo(P,0), (1)

where Z ~ py(Z) is a random variable with known probability density. Note that
py(Z) follows a factorized distribution [I1], such that py(Z) =[], ps (%) (i.e. the
dimensions of Z are independent of each other).

We further assume that fy can simultaneously learn to embed noise factor and
intrinsic structure of point cloud into a disentangled latent code space (i.e. where
noise is uniquely controlled by some dimensions). Based on this assumption, we
approximate the clean latent representation z by

=1 (3), (2)

where 1 : RP — RP is a disentanglement function defined in latent space, and
Z is an estimation of z. In this way, clean point samples P can be derived by
taking the inverse transformation
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Fig.3. The proposed flow-based denoising framework. Given a noisy point set P =
{ﬁi € RP» }, we first augment it with an additional D, dimensional variable p; € RPe
and obtain augmented point h; = [P, Pi] € € RP»*+Pa We transform the augmented
points H = {h;} to latent distribution z ~ py(Z) by NFs To estimate noise-free latent
point 2z, we filter out the noise factor from noisy Z. We restore the noise-free point set
P from 3 by the inverse propagation of F, which utilizes the invertible capacity of NF's.
Finally, the coordinates of the clean point set are derived from truncating the first D),
dimensions and discarding the augmented D, dimensions.

where go(-) = f, 1(.). The bijective mapping fy, which consists of a sequence of

invertible transformations fj,- - -, feL, is referred to as normalizing flows. Denote
by h! the output of I-th flow transformation. Then A'*! can be formulated as
P = (R, ()

where h® = P, h = z. Applying the change-of-variables formula and chain
rule [I1], the output probability density of P can be obtained as

log p(P;0) = log pg (fe(75)) + log J;;)( )’
(5)
— log ps (fg )+Zlog det 200 ahl (hl)

where ’det 9f (P)| is the log-absolute-determinant of the Jacobian of mapping
fo, which measures the volume change [11] caused by fy. fo can be trained with

the maximum likelihood principle using the gradient descent technique.

3.3 Augmentation Module

Dimensional bottleneck. To maintain the analytical invertibility, flow models
impose more constraints on the network architecture than non-invertible models.
One particular constraint is that the flow components f!,---, f¥ must output
the same dimensionality D with the input data (where D = 3 for raw point
clouds). The network bandwidth bottleneck sacrifices the model expressiveness,
as shown in Fig. [da]
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Fig. 4. Illustration of dimension augmentation. (a) The dimensionality of raw data
limits the bandwidth of the network in vanilla flows. (b) Augmented flows can share
considerable information among flow blocks, thereby improving model expressiveness.

Previous works [I12I27] generally use a squeezing operator to alleviate this
limitation by exchanging spatial dimensions for feature channels. However, the
squeezing operator is mainly designed for image manipulation. It is non-trivial
to adopt squeezing to point cloud due to the unorder nature in point sets.
Dimension augmentation. Inspired by VFlow [6], we resolve the bottleneck
by increasing the dimensionality of input data. To be specific, for each input
point p; € RP» in P, we augment it with a random variable p; € RP. This
process is modeled by an augmentation module A:

pi =AW, N (1:)), P =A{pi}, (6)

where A (p;) denotes the k-nearest neighbors of p;, and P represents the set
of augmented dimensions. We feed the augmented point set H = {h; = [p;, Bi]}
as input of flow module F, and the underlying NF's become zZ = fy (7'2), where
Z € RP»*Pa as shown in Fig.

Variational augmentation. To model the distribution of the augmented data
space, VFlow [6] resorts to optimizing the evidence lower bound observation
(ELBO) on the log-likelihood of augmented data as an alternative of Eq.

10gp(P; 0) > E,pp.4) [logp(ﬁ,ﬁﬂ) —logq(P | 75;<b)} : (7)

where ¢(7P | P; ¢) indicates the distribution of augmented data, which is modeled
by the augmentation module A, 6§ and ¢ denote the parameters of F and A,
respectively. We briefly explain Eq. in supplementary material.

3.4 Flow Module

The flow module F transforms augmented points # = {h;} € RN*(Pr+Da) from
the Euclidean space to the latent space, and vice versa.

The architecture of flow module F comprises L blocks, where each block
consists of a couple of flow components, as shown in Fig. [3] Each component
is designed to satisfy the efficient invertibility and tractable Jacobian, including
affine coupling layer [12], actnorm [27], and permutation layer [27]. The descrip-
tions of each flow component are detailed in supplementary material.
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Fig. 5. Illustration of different filtering strategies.

3.5 Disentanglement Module

Let z, and z, be the clean point and noisy parts of the latent point Z, i.e.
Z = [2p, 2zn]. We aim to disentangle noise z, from Z by a smooth operator 9 :
RP — RP

Z= [Zpyzc] = 1[)(2), (8)
where z. is the denoised feature and D = D, + D,. Z denotes the prediction of
noise-free point representation, which is fed as the input of inverse propagation
of flow module F. However, how to implement (+) is non-trivial. In this paper,
we investigate three types of noise filtering strategies (Fig. |5]) to formulate 1) (-)
as follows:
Fix Binary Mask (FBM). Similiar to a previous work [32], we explicitly
divides the channels of latent code into two groups, i.e. clean and noisy channels.
FBM simply sets noisy channels to 0 by

P(2) =m0z 9)

‘Cdenoise = EFBM = O, (10)

where m € {0,1}” is a fixed binary mask specified by the user, ® denotes
element-wise product and Lggy is the corresponding loss function of FBM.
Learnable Binary Mask (LBM). We employ a soft masking to latent Z by

Y(E)=mO 2z, (11)
Edenoise = LLBM = |’ﬁ’L (1 - ’I’T’L)| ) (12)
where m € R” is a learnable parameter, | - | denotes L; norm, and Ly gy is the

corresponding loss of LBM that encourages m to approximate the binary mask.
Latent Code Consistency (LCC). We minimize the latent representation
between clean points and noisy points by

Y(2) =Wz, (13)

N
Edcnoisc = ELCC = Z ||W2(’L) - Z(Z)Ha (14)
=1
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where W € RP*P is a learnable matrix to transform Z, N is the number of
points, |- || denotes Ly norm, and z = fy(P) is the latent representation encoded
from reference points P by the forward propagation of flow (similar to Eq. )
L1cc is the corresponding loss of LCC that encourages the transformed 2 to be
consistent with noise-free representation z, which is analogous to perceptual loss
[25] that evaluates difference on high-level features.

3.6 Joint Loss function

We present an objective function for training PD-Flow that combines the recon-
struction loss, prior loss and denoise loss (Section as follows:
Reconstruction loss quantifies the similarity between the generated points
P € RV*Dr and reference clean points P € RV*Pr_ In this paper, we use the
Earth Mover’s Distance (EMD) metric as Lyec by minimizing

['rec - CEMD(ﬁalp) = mln E ||13 — @ (ﬁ)” ) (15)
©:P—P
pEP
where ¢ : P — P is a bijection and ||| denotes Ly norm.

Prior loss optimizes the transformation capability of flow module 7 by max-
imizing the likelihood of observation P. We implement the prior loss by mini-
mizing the negative ELBO in Eq. :

Lorion(P) = L(P;0,0) = — |log p(P, P:0) —logq(P | Pi¢)|  (16)

where P = A(?B) are augmented dimensions (Section . Intuitively, Lprior
encourages the input points P to reach high probability under the predefined
prior py(Z).

Total Loss. Combining the preceding formulas, our method can be trained in
an end-to-end manner by minimizing

L (97 ¢7 U) = alyec + ﬂ‘cprior + ’Y‘Cdenoisev (17)

where 6, ¢ and o denotes the network parameters of F, A and M, respectively.
And, «, B, v are the hyper-parameters to balance the loss.

3.7 Discussion

Benefit of dimension augmentation. The dimension augmentation setting
provides extra benefits to vanilla flows: (i) The augmented NFs are generaliza-
tion of vanilla flows, where the extra dimensionality D, can be freely adjusted by
users, allowing it to model more complex function. (ii) The augmented dimen-
sions afford more flexibility and expressiveness to intermediate point features
(i.e. h! in Section between flow transformations, avoiding extracting high
dimensional features from scratch. (iii) The augmented dimensions increase the
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Table 1. Comparison of denoising algorithms on PUSet.

#Points 10K 50K
Noise Level 1% 2% 3% 1% 2% 3%
CD P2M HD | CD P2M HD | CD P2M HD || CD P2M HD | CD P2M HD | CD P2M HD
10°* 107* 107*|107* 107* 107*|107* 107* 107*|/107* 10°* 107*|107* 107* 107*|107* 107* 10°%
Jet [5] 347 1.20 158 [ 4.83 1.89 297 |6.15 286 7.00| 082 0.19 090|238 135 3.36| 564 416 9.05
GPF [33] 3.28 1.17 1.52 | 4.18 1.54 345|537 275 814 | 076 023 142|204 094 425|382 287 104
MRPCA [37] | 314 1.01 177 | 3.87 1.26 2.59| 513 2.03 4.84 |/ 0.70 0.12 0.79 | 2.11 1.06 321 | 5.64 3.97 7.65
GLR [53] 279 0.92 1.16 | 3.66 1.14 2.88| 484 2.08 6.80 | 071 0.18 093 | .61 0.85 4.90 | 3.74 2.67 117
PCNet @3] | 357 1.15 154 | 754 3.92 6.25 | 13.0 892 139 |[ 095 027 221 | 1.56 0.62 9.84 232 132 8.42
GPDNet [0] | 3.75 1.33 3.03 | 800 4.50 6.08 | 13.4 9.33 13.5 || .97 1.09 1.94 | 5.08 3.84 7.56 | 9.65 8.14 16.7
Pointfilter [50] | 2.86 0.75  2.87 | 3.97 1.30 6.21 | 494 2.4 9.26 || 0.82 0.24 2.38 | 1.46 0.77 4.58 | 2.25 144 8.70
DMR [35] | 454 170 6.72 | 5.04 213 7.02| 587 286 860 || 1.17 046 2.26 | 1.58 0.81 4.29 | 245 154 7.32
Score [36] | 2.52 0.46 4.30 | 3.68 1.08 578 | 469 1.94 10.5 || 0.71 0.15 230 |1.28 0.57 4.95 | 1.92 1.05 9.30
Ours 2.12 0.38 1.36|3.25 1.02 3.7l | 4.45 2.05 5.31//0.65 0.16 1.71|1.18 0.60 2.58|1.94 1.26 5.21

Method

degrees of freedom for noise filtering in the disentanglement phase, which is par-
ticularly helpful because raw point clouds contain only one dimension of D, = 3.
We investigate the influence of dimension augmentation in Section

Although the augmented dimensions increase the network size of flow module

F, the overhead is only marginal. The computation overhead mainly depends
on the hidden layer size Dj, of the internal transformation unit of F instead of
the output dimensionality D, + D,.
Unified noise disentanglement pipeline. Considering the invertible property
of NFs, raw points P and latent Z share the identical information in different
domains. We only manipulate the point features in the disentanglement module
throughout the whole denoising pipeline, demonstrating the feature disentangle-
ment capability of NFs.

Additionally, we do not explicitly introduce extra network modules to predict
point-wise displacement [45] or upsample to a target resolution [35] for point
generation. Utilizing the flow invertibility can share parameters between forward
and inverse propagations, which help us to reduce the network size and avoid
the use of a decoding module.

4 Experiments

4.1 Datasets

We evaluate our method on the following datasets: (i) PUSet. This dataset is
a subset of PUNet [54] provided by [36], which contains 40 meshes for training
and 20 meshes for evaluation. (ii) DMRSet. This dataset collects meshes from
ModelNet40 [52] provided by [35], which contains 91 meshes for training and 60
meshes for evaluation. These point clouds are perturbed by Gaussian noise of
various noise levels at resolutions ranging from 10K to 50K points.

We implement PD-Flow with the PyTorch framework. The training settings,
datasets and network configurations are detailed in the supplementary material.

4.2 Comparisons with State-of-the-art Methods

Evaluation metrics. We use four evaluation metrics in quantitative compar-
ison, including (i) Chamfer distance (CD), (ii) Point-to-mesh (P2M) distance,
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Table 2. Comparison of uniformity on 10K points under various Gaussian noise levels.
This metric is estimated in the local area of different radii p. Besides, we also show the
corresponding CD loss (x107*) of the full point clouds.

. Uniformity for different p
Noise | Methods D I% 06% 08% L% 13%
MRPCA [37] 3.14 1.89 2.30 2.42 2.59 2.83
1% DMR [35] 4.54 4.02 5.06 6.02 7.03 7.95
Score [36] 2.52 1.10 1.38 1.69 2.05 2.45
Ours 2.12 0.33 0.43 0.55 0.71 0.89
MRPCA [37] 3.87 2.21 2.56 2.85 2.97 3.14
2% DMR [35] 5.04 3.45 4.04 4.68 5.35 6.03
Score [36] 3.68 1.95 2.39 2.91 3.44 4.04
Ours 3.25 0.89 1.18 1.49 1.83 2.18
MRPCA [37] | 5.13 | 228 2.29 2.32 2.45 2.60
3% DMR [35] 5.87 3.81 4.53 5.16 5.85 6.55
Score [36] 4.69 4.19 5.42 6.43 7.46 8.37
Ours 4.45 | 1.80 2.33 2.83 3.34 3.87

(iii) Hausdorff distance (HD), and (iv) Uniformity (Uni). The detailed descrip-
tion of each metric is available in the supplementary material.

Quantitative comparison. We compare our method with traditional methods
(including Jet [B], MRPCA [37], GPF [33], GLR [55]) and state-of-the-art deep
learning-based methods (including PointCleanNet (PCNet) [45], Pointfilter [56],
DMRDenoise (DMR) [35], GPDNet [40], ScoreDenoise (Score) [36]).

We use LCC as the default noise filter. The benchmark is based on 10K and
50K points disturbed by isotropic Gaussian noise with the standard deviation of
noise ranging from 1% to 3% of the shape’s bounding sphere radius.

As shown in Table [1] traditional methods can achieve good performance in
some cases depending on the manual tuning parameters, but they have difficulty
in extending to all metrics. PCNet [45] and DMRDenoise [35] perform less sat-
isfactory under 10K points, while GPDNet [4(] fails to handle high noise levels.
In most cases, our method outperforms Pointfilter [56] and ScoreDenoise [36],
especially in CD and HD metrics. The quantitative comparison on DMRSet and
more results of various noise types are provided in the supplementary material.

Furthermore, we present the quantitative results on uniformity metric under
various noise levels in Table [2| Although MRPCA [37] achieves the best uni-
formity under 3% Gaussian noise, it fails to keep good generation accuracy on
CD metric. Compared with other state-of-the-art methods [3536], our method
considerably promotes the uniformity of generated points.

Qualitative comparison. Fig. [6] visualizes the qualitative denoising results
between ours and competitive works. We observe that our method achieves the
most robust estimation under high noise corruption. In particular, our method
can keep consistent density across different regions and avoid clustering phe-
nomenon, resulting in better uniformity.
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Fig. 6. Visual comparison of state-of-the-art denoising methods under 2% isotropic
Gaussian noise. The color of each point indicates its reconstruction error measured by
P2M distance. See supplementary material for visual results under more noise settings.

We also compare the denoising result under the Paris-rue-Madame [48]
dataset, which contains real-world scene data captured by laser scanner. As
shown in Fig. [, our method improves the surface smoothness and preserves
better details than DMRDenoise [35] and ScoreDenoise [36].

4.3 Ablation Study

We conduct ablation studies to demonstrate the contribution of the network
design of PD-Flow. The evaluation is based on 10K points with 2% Gaussian
noise in PUSet.

Flow architecture. The number of parameters mainly depends on the depth
of flow module F (e.g., the number of flow blocks L). As shown in Table |3} the
fitting capacity improve as L increases. However, when L increases to 12, the
relative performance boost becomes marginal, with the cost of a large number
of network parameters and training instability. We find that L = 8 achieves the
best balance between performance and training stability.

To verify the effectiveness of inverse propagation of F, we replace the inverse
pass with MLP layers, which are commonly used in other deep-learning-based
methods [45/35]. As shown in Table the inverse pass achieves better generation
quality without introducing extra network parameters, which demonstrates the
feasibility of flow invertibility. The similar result is also verified by the “forward



(a) Noisy (b) DMRDenoise [35] (¢) ScoreDenoise [36] (d) Ours
Fig. 7. Visual results of our denoiser on the real-world dataset Paris-rue-Madame [48].

Table 3. Ablation study of flow architectures.

Pass #Flow block | #Params CD P2M
Forward + Inverse 4 299K 3.55 1.22
Forward + Inverse 8 470K 3.25 1.03
Forward + Inverse 12 647K 3.57 1.23
Forward + MLP 8 578K 4.65 2.14

+ mlp” curve in Fig. where using MLP as point generator leads to degraded
performance.

Dimension augmentation. To investigate the impact of the number of aug-
mentation channels D, on model convergence, we show the training curve in
Fig. The baseline model with D, = 0 (i.e. vanilla flows) fails to converge to
reasonable results. As the D, increases, we observe faster convergence and bet-
ter fitting capability. The similar trending can also be observed in quantitative
evaluation under different D,. This indicates that the dimension augmentation
makes a key contribution to activate the denoising capability of NFs.

Effect on noise filtering strategies. We compare the performances of vari-
ous filtering strategies with D, = 32. As shown in Table [4] all these strategies
can achieve competitive performance, and the LCC filter achieves the best re-
sults. For LBM with D, = 16 to D, = 64, we observe that about 2/3 channels
approximate zeros in m after training.

We further investigate the impact of the number of masked channels D,,
on FBM filter in Fig. which shows the training curve under different D,,
settings. For D,, = 0, the flow network produces the same result as input due
to the invertible nature of NFs. For D,, = 1 to D,, = 16, our method can
converge to reasonable performance and presents little differences in convergence.
This indicates that our method can adaptively embed noisy and clean channels
to disentangled position, even if D,, is set to a low value. For D, = 32 and
D,, > 32, the latent code space only contains 3 or less channels to embed intrinsic
information of clean points. We can observe that the insufficient channels for
clean point embedding obviously lead to degrade performance, demonstrating
that the dimension of latent point has great impact on model expressiveness
and denoising flexibility. In Section we introduce Lgenoise as a regularization
term to improve noise disentanglment capability. Table [4] compares the effects
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Fig.8. (a) Loss curves of training PD-Flow with augmentation channels and LCC
noise filter. For better visualization, we use linear mapping below dashed line and non-
linear mapping above dashed line. (b) Loss curves of training PD-Flow with FBM noise
filter. All these models are augmented with D, = 32 and vary in mask channels D,,.

Table 4. Ablation study of different filtering strategies.

#Points, Noise 10K,1% 10K,2% 10K,3%
Strategy CD P2M CD P2M CD P2M
FBM 2.22 0.44 3.40 1.14 4.56 2.16

LBM (w/o Lism) | 254 062 | 3.65 1.38 | 506 2.32
LBM (w/ Lrew) | 237 053 | 350 1.23 | 480  2.23
LCC (w/o Lroc) | 232 045 | 348 119 | 462 220
LCC (w/ Lroc) 2.13 0.38 | 3.26 1.03 | 4.50 2.09

of Lgenoise term. The “LBM (w/o Lrpm)” term means that the experiment
is trained without the Lrcc loss (Eq. (12)), but still uses LBM as the filter
strategy (Eq. ) As shown in Table both Lrpym and L1,cc loss make positive
contributions to model performance.

5 Conclusion

In this paper, we present PD-Flow, a point cloud denoising framework that
combines NFs and distribution disentanglement techniques. It learns to trans-
form noise perturbation and clean points into a disentangled latent code space by
leveraging NF's, whereas denoising is formulated as channel masking. To alleviate
the dimensional bandwidth bottleneck and improve the network expressiveness,
we propose to extend additional channels to latent variables by an dimension
augmentation module. Extensive experiments and ablation studies illustrate that
our method outperforms existing state-of-the-art methods in terms of generation
quality across various noise levels.
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tion of China (61725204) and Tsinghua University Initiative Scientific Research
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Supplementary Material of
PD-Flow: A Point Cloud Denoising Framework
with Normalizing Flows

A Estimating ELBO of Augmented Flows

In this section, we present a brief description of the variational augmentation
used in Section Please refer to VFlow [6] for the detailed theoretical proof.

The augmented data distribution ¢(P | P;¢) is modeled with a conditional
flow

R CY) (18)

where € ~ py(€) is a known prior distribution defined by user and is similar
to py(Z2), f¢>_1 denotes the inverse propagation pass of flow fy (similar to Eq.
in the main paper), and ¢ denotes the network parameters of augmentation
module A. Here, P is used as the conditional input for f(;l that helps generate

the augmented dimensions P. The probability density of P can be computed as

oP

Oc |’ (19)

log q(P | P; ¢) = logpy (¢) — log

where log q(P | P; $) is the second term in Eq. 7| and Eq. [16/in the main paper.
Please refer to Section for the detailed implementation of f(;l.

Learning the joint distribution of P and P can be regarded as modeling
p(H;0), where H = {h; = [p;, p;]}. Thus, we can formulate the probability den-
sity of H by

dfo .-
det aﬁ(m" (20)

log p(P, P;0) = log p(H; 6) = log po (fo(H)) + log

where 6 denotes the network parameters of flow module F. log p(75, P;0) is the
first term in Eq. [7] and Eq. and is similar to Eq. [f]in the main paper.

B Network Configurations
In this section, we present more details of network modules in PD-Flow.

B.1 Augmentation Module

The architecture of augmentation module A is composed of three components,
as shown in Fig. [0
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Fig. 9. Architecture of augmentation module .A.

The sample module A, samples random variables ¢ € RY*Pe from prior
distribution py(e) as initial augmented dimensions. The condition net A, is al-
most identical to EdgeUnit (described below), but replaces MaxPool with Avg-
Pool. Intuitively, A, extracts neighbour context and outputs point-wise features
that helps generate extra dimensions. The transformation module A; consists
of three affine coupling layers and two inverse permutation layers, conditioning
on features from A.. Finally, a sigmoid function is applied to augmented output
dimensions P to avoid gradient explosion.

B.2 Flow Components

We briefly review the flow components used in Section The forward/inverse

L
propagation formulas and the corresponding log-determinant log ‘det %

are

listed in Table [5| Note that all operations are performed on channel dimension.

Affine coupling layer. As the core component of flow module F, the affine
coupling layer, introduced in RealNVP [12], is a simple yet flexible paradigm to
implement invertible transformation.

This layer first partitions the input h! into two parts h}., and h%.,: hl,
maintains identity and hfi: p is transformed based on hllz 4- Then, we concatenate
them and obtain A'*! as transformed output.

We show the detailed formulation in Table[5] where d is the partition location
of channel dimension. We set d = (D, + D,) /2 in our experimental settings.
Transformation units f! and f} represent arbitrarily complex neural networks
from R¢ +— RP»*+DPa=d and are not required to be invertible, as described in
Section

Actnorm. The actnorm layer [27] applies an affine transformation to h;,
with trainable parameters g and o. Similar to batch normalization, actnorm
helps improve the training stability and performance.

In Table [5, the channel-wise scale term p € RPr+Pa and bias term o €
RP»*Pa are initialized by the first mini-batch of data to make each channel of
h; obtain zero mean and unit variance.
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Table 5. Summarization of flow components.

Flow Component|Forward Propagation Inverse Propagation Log Determinant

Wi higy1:p = split (A) ha syl p = split (A7)
. hlS = f(la,s (hllzd) hls =Jos (hll+dl)
Affine Coupling |} = f§, (hl.4) Ry = fo.p (P11S) S b
Layer hilté = h]i;dl z . h;l:d =hil) . , . e
hldtrl:D = hd+1:Dl®18XIIJ (lhs) +hy h;iJrl:D = (hdtllzD - hy) / exp (k)
K+ = concat (R REEL D) h' = concat (hi.4, hiy1.0)
Actnorm Rt = (hl - H) /exp (o) R =h"r o exp (o) + p N- Zd gd
Invertible Lx i oy W= Wl pit N -log | det(W)]
Convolution

“In Log Determinant column, ¢ and d denote the indices of point and channel, respectively.
“ Both split (-) and concat (-) functions operate on the channel dimension.
* ® is the Hadamard product.

Permutation layer. Each affine coupling layer only transforms partial chan-
nels of h;. Thus, it has limited non-linear transform capability. To ensure that
all dimensions are sufficiently processed, channel permutation techniques help
integrate various dimensions and improve transform diversity.

For instance, reverse and random permutations [I1IT2] both shuffle the or-
der of channel dimension. The invertible 1 x 1 convolution [27] (invlx1) is a
special convolutional layer that supports invertibility. Since the dimension of
W is low and log | det(W)] is relatively easy to compute, we do not apply LU
decomposition [27] to W but simply initialize W randomly. In this paper, we
interchangeably use invlx1l and inverse permutation layer.

B.3 Transformation Unit

We implement the transformation units f! and f} in the affine coupling layer in
two types: EdgeUnit and LinearUnit.

Concretely, let b € RNX(Dp+Da) he the input of I-th affine coupling layer.
Then, we split the first d channel of A! i.e. hl, € RNX(Pr+Da)/2 a5 input of
transformation unit f!/f}.

Table 6. Architecture details of EdgeUnit.

Layer Kernel Size Output Size
K1 Build kNN Graph - N x K x3(Dp+ Dg) /2
F1 | Full-connected + ReLU | 3(Dp + Da) /2 X Dy, N x K X Dy,
F2 | Full-connected + ReLU Dy x Dy, N x K x Dy,
M1 MaxPooling - N x Dy,
F3 Full-connected Dy, x (Dp + Da) /2 N x (Dp 4 Dq) /2

The EdgeUnit applies EdgeConv [51] to input features, which extracts high-
level features from point-wise kNN graph. The kNN graph extraction process is
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formulated as

hy = [hi, N (hi)  hi — N ()], (21)

where h; = h}, are input features, N (-) denotes the kNN operator, and h} €
RE*3(Dp+Da)/2 indicates the point-wise features extracted from kNN graph. Iy
is fed into EdegUnit and then passed through the remaining layers, as listed in
Table [6] The LinearUnit is simply implemented by a bunch of convolutions, as
listed in Table [7

Table 7. Architecture details of LinearUnit.

Layer Kernel Size Output Size
Cl | ConvlD + ReLU | (Dp+ Da) /2 x Dy, N x Dy,
C2 | ConvlD + ReLU Dy, x Dy, N x Dy,
C3 | ConvlD + ReLU Dy x Dy, N x Dy,
C4 ConvlD Dp X (Dp+ Do) /2 | Nx(Dp+ D) /2

The flow module F transforms input P with L = 4 to L = 12 flow blocks.
As demonstrated in RealNVP [12], low levels of blocks encode high frequencies
of data (i.e. concrete details), whereas the high levels encode the low frequencies
(i.e. abstract details or basic shape). Based on the above idea, we use more
EdgeUnit in low level blocks. The EdgeUnit is used to extract neighbor context,
whereas LinearUnit is used to extract high-level point-wise features. For both
EdgeUnit and LinearUnit, the hidden channels are set to Dj, = 64, which is the
main overhead of network sizes.

C Implementation details

C.1 Dataset configuration

Training phase. The point clouds for training are extracted from 40 mesh
models in [54] and then split into patches of 1024 points. These point clouds
are randomly perturbed by Gaussian noise with a standard deviation of 0.5% to
2% of the bounding sphere’s radius. A pair of noisy patch and the correspond-
ing noise-free patch are cropped on the fly during training. We adopt common
data augmentation techniques for training patches, including point perturbation,
scaling, and random rotation to increase data diversity and avoid over-fitting.
Evaluation phase. For PUSet/DMRSet, point clouds for testing are points
extracted from 20/60 mesh models, at a resolution range from 10K /20K to 50K
points. Noisy test points are synthesized by adding Gaussian noise with standard
deviation from 1% to 3% of the bounding sphere’s radius. We normalize the noisy
input points into a unit sphere before denoising and then split them into a cluster
by a patch size of 1K for independent denoising. During patch extraction, we
first select seed points from input point set as patch centers by the farthest point
sampling (FPS) algorithm, and grow the patch to target size by kNN, as done
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n [36]. Thereafter, noisy patches are fed into PD-Flow for filtering. Finally, we
merge the output patches and sample output points to the target resolution by
the FPS algorithm as our final estimation [44]. For the patch-based method,
all evaluation metrics are estimated on the whole point set after merging from
denoised patches.

C.2 Network Training

In this section, we present the training details of our method, including training
strategy, network size and hyper-parameters.

For FBM filter, we set the last D,, channel of m to 0. For LBM filter, we
randomly initialize m to [0, 1] for all channels. For LCC filter, we initialize W
as an identity matrix.

We train our model with Adam optimizer for 700K iterations. The learning
rate is initialized as 2 x 1072 and updated by ReduceLROnPlateau scheduler
with Lpyp as the monitored metric. We set both prior distribution py(2) and
py(€) as standard Gaussian distribution A(0,I). We use the checkpoint of last
training epoch as our final model.

Augmenting noisy input P with D, = 32 in A and using a flow module F
with L = 8 blocks can achieve good performance for most cases. The tunning
hyper-parameters «, 8 and v in Eq.[17]in the main paper are empirically set as
1e75, 0.1 and 10, respectively.

C.3 Partition denoising

In experiments, we observe an obvious performance degradation of our model
in denoising high resolution point clouds along with high noise levels. This is
primarily because patch-based denoise methods [40J35[36] generally use a fixed
patch size as the denoising unit (e.g., 1024 points per patch). Denoising a higher
resolution point cloud indicates that the network handles a patch with a smaller
surface region. The surface estimation becomes unstable as the respective field
that the network perceives become small, particularly in the denoising problem.

To resolve this problem, we first partition the high-resolution point cloud
(e.g., 50K points) into several parts (e.g., 10K points), with each part sharing
approximately the same shape as the original point cloud. Then, we send each
part to the network for patch-based denoising (Section [C.1)). Finally, we concate-
nate each part back to the original resolution. In this way, we avoid clustering
much noise in a single patch and maintain good denoising performance across
different point resolutions. We only use this setting for point clouds with both
high resolution and high noise levels.

Another solution to this problem may use ball-query algorithm instead of
KNN to generate point patch. This method introduces another hyperparameter
(i.e. radius for query), which is required to be fine-tuned for each point resolution.
From experiments, we observe that this solution does help to preserve good
results under high noise level and high point resolution. In most cases, it achieves
competitive performance as the first solution.
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D Evaluation metrics

In this section, we introduce the metrics used in quantitative comparison. For
all the metrics, the lower the values are, the better the denoising quality is.

Chamfer distance (CD) between the predicted point cloud P and ground
truth point cloud P is defined as

5 1 A
Lop(P,P) = — > minllp—pl + = Zmlnllp oI, (22)
|P| = reP |P| pe
pEP pEP
where |P| and |P| denote the number of points in P and P, ||-|| denotes Ly norm.

This first term in Eq. 22] measures the average accuracy to the ground truth
surface of each predicted point, whereas the second term in Eq. encourages
an even coverage to ground truth distribution.

Point-to-mesh (P2M) distance is defined as

1
- min d min d(p, f), 23
EDNTRCURD> g

fem pGP

Lpom (P, M) =

where M is the corresponding mesh of P, |75| is the number of points in P, and

f is the triangular face in M (with a total of |[M| faces). The d(p, f) function

measures the squared distance from point p to face f. The P2M metric estimates

the average accuracy that approximates the underlying surface.
Point-to-surface (P2S) distance is defined as

- 1
L ,P)=— 24
pas(P, P) min min [ — g, (24)
P
where |P| denotes the number of points in P and || - || denotes Ly norm. Note

that S, is the surface (i.e. flat plane) defined by the coordinate and normal of

p, whereas q is the closest points to p on S,. The P2S metric is similar to P2M

metric, but requires normal data of testing point clouds instead of mesh data.
Hausdorff distance (HD) is defined as

Lyp(P, P) = max(max min [ — p||, maxmin ||p — ), (25)
peP PEP PEP peP
where || - || denotes Ly norm. Lyp measures the maximum distance of point set

to the nearest point in another point set, which is sensitive to outliers.

Uniform metric (Uni), which is proposed in PU-GAN [30], is used to
evaluate point distribution uniformity.

This metric first uses FPS to pick seed points and then estimates the unifor-
mity on point subset within a ball query centered at each seed point. Depending
on the ball query radius rg, it can evaluate the uniformity of different area sizes.

In general, we prefer the generated point clouds to follow a uniform distri-
bution. In our experiment settings, we evaluate the Uni metric with rq = /p
where p € {0.4%,0.6%,0.8%,1.0%, 1.2%}. Please refer to [30] for the detailed
formulation.
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E Additional Quantitative Results

E.1 Evaluation on DMRSet

Table |8 shows the quantitative results evaluated on DMRSet. For a fair compar-
ison, we retrain the deep-learning-based models including PCNet [45], ScoreDe-
noise [36] and our method on the training set of DMRSet, and use the pretrain
model of DMRDenoise [35]. Since the resolution of 20K points is not released
by authors [35], we generate 20K points and corresponding normals from the
released 50K points.

Table 8. Comparison of denoising algorithms on DMRSet.

#Points 20K 50K
Noise 1% 2% 2.5% 3% 1% 2% 2.5% 3%

CD P2S|CD P2S|CD P2S|CD P2S|CD P2S|CD P2S|CD P2S| CD P2S
107* 107 10™* 107*]10™* 107*|10™* 107*|10™* 107*|10™* 107*|107* 107*|107* 107*
Jet[B] 221 0.56 | 250 0.73 | 2.66 0.84 | 2.85 0.98 | 2.31 1.01 | 4.05 2.39 | 489 3.08 | 5.74 3.78
MRPCA[B7] | 2.07 0.44 | 2.26 0.51| 2.43 0.61 | 2.67 0.76 | 2.07 0.75 | 406 2.18 | 5.04 2.97 | 595 3.71
GLR[E5) | 214 053 [2.18 0.59 | 239 0.73 | 2.61 0.89 | 1.78 0.65| 2.83 1.47 | 3.55 2.04 | 441 2.72
PCNet[d5) | 225 0.64 | 2.69 0.88 | 3.02 1.11 | 3.36 135 | 2.15 0.71 | 3.43 1.54 | 4.18 2.06 | 492 2.61
DMR[35] | 213 0.51 230 0.64| 242 0.72]2.54 0.82|1.77 0.65|2.70 1.40 | 3.41 1.97 | 427 2.68
Scoref36] | 2.21 0.59 | 2.48 0.76 | 2.61 0.86 | 2.74 0.96 | 1.91 0.73 | 2.81 1.40 | 3.43 1.84 | 4.19 2.38
Ours 2.02 0.50 | 2.17 0.61|2.30 0.71]2.49 0.86 | 1.71 0.65 | 2.49 1.15| 2.77 1.45|3.30 1.92

Method

From Table[8] we can observe that our method yields better performance than
other methods in most noise settings. The performance improvement becomes
obvious especially in denoising 50K points.

E.2 Generalizability on unseen noise pattern

In this section, we investigate the denoising performance of our method on a
variety of unseen noise types. We use the same noise settings as that of Score-
Denoise [36]. Please refer to supplementary material of [36] for detailed noise
configurations.

For a fair comparison, we evaluate on the same models used in Section |4.2
which are trained with Gaussian noise. We compare our method against Jet [5],
MRPCA [37], DMRDenoise [35] and ScoreDenoise [36], as these methods repre-
sent the state-of-the-art performance.

Table [0] shows the quantitative denoising results under simulated LiDAR
noise. The LiDAR noise reproduces the common noise pattern generated by
scanners. We can observe that both ScoreDenoise [36] and our method obtain
the most accurate estimation. Our method outperforms ScoreDenoise [36] in
different metrics, probably thanks to the uniform distributed pattern.

Table [L1] shows the quantitative denoising results under non-isotropic Gaus-
sian noise, uni-directional noise, uniform noise, discrete noise, respectively. Tra-
ditional methods generally rely on parameters turning to achieve good denoising
performance (such as noise levels, repeating iterations and neighbor sizes, etc).
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Table 9. Comparison of denoising algorithms under simulated LiDAR noise.

Jet MRPCA GLR | DMR Score | Ours
CD 3.84 3.76 3.28 4.28 3.17 2.82
P2M | 1.37 1.49 1.13 1.67 0.92 0.76
HD 3.74 3.69 3.75 4.32 3.56 3.20

Therefore, these methods are difficult to preserve consistent performance under
various noise settings and point resolutions. Our method obtains the best results
in the majority of cases. More importantly, our method can maintain reliable
quality and achieve competitive results in all metrics. This indicates the robust
generalizability of our method.

E.3 Training on various noise distributions

In this section, we investigate how the noise distribution used for training affects
the denoising results of deep-learning based methods. Thus, we retrain these
methods on various noise types and evaluate them on PUSet with 10K points.
From Table we observe that using the model trained on the same noise type
as evaluation can further improve denoising performance.

Table 10. Comparison of deep-learning based methods trained on various noise types.

Noise Type isotropic non-isotropic .
(Training) Gaussian Gaussian Uniform
Noise Type Method CD P2M HD |CD P2M HD | CD P2M HD
(Evaluation) | 0 0% 1074 107* 102|10~* 1074 1073|10~* 10~* 10~
isotropic DMR [35] {5.04 2.13 7.02|5.24 2.27 4.58(6.14 2.88 5.31
rop Score [36] |3.68 1.08 5.78|3.85 1.34 6.19|4.86 1.91 4.56
Gaussian(2%)

Ours 3.25 1.02 3.71|3.28 1.07 2.70|{6.05 3.08 4.62
DMR [35] |5.26 2.33 7.40{4.00 1.31 3.78(6.24 2.98 5.40
Score [36] |3.75 1.15 4.35|3.58 1.08 3.26|5.16 2.19 5.65

Ours 3.36 1.12 3.09|3.19 1.01 2.87(6.25 3.29 6.48
DMR [35] {4.52 1.75 6.14|3.96 1.33 6.10(3.75 0.94 3.56
Uniform Score [36] |2.48 0.42 1.27|3.00 0.92 1.89|2.43 0.38 0.92
Ours 2.05 0.25 0.93|2.51 0.71 1.26{1.94 0.27 0.77

non-isotropic
Gaussian(2%)

F Additional Qualitative Results

F.1 Visualization on denoised patch

To obtain a more intuitive perception of denoised results for patch-based meth-
ods, we visualize the denoised patches of different methods from the same noisy
patch (a), as shown in Fig.
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(a) Noisy (b) DMR [35]  (c) Score [36] (d) Ours (e) Clean

Fig.10. Visual comparison of a denoised patch from different view angles. The first
row shows the top views, and the second row shows the front views.

From the first row of Fig. [I0] we observe that our method distinguishes
from other methods in terms of uniformity, even though we do not explicitly
enforce the uniform metric in the training loss. From the second row of Fig.
both ScoreDenoise [36] and our method can produce points with less jitters
on surface, indicating that both methods can infer smooth surface properties
between estimated points.

F.2 Investigation on disentangled latent space

To verify whether the latent point representation is disentangled, we conduct an
experiment to investigate how the latent z of NFs affects generative quality. We
inspect the effect of clean and noisy channels by adding noise og4.

To be specific, let z, and 2, be the channels of noisy latent Z, which are
supposed to embed point and noise respectively. We set D, = 33 and use FBM
filter with m = [1,1,---,1,0,0,---,0], such that z, and z, both contain 18

—_—

18 elements 18 elements
channels. Let z. € R'® denotes the channels denoised by FBM filter, where
z. = 0 in this case. Fig. visualizes the patches decoded from several latent
z combinations by adding noise to different components. The directional noise
04 is defined as oq = 1, where 1 € R'® is an all-ones vector and ¢ is a scalar
adjusted by user (0 = 1.0 in this case).

Since Fig. does not change the noisy latent z, our method generates the
same patch as noisy input due to the invertibility of NF. By replacing z,, with
z., we obtain a well-distributed patch in Fig. [[Ip. Since z. does not embed any
information and NF is a lossless propagation process, without loss of generality,
we can hypothesize that NF encodes the noisy patch to a regularized space of
zp where points are uniformly distributed and embeds the point-wise distortion
to z,. This gives us an intuitive explanation of why our method achieves better
uniformity.



(@) 2=[zp 2] (B)2=[zpz]  (Q) 21 = [2p+0a 2] (d) 22 = 29, 7 + 04]

Fig.11. Point patches generated from different latent vectors 2.

If we add directional noise o4 to z;,, we observe an unified translation to each
point in Fig. [[I. For figure plotting convenience, we only show a relative small
amount of translation in Fig. @: This phenomenon indicates that z, probably
embeds some information that is absolute to point’s coordinate. If we add di-
rectional noise o4 to z., we observe that each point in Fig. is corrupted by
random noise, indicating that the z. channels probably encode some properties
that disturb patch uniformity. The different behaviors in Fig. and Fig.
verify that z, and z. share different functions in latent point representation; in
other words, the latent code space of z is disentangled.

F.3 More denoised results

In this section, we illustrate more denoised results in the following figures. Fig.
shows some denoising examples on Paris-CARLA-3D [8] dataset. Fig. [L3| shows
more denoising examples on Paris-rue-Madame [48] dataset. Fig. [14{shows some
denoising examples on 3DCSR [22] dataset. Fig. shows more denoising ex-
amples under simulated LiDAR noise. Fig. shows more denoising examples
under 1% to 3% Gaussian levels. Fig. shows more denoising examples under
unseen noise types.

G Limitation and Future work

Most existing methods (including our method) do not contain noise level esti-
mation. Therefore, how many denoising iterations are needed to achieve the best
result is uncertain. Generally, for our method, a single iteration is enough for
low noise level (e.g., 1% and 2% Gaussian noise), while 2 iterations are needed
for high noise level (e.g., 3% Gaussian noise).

In the future, we will enhance the denoising capability of PD-Flow by intro-
ducing the outlier filtering operator and make further investigation on the influ-
ence of latent dimensions. Furthermore, we can extend the propagation pipeline
of PD-Flow to point cloud compression task, which takes high priority in efficient
storage and detail reconstruction.
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Table 11. Comparison of denoising algorithms under various noise types on PUSet.

#Points 10K 50K

Noise Level 1% 2% 3% 1% 2% 3%
Noise Type Method CD P2M HD | CD P2M EU CD P2M HD || CD P2M HD | CD P2M HD | CD P2M EU
107* 107* 107%|107* 107* 1072|107* 10~* 107%|[107* 10* 1073|107* 107* 1072|107* 107* 1073
Jet [5] 3.30 1.07 1.81[4.71 1.82 3.21|6.25 3.01 9.49([0.93 0.26 1.05|1.86 0.94 4.49[4.02 2.81 10.6
non-isotropic MRPCA [37]|3.35 1.30 1.71|4.06 1.48 2.84(4.90 2.06 6.85|/0.70 0.13 0.77|1.51 0.70 3.92|4.61 3.22 10.3
Gaussian DMR _wm‘_, 4.63 1.82 5.46|5.26 2.33 7.40|6.29 3.20 10.1([1.22 0.50 2.76|1.70 0.91 4.26|2.78 1.85 6.79
Score [36] |2.50 0.47 1.57[3.75 1.15 4.35|4.90 2.14 10.0(/0.72 0.15 2.85[1.38 0.65 5.49 (2.24 1.31 6.24
Ours 2.13 0.40 1.16(3.36 1.12 3.09|5.01 2.56 5.42[(0.66 0.17 1.04[1.22 0.63 2.17(2.30 1.60 5.12
Jet [5] 2.16 0.88 1.50(3.29 1.23 2.31|{4.20 1.75 5.21(/0.64 0.17 0.65[1.01 0.37 2.08|1.69 0.90 6.38
Uni- MRPCA _wﬂ 2.43 1.25 1.64(3.29 1.43 2.16|3.91 1.71 3.96|/0.52 0.11 0.52|0.78 0.23 2.17|1.66 0.91 6.30
directional DMR _w@ 4.47 1.75 6.06|4.75 1.93 5.87|5.25 2.35 7.04||1.08 0.40 2.05|1.26 0.54 2.79|1.64 0.86 4.99
Score [36] |1.47 0.28 1.36|2.46 0.56 2.13|3.50 1.25 5.77(/0.49 0.06 1.28|0.81 0.26 2.47(1.19 0.55 9.48
Ours 1.19 0.23 0.75(2.21 0.51 1.74(3.07 1.06 3.77([0.47 0.08 0.58[0.81 0.32 1.31[1.30 0.71 2.70
Jet [5] 1.97 0.83 1.23|3.30 1.02 1.49({4.04 1.33 2.01{{0.65 0.13 0.33]|0.89 0.23 0.56|1.20 0.42 0.91
MRPCA [37]|2.29 1.24 1.47(3.40 1.28 1.69|3.82 1.35 2.03|[0.61 0.12 0.33|0.52 0.11 0.61|0.86 0.22 0.80
Uniform DMR [35] |4.42 1.70 6.17|4.52 1.75 6.14[4.75 1.93 6.61|[1.09 0.40 1.65|1.21 0.50 2.12|1.33 0.60 2.87
Score [36] |1.31 0.25 0.72[2.48 0.42 1.27|3.41 1.01 7.30(/0.50 0.04 1.19[0.70 0.13 1.67|0.91 0.30 2.90
Ours 0.92 0.18 0.61(2.05 0.35 0.93[2.70 0.68 1.44([0.45 0.05 0.29(0.63 0.15 0.65[0.89 0.36 1.22
Jet [B] 1.93 0.82 1.32[2.89 0.98 1.52(3.40 1.26 1.90(/0.56 0.14 0.34|0.91 0.15 0.44[1.08 0.43 0.99
MRPCA [37]|2.25 1.24 1.49(3.02 1.28 1.67|3.22 1.32 1.86||1.11 0.46 0.92|0.54 0.11 0.47|0.61 0.15 0.80
Discrete DMR [35] |4.42 1.70 5.85|4.58 1.78 5.25[4.84 1.98 6.61|[1.11 0.42 1.83|1.21 0.50 2.36|1.37 0.63 2.77
Score [36] |1.27 0.25 0.93|2.19 0.42 4.27|3.08 1.01 3.07||0.45 0.05 1.20|0.62 0.14 1.84[0.78 0.25 2.02
Ours 0.91 0.18 0.60{1.90 0.35 0.91(2.58 0.69 1.31([/0.43 0.06 0.34[/0.59 0.14 0.96[0.83 0.32 1.45




(a) Noisy (b) DMRDenoise [35] (¢) ScoreDenoise [36] (d) Ours

Fig. 13. More visual comparison on Paris-rue-Madame [48] dataset.
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(a) Noisy (b) Ours
Fig. 14. Denoised results on 3DCSR [22] dataset.

(a) Noisy

(b)MRPCA[37] (c) PCNet[45] (d) DMR [35] (e) Score (f) Ours (g) Clean

Fig. 15. Visual comparison under simulated LiDAR noise.
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(a) Gaussian 1%

Noisy MRPCA [37] PCNet [45] DMR [35] Score Ours Clean

Fig.16. Visual comparison under various noise levels.
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(a) Non-isotropic Gaussian Noise

Discrete

Noisy = MRPCA [37] PCNet [45] DMR [35]  Score [36] Clean

Fig. 17. Visual comparison under various noise types.
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