Quantitative Biology 2022, 10(3): 239-252
https://doi.org/10.15302/J-QB-021-0272

Lesion region segmentation via weakly
supervised learning

Ran Yi', Rui Zeng', Yang Weng', Minjing Yu?*, Yu-Kun Lai®, Yong-Jin Liu"*

! Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

2 College of Intelligence and Computing, Tianjin University, Tianjin 300350, China

3 School of Computer Science and Informatics, Cardiff University, Cardiff, CF10 3AT, United Kingdom
* Correspondence: minjingyu@tju.edu.cn; liuyongjin@tsinghua.edu.cn

Received January 31, 2021; Revised March 13, 2021; Accepted April 7, 2021

Background: Image-based automatic diagnosis of field diseases can help increase crop yields and is of great
importance. However, crop lesion regions tend to be scattered and of varying sizes, this along with substantial intra-
class variation and small inter-class variation makes segmentation difficult.

Methods: We propose a novel end-to-end system that only requires weak supervision of image-level labels for lesion
region segmentation. First, a two-branch network is designed for joint disease classification and seed region
generation. The generated seed regions are then used as input to the next segmentation stage where we design to use
an encoder-decoder network. Different from previous works that use an encoder in the segmentation network, the
encoder-decoder network is critical for our system to successfully segment images with small and scattered regions,
which is the major challenge in image-based diagnosis of field diseases. We further propose a novel weakly supervised
training strategy for the encoder-decoder semantic segmentation network, making use of the extracted seed regions.
Results: Experimental results show that our system achieves better lesion region segmentation results than state of the
arts. In addition to crop images, our method is also applicable to general scattered object segmentation. We
demonstrate this by extending our framework to work on the PASCAL VOC dataset, which achieves comparable
performance with the state-of-the-art DSRG (deep seeded region growing) method.

Conclusion: Our method not only outperforms state-of-the-art semantic segmentation methods by a large margin for
the lesion segmentation task, but also shows its capability to perform well on more general tasks.
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Author summary: Crop diseases seriously affect the quantity and quality of crop yields, causing huge economic losses
and posing a serious threat to global food security. However, overuse of chemicals in traditional agriculture may be
harmful to humans and livestock. Therefore, early diagnosis of crop diseases, which helps to avoid the heavy use of
chemicals and provides feasible solutions, is much desired. We proposed a system to segment images with small and
scattered regions. Experimental results show that our method not only outperforms state-of-the-art segmentation methods

for the lesion segmentation task, but also shows its capability to perform well on more general tasks.

INTRODUCTION

Crop diseases seriously affect the quantity and quality of
crop yields, causing huge economic losses and posing a
serious threat to global food security [1]. Traditional
agriculture relies on heavy use of chemicals such as
fungicides and insecticides to control crop diseases.

However, overuse of chemicals may result in the
problem of pesticide residues, toxic and harmful to
humans and livestock, and even has a negative effect on
agro-ecosystems [2]. Therefore, early diagnosis of crop
diseases, which helps to avoid the heavy use of
chemicals and provides feasible solutions, is much
desired. In traditional agriculture, the identification of
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crop diseases and the assessment of the infection
severity are based on naked eye observation. These
manual methods are not only time-consuming and
laborious, but also inaccurate in estimated results.
Accordingly, specially designed computer techniques
that can achieve automatic diagnosis of crop diseases are
very important.

From the perspective of plant pathology, diseases on
leaves are abnormal manifestations after infection by
bacteria, viruses or fungi. Often, diseased leaves show
abnormal colors (e.g., chlorosis, yellowing or
whitening), and local or large area tissue necrosis and
spots. Therefore, the images of impaired leaves are
widely used as the subjects in automatic diagnosis of
crop disease. Most of the current research efforts in this
topic can be divided into two aspects: (1) The
classification of disease types; (2) The judgement of
disease severity, which can be evaluated by proportion
of the diseased area on plants. Due to the excellent
performance of machine learning technologies, the crop
disease classification [3—6] and detection [7-9] achieved
great progress.

Image-based classification and segmentation of crop
diseases have been widely studied in computer vision.
For crop disease classification, many works make use of
deep neural networks, either from scratch or fine-tuning
classic network models. Aravind et al. [3] applied
transfer learning on a pretrained AlexNet [10] to classify
grape diseases extracted from the PlantVillage dataset.
Mohanty et al. [7] trained AlexNet [10] and GoogLeNet
[11] to identify 26 diseases of 14 crop species and
achieved good results. Dechant et al. [4] proposed a
convolutional-neural-network (CNN) based three-stage
process to analyze images for determining whether they
contain infected leaves. In this work, diseased images
need to be annotated by lines along the main axis of the
lesion regions. Pound et al. [5] constructed four stacked
hourglass networks for positioning the regions of wheat
spikes and spikelets, and classifying the wheat type at
the same time. Some works used more comprehensive,
systematic approaches to perform classification. Krause
et al. [12] proposed a pipeline for classification of plant
species. It first uses a multi-scale approach to segment
the region of interest. Then it trains a deep CNN through
the multi-scale patches to determine the plant’s
category. Kumar et al. [13] proposed a mobile system
called Leafsnap. The system classifies leaf types by
extracting the contour curvature features of the leaves
and comparing the features with those in the database
including 184 trees. Fuentes et al. [14] proposed a deep-
learning-based real-time system for identifying and
locating tomato plant diseases and insect pests. The
authors compared different network structures, including
Faster R-CNN, SSD and R-FCN, combined with

different feature extraction networks (such as VGG [15]
and ResNet [16]). The method requires the Iesion
regions be annotated with bounding boxes and classes.
For crop disease segmentation, Chen et al. [17]
proposed a functional model that completes the leaf
segmentation task and accurately depicts the leaf edge.
Phadikar et al. [18] used the Fermi energy-based
segmentation method to segment the lesion region of the
rice disease from its background. Johannes et al. [19]
used a random-forest based classifier trained with color
and texture descriptors and a Bayesian segmentation
model to classify and segment the disease spots on
wheat leaves. Their method however needs to have
disease spots on leaf images accurately segmented.
Afridi et al. [20] used K-means in plant image
processing. However, the & value needs to be specified
in advance and the clusters do not have semantic
meanings. Zabawa et al. [8] proposed a deep-learning-
based method for solving the berry detection and
counting task. It converts the problem into the pixel-
wise classification task of “berry”, “edge” and
“background”, solved by the hourglass encoder-decoder
deep network. Lin ef al. [21] proposed a U-net based
convolutional neural network to segment the powdery
mildew on cucumber leaf images at the pixel level.
However, these existing works need pixel-level
annotation, and as it is time-consuming, the collected
and labeled dataset is quite small. Despite success in
these tasks, image segmentation of lesion areas, which is
crucial for quantitative assessment of disease severity,
has not been well addressed.

A big challenge to apply deep neural network models
in lesion segmentation is that a large number of labeled
training images are necessary. Moreover, semantic
segmentation typically requires pixel-level or bounding-
box image annotation, which needs huge manpower
consumption. Due to the scattered distribution of lesion
areas, constructing pixel-level labeled datasets for lesion
segmentation is even more laborious. Current publicly
available plant disease datasets only have disease
category labels. Weakly supervised learning, which
widely used in various pattern recognition applications
including object detection, image segmentation, etc., is
suitable for our tasks. It alleviates the need for large-
scale detailed annotations and only relies on weaker
labels such as image-level category labels, which has
profound significance for solving the bottleneck in
lesion segmentation.

Supervised semantic image segmentation relies on
fully annotated pixel-level training data, which is a
major bottleneck for many real-world tasks. To tackle
this problem, weakly supervised training methods have
been proposed to reduce the annotation effort. There are
many ways of weak supervision and the most common
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setting is image-level labels, which indicate what kinds
of objects are in the image. Previous work [22] demon-
strates that the same network can perform both scene
recognition and object localization in a single forward
pass. Some studies in agriculture [3,7] have also
visualized the inner convolutional layers and found that
the classification neural networks can efficiently activate
the diseased spots on leaf image. In [23], the class
activation map (CAM) for CNNs was proposed, in
which global average pooling (GAP) and global max
pooling (GMP) are used to highlight the most discrimi-
native image regions relevant to the predicted result.
This enables CNNs originally trained for classification
to learn object location information without using any
bounding box or pixel-level annotations. Inspired by the
simple yet effective idea of CAM, many practical
problems have been solved. Wang et al. [24] utilized the
CAM method to segment food images for image-based
dietary assessment and management. They proposed a
new global pooling layer as a cascade combination of a
GMP layer and a GAP layer. Bolano et al. [25] trained a
binary food/non-food classification network to produce
a food activation map and then recognized the food type
of each candidate. Gondal ef al. [26] used the CAM idea
to segment diabetic retinopathy lesions in retinal fundus
images. The CAM method cannot directly get the final
segmentation results. Therefore, some post-processing
operations are needed, such as threshloding or graph cut.
Alternatively, CAM can also be used to produce initial
seed regions for a subsequent neural network. For
example, Kolesnikov et al. [27] expanded the seed
regions generated from CAM using a segmentation
CNN and then constrained the result to object
boundaries using conditional random fields (CRF).
These three principles — seed, expand and con-strain
(SEC) — have become the classic scheme of weak
supervision and a lot of follow-up work (e.g., [28-30])
is carried out on this basis.

In this paper, we propose a novel weakly-supervised
segmentation method for crop lesion regions. Firstly, we
construct a two-branch network to simultaneously
perform classification and generate seed regions (1) in
the multi-class classification branch, every single
disease type is distinguished, and (2) in the binary
classification branch, multiple disease types are
classified into a general disease class, and then further
processed to generate disease and healthy seed regions
for the next segmentation stage. This approach helps
ensure disease seeds better cover all lesions, as different
disease types often share similar characteristics and
differentiating them may lead to certain lesions to be
misclassified and missed out in the disease seeds. Since
legions have distinctive characteristics of being small
and scattered, we utilize an encoder-decoder network

with high-resolution output as our segmentation
network. Different from previous work (such as SEC
[27], DSRG [28]) that use an encoder in the segmen-
tation network, our design to use an encoder-decoder is
critical for our system to successfully segment images
with small and scattered regions, which is the major
challenge in image-based diagnosis of field diseases. We
further propose a novel weakly-supervised training
strategy, making use of the extracted seed regions.
Therefore, the segmentation network can also learn the
features from the seed regions, along with simple yet
effective self-supervision. Experimental results show
that our system achieves state-of-the-art performance for
lesion segmentation.

Our system is effective for segmenting images with
small and scattered regions, and therefore, can be
extended to general multi-class segmentation problems
with weak supervision. By additionally introducing a
fast  conditional-random-field (CRF) supervision
inspired by the seed-expand-and-constrain (SEC)
method [27], we demonstrate our method on the
PASCAL VOC dataset [31]. The results show that our
method performs better in images that have similar
characteristics of lesion, so has comparable performance
with the state-of-the-art DSRG (deep seeded region
growing) method [28] in the VOC dataset.

Our main contributions include:

* For lesion seed region detection, we propose an
efficient multi-task two-branch network for simulta-
neous classification and lesion seed region extraction.
To ensure robustness, we introduce a multi-label
strategy with which subtle types of diseases are grouped
into a general disease class in the binary classification
branch (in order to generate good disease and healthy
seed regions for the latter semantic segmentation
network), while in the multi-class classification branch,
the subtle classes of different diseases are distinguished.

* We propose a simple yet effective training strategy
for weakly-supervised segmentation in the encoder-
decoder network structure. The strategy not only
significantly reduces the training time, but also achieves
better performance on lesion segmentation and other
general segmentation problems with similar image
structure (i.e., segmenting images with small and
scattered regions).

RESULTS AND DISCUSSION
Classification performance

We compare the classification accuracy of our method
and Aravind’s method [3] in Table 1. We report the
classification accuracy of three disease categories and
the healthy category. The 3 diseases are black measles,
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black rot and leaf blight respectively. Leafs affected by
black measles disease often have dark regions with
similar distribution as measles. Leafs affected by black
rot disease often have brown patches with black fringe.
Leafs affected by leaf blight disease often have brown-
black leaf spots which look dry. Some example images
of the 3 disease types are illustrated in Figs. 2—4. To the
best knowledge of the authors, reference [3] is the only
method that classifies grape diseases as our system does.
Reference [3] is also a state-of-the-art method (publi-
shed in 2019). Our two-branch network shows powerful
classification ability: we get 100% accuracy of healthy
vs. disease classification, and 99.63% accuracy for
disease type classification, which outperforms Aravind’s
method (97.62%).

Segmentation performance on PlantVillage

Since no previous work did crop disease segmentation,
we choose the classic K-means segmentation as the
base-line. Then we compare it with DAM generated
from our network combined with CRF [32]. We also
adopt two general approaches SEC [27] and DSRG [28]
on this special segmentation task for comparison. We
compare with SEC and DSRG since they are two
representative methods in general weakly-supervised
semantic segmentation, are most related methods to our
proposed method and achieve relatively good results on
lesion region segmentation. We report mean Intersec-
tion-over-Union (IoU) results in Table 2. Our method
achieves much better segmentation performance than all
other methods in all three categories. This demonstrates
that our method is effective for the lesion segmentation
problem.

Figure 1 shows qualitative results of lesion segmen-
tation comparing several segmentation methods and
ours, on one example for each disease. We observe that,
for the K-means method, if lesion regions have obvious
dark brown characteristics, they can be accurately
segmented. However, if there is not enough difference
between lesion region sand other part of the image, the
segmentation of K-means is very bad. In addition, there
is no semantics for clustering results by K-means. SEC,
DSRG and DAM+CRF methods all obtain less accurate
segmentation than ours, either missing some lesion
regions or extracting inaccurate region boundaries. In
comparison, our method can effectively handle different
diseases and lesion region sizes, and better copes with
illumination differences.

The reasons why our method outperforms SEC and

Table1 Comparison of classification accuracy on Plant-
Village (%)

Scheme  Mean Blk. measles Blk.rot Leafblight Healthy
[3] 97.62 94.07 95.31 99.53 100
Ours 99.63  99.28 99.58 100 100

Table 2 Comparison of segmentation performance of
different methods (measured by IoU (%)) on PlantVil-
lage dataset

Schemes Mean  Black measles Black rot Leaf blight
K-means 2424 30.69 25.15 16.87
DAM+CRF 2486 40.99 21.19 12.40
SEC 2540  38.03 30.24 7.94
DSRG 2550 3495 27.03 16.68
Ours 5549  61.62 55.83 49.02

E F G

Figure 1. Qualitative results of different methods for lesion segmentation. From left to right: (A) examples of three kinds
of grape diseases, (B) ground truth, (C—G) segmentation results of (C) K-means, (D) SEC, (E) DAM+CRF, (F) DSRG, (G) Our

method.
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DSRG so much are two-fold:

* Firstly, they are not designed for images containing
small and scattered regions; in particular, they only use
an encoder so that the resolution of output feature map is
too low to capture individual regions, whereas we
propose to use an encoder-decoder network with a high-
resolution output. This design choice is critical to
successfully segmenting images with small and scattered
regions.

* Secondly, even with the high-resolution output from
the encoder-decoder network, DSRG still does not work
in practice because the growth of seed regions and the
CRF constraint dramatically increase the computational
complexity due to the size of the feature map. In our
system, we propose pixel-level self-supervision and fast
CREF supervision to solve this problem.

More qualitative results of DSRG and our method are
presented in Figs. 2—4. Each figure corresponds to a
kind of grape disease. As shown in Figs. 2 and 4, DSRG
tends to extract inaccurate region boundaries for grape
black measles disease and grape leaf blight disease. As
shown in Fig. 3, for grape black rot disease, DSRG
easily misses some lesion regions. In comparison, our
method generates accurate lesion segmentation on
different diseases and under different lighting
conditions.

Image Label DSRG Ours

Figure 2. More qualitative results of lesion
segmentation on grape black measles disease.

Image Label DSRG

Figure 3. More qualitative results of
segmentation on grape black rot disease.

Image Label DSRG

Figure 4. More qualitative results of
segmentation on grape leaf blight disease.

Qurs

lesion

lesion
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Ablation studies

To analyze the effect of each component in our propo-
sed network, we cancel one component at a time
compared to the complete proposed network. As shown
in Table 3, PSS greatly improves the mean IoU from
26.44% to 55.49%, and the multi-label classification
technique has a significant influence in segmentation of
class leaf blight, which improves the IoU of leaf blight
from 12.33% to 49.02%.

Time efficiency

Another advantage of our proposed new supervision for
the encoder-decoder network is that it has better
computational efficiency. Compared to the seed loss
proposed by DSRG [28] and the CRF loss used by both
DSRG [28] and SEC [27], our method can greatly
reduce training time. As shown in Table 4, on the
network of encoder-decoder structures, using DSRG’s
seed region growing (SRG) and full-channel CRF will
make the training time much longer (approximately
2.4x%).

Segmentation performance on VOC

Small and scattered objects are common in natural ima-

Table 3 Ablation studies on lesion segmentation (in
mloU (%))

Schemes  Men L g
no PSS 26.44 30.00 26.63 6.69

no LF 4331 60.21 5738 12.33
Ours 55.49 61.62 55.83 49.02

No PSS represents not using pixel-level self-supervision. No LF
represents not using label fusion but producing seed regions in four-
class classification branch.

Table 4 Training time analysis over four loss terms on
two networks

Schemes U-net DeepLabv3+
PSS 0.44 2.30
PSS+FCS 0.57 4.64
PSS+CRF 0.57 7.86
SRG+FCS 2.55 9.33
SRG+CRF 2.55 11.0

PSS (pixel-level supervision) and FCS (fast CRF supervision) are
our proposed supervision. SRG (seed region growing) and CRF are
supervision used in DSRG [27]. The results shown are in seconds
for each training iteration. The column “DeepLabv3+” shows time
analysis of our extension to general segmentation on PASCAL
VOC dataset, more settings and results are in Section “Segmentation
performance on VOC”.

ges. We use the PASCAL VOC dataset as an example to
show that in several classes that contain this type of
images, our method can achieve good segmentation
results.

Per class results of SEC, DSRG and Ours on VOC
2012 validation set are summarized in Table 5. By
combining the encoder output trained in a way similar to
DSRG with the decoder output trained by our method,
our method outperforms DSRG in overall mloU. In
particular, our method works more effectively for
images with similar characteristics as lesions, which
contributes to the overall performance. Some visual
comparisons are presented in Fig. 5, showing that our
method outperforms DSRG on small and scattered
objects (e.g., part of a chair, upper body of human, small
TV).

Comparison with SEC, DSRG and FickleNet [33] on
validation and test set are summarized in Table 6. Our
method achieves comparable results to the state-of-the-
art FickleNet. Although our method does not achieve the

Table 5 Per class results on VOC 2012 validation set,
evaluated in terms of mean IoU (%)

Methods SEC ?VS([; é}) :ﬁf;get) Ours
Bkg 82.4 87.5 88.0 88.2
Plane 62.9 73.1 78.6 76.5
Bike 26.4 28.4 354 36.1
Bird 61.6 75.4 76.2 75.6
Boat 27.6 39.5 42.7 46.4
Bottle 38.1 54.5 62.0 66.8
Bus 66.6 78.2 80.0 81.9
Car 62.7 71.3 68.4 70.6
Cat 75.2 80.6 81.5 81.7
Chair 22.1 25.0 22.6 20.8
Cow 53.5 63.3 71.5 80.5
Table 28.3 25.4 38.6 38.8
Dog 65.8 77.8 73.3 70.9
Horse 57.8 65.4 75.0 74.7
Motor 62.3 65.2 72.6 72.9
Person 52.5 72.8 69.0 69.0
Plant 32.5 41.2 39.5 39.1
Sheep 62.6 74.3 72.8 81.7
Sofa 32.1 34.1 349 323
Train 45.4 52.1 61.1 60.8
Tv 453 53.0 522 52.1
mloU 57.0 59.0 62.0 62.7

The results of DSRG (ResNet) are reproduced by us, whose overall
mloU is slightly higher than the original mloU 61.4% reported in
the paper.
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Figure 5. Comparison of DSRG Huang et al.
(2018) and our method for weakly supervised
semantic segmentation on the PASCAL VOC
dataset. In these examples, DSRG classified some
objects into background or a wrong object. For the
examples in rows 1 to 6, the wrong classification is due
to that objects appear in incomplete form (unclear
reflection of bird, upper body of human, part of a chair,
part of a dog, hand, part of a sofa respectively). These
objects have the same characteristics as “scattered”
lesions. For the examples in the rows 7 to 9, the wrong
classification is due to that some objects are small (TV,
chair, table respectively). Compared to DSRG, our
method can accurately identify and segment these
“scattered” and “small” objects.

best performance, as a method designed for images with
small and scattered regions, it has already shown its
generalization ability to general small and scattered

Table 6 Comparison on VOC 2012 validation and test
set, evaluated in terms of mean IloU (%)

Methods Backbone Val set Test set
SEC VGG16 50.7 51.7
DSRG (VGG) VGGI6 59.0 60.4
DSRG (ResNet) DeepLab-v2-ResNet101 60.2 632
FickleNet DeepLab-v2-ResNet101 64.9 653
Ours DeepLab-v3-ResNet101&Decoder 62.7  62.6

The result of DSRG (ResNet) on val set is reproduced by us, whose
overall mloU is slightly higher than the original mloU 61.4%
reported in the paper. We show the top-2 methods in val and test set
in bold.

objects besides lesions (as illustrated in Fig. 5).
CONCLUSIONS

We propose an efficient method to solve the problem of
weakly-supervised segmentation of lesions. First we
design a two-branch network for multi-task learning: a
{healthy, diseased} two-class branch trained to get the
seed regions, and the other branch trained to obtain
subtle disease classification. Using the seed regions, we
propose a new weakly-supervised segmentation net-
work. The similarity learned by the network allows it to
strengthen the features by itself, which forms the pixel-
level self-supervision. When applying the method to
multi-class segmentation tasks, our proposed fast CRF
supervision helps to constrain the prediction of the
network in an effective way. Our method not only
outperforms state-of-the-art semantic segmentation
methods by a large margin for the lesion segmentation
task, but also shows its capability to perform well on the
PASCAL VOC dataset.

So far our method needs samples of different diseases
annotated with category labels for training, which are
difficult to obtain. One future work is to extend the
current method so that it can be trained using either a
small number of samples annotated with category labels
or samples without category labels. Another direction of
future work is to extend our method to more general
application scenarios, for example, dealing with more
types of crops, more susceptible locations besides leaf,
and more kinds of lesion other than black measles, black
rot and leaf blight.

MATERIALS AND METHODS

Our proposed deep model for lesion region segmenta-
tion includes two parts. One is a two-branch network
used for classifying crop diseases and generating seed
regions (Section “Classification and seed region
generation”). The other is an overall segmentation
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network based on seed regions (Section “Weakly-
supervised segmentation network™). The strategies of
pixel-level self-supervision and fast CRF supervision are
presented in Section “Training with new supervisions”.

Classification and seed region generation

Previous works have shown that in addition to being
effective for image classification, CNNs also have
remarkable ability to localize objects [22,34], where
certain image regions can be activated for objects of
specific classes. For crop disease classification, some
studies also showed this property by visualizing the
active regions in the convolutional layer of the
classification network [7,35]. These works motivate us
to segment lesion regions in crop images based on the
classification network.

Previous weakly-supervised segmentation methods
(e.g., [28,29]) mainly use the class activation map
(CAM) [23] for seed region generation. In more details,
these methods train a network to classify the input
image into different categories and locate seed regions
from obtained CAM. These seed regions are then used
by a subsequent network to learn the intrinsic features of
different objects. However, our lesion region segmenta-
tion task is substantially different from general segmen-
tation tasks: (1) The appearance of different crop
diseases are often similar. (2) The fine characteristics of
the same type of diseases may have subtle difference.
(3) Infection areas on a leaf are often not uniform in
number, inconsistent in size (often quite small) and
scattered in distribution. (4) Infected and healthy regions
may not have clear boundaries. (5) The existence of leaf
veins makes the texture information of leaf surfaces
complicated.

The above observations pose significant challenges
for previous methods based on seed region generation
and region expansion. In our work, we propose the
following framework to address these issues. In addition
to generating lesion seed regions as previous work does,
we also generate the healthy seed regions to help with
the weakly supervised learning.

Since lesion regions tend to be small and scattered and
the healthy region is relatively large, we need to make
the disease seed region reach more lesion regions, and
make the healthy seed region to avoid all lesion regions.
In order to do so, we need a coarse segmentation mask
(by thresholding CAM) that covers all lesion regions, so
its inversion gives the healthy seed region we want.
However, training a classification network as in [23]
cannot obtain our desired mask that covers more lesion
regions. This is because lesions of different diseases
usually have high similarities, and the obtained CAM
can only classify them based on the subtle differences of

different diseases, which is insufficient to cover the
entire area of all lesions. To solve this problem, we
make use of a multi-label learning, which assigns two
labels to each input image:

label, € {healthy,disease,,...,disease,}

label, € {healthy,disease} S

where 7 is the number of disease categories.

We design a two-branch network to solve this multi-
label learning problem, as illustrated in Fig. 6. One
branch is a multi-class classification branch trained with
label, to categorize diseases. The other branch is a
binary classification branch trained with label,,
classifying in two categories (healthy or disease) to
avoid missing information. The healthy and disease
categories are further used for generating the healthy
and disease seed regions. These two branches are trained
end-to-end.

In CAM [23], the VGG-16 network [15] was modified
by replacing the layers after conv5 3 (from pool5 to
prob) with a flat convolution layer, a GAP layer, a fully-
connected layer and a softmax layer, to maintain a
higher resolution of feature map. Some other works
[3,7] visualized activations of the first few convolutional
layers and found that certain areas of lesion regions are
activated, showing that a few convolutional layers are
enough to get activation locations. Meanwhile, as a
CNN becomes deeper, the classification performance is
improved, meaning that the active region will become
more targeted and smaller. So for the purpose of
generating an overestimated mask that overlaps all
lesion regions, we prefer a shallower CNN to get a
better coarse mask. We modify the VGG-16 based
network in [23] as follows:

o We use the layers before conv4 3 as the basis of
feature extraction, followed by two branches.

e For the multi-class classification branch, we use
three flat convolution layers with 3 x 3 kernels, three
fully connected layers and a softmax layer.

e For the binary classification branch, we use fewer
convolution layers, and healthy-disease binary category
classification with label,, to obtain a better coarse mask.
Unlike detailed classification in [23], this branch
includes two flat convolution layers with 3 % 3 kernels
(fc6_CAM, fc7_CAM), followed by a GAP layer, a fully-
connected layer and a softmax layer.

Similar to CAM [23], we extract the disease activation
map (DAM) that can be represented as a heat map
DAM(x, y) by assigning a heat value (indicating its
probability of belonging to the diseased region) to each
image pixel. The heat value is computed by the
weighted sum of the feature maps from the final
convolution layer only from the disease class (the
bottom row in Fig. 6):
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Figure 6. The two-branch network for crop disease classification and seed region generation, which is based on pre-
trained VGG-16 network. H represents the healthy class, and D represents the disease class. The multi-class classification
branch provides the prediction for every disease class and similar to CAM [23], the binary classification branch generates the

disease and healthy seed regions (see Fig. 7 for some examples).

DAM(x,y) = Z w!-Fi(x,y) 2)

where F(x,y) represents the k-th feature map of the
final convolutional layer (fc7 CAM) in the binary classifi-
cation branch, and w{ is the weight learned from the
fully-connected layer corresponding to the disease class.
We then follow [27,28] to apply a simple thresholding
scheme for segmenting the heat map DAM into disease
and healthy seed regions. The disease seed regions are
specified by the values in the heat map that are higher
than 7, times the maximum value d,,,, in the heat map.
The healthy seed regions are specified by the values in
the heat map that are smaller than 7, times d,,. In all
our experiments, we fix 7,=0.98 and 7,,=0.45.

To handle the dispersed characteristic of lesions, we
apply an iterative erasing strategy similar to [36], i.e.,
erasing is performed M = 5 times. At the m-th erasing,
0 <m < M, the m-th disease seed region S, is obtained
by:

1, DAM, (x,y) > T, dpa

S4,(x,y) = { 0, otherwise ©)

where DAM,, is the DAM after m-th erasing. The whole
lesion seed region S, is obtained as the union of
individual regions:

Sa(x,y) =84, US4, (x,)U---US,, (xy)  (4)

The whole healthy seed region is consistently specified

from DAM, by

_ 17 DAMO(X’Y) > Th : dmax
$u(x.y) _{ 0, otherwise ®)
Some examples of generated whole disease and healthy
seed regions are shown in Fig. 7.

Weakly-supervised segmentation network

Similar to previous work [27,28], we use the seed
regions to train the weakly-supervised segmentation
network. However, in previous work like DSRG [28],
seed regions are expanded from seed points by region
growing. In our application scenario, for small and
scattered objects such as lesions, if a seed is not
generated in each lesion, the training may lead to large
errors. This is because seed points cannot grow from one
lesion to another disconnected lesion. The erasing
strategy summarized in Eq. (3) can alleviate this
problem to some extent but cannot solve it completely.
Meanwhile, the low resolution of the output feature map
in these previous methods is unable to segment the
lesion region clearly, which is also a bottleneck to be
overcome.

To address the above challenges, we propose to use an
encoder-decoder network with a high-resolution output
F e RV where F(x,y,c) represents the softmax
output for each pixel (x,y) belonging to each category c.
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Input image

Disease seed region Healthy seed region

Figure 7. Some examples of disease and healthy
seed regions generated by DAM in the two-branch
network illustrated in Fig. 6.

Here, W and H are the width and height of the image, C
is the number of foreground categories where ¢ = 1,
2, ..., C refers to one of these classes, and an extra class
¢ =0 means the background. For lesion segmentation,
C =1 as the foreground corresponds to lesion regions.
Even with the high-resolution output £, the previous
DSRG method still cannot work since the growth of
theseed region [28] and the CRF constraint [27] in
DSRG will dramatically increase the computational
complexity dueto the size of the feature map, which
becomes unacceptable in practice. To solve this

problem, we propose two new supervisions, namely
pixel-level self-supervision (PSS) and fast CRF
supervision (FCS). We then train the network with
existing lesion region supervision [28] and the two new
supervisions. These two supervisions can not only make
the training proceed smoothly, but also make the
segmentation network learn the lesion features well. The
detailed training scheme is presented in Section
“Training with new supervisions”. The proposed
framework is both applicable to lesion segmentation and
can be extended to general segmentation, as illustrated
in Fig. 8.

Training with new supervisions

Pixel-level self-supervision (PSS). We propose a sim-
ple yet effective scheme for the network to learn from
seed regions with self-supervision. We observe that by
performing hard thresholding on the network output F,
we canefficiently achieve the growth of seed regions,
which can also extend from one lesion to another, thus
addressing the issue with insufficient or incorrect seed
region generation. Specifically, the regions for pixel-

level self-supervision (PSS) can be obtained
automatically as
{1, F(x,y,0)>6,
PSS (x.y ’C)_{ 0, otherwise ©)

where 6, is the threshold. Similar to DSRG [28], we use
two different values of 6. for foreground and
background. We then define the pixel-level self-
supervision loss lpss using the method in [28] with the
mask obtained using Eq. (6). Network predictions are
encouraged to match only the pixels in the supervised
region, with the remaining regions ignored.

Fast CRF supervision (FCS). Note that previous
methods also impose CRF processing on the network
output, which in turn is used as a supervision to
constrain the seed growth. However, as the output
resolution increases, the CRF computation becomes
expensive. To solve this problem, we propose to only
use output channels corresponding to object categories
present in the input image. Therefore, the input to the
CRF module only takes channels corresponding to the
categories c € I, where I, is the set of objects (or
background) in the image. Our fast CRF supervision
(FCS) mask is then obtained from the output of the CRF
module, orQindicating that the corresponding object
category does not exist:

Output(x,y,c),

FCS(x,y,c)z{ 0 lfCEImg

otherwise

(M

where Output . is the output of the CRF module, and
FCS is used for the fast CRF supervision. When the
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Figure 8. The proposed weakly-supervised segmentation network. We introduce two new supervisions, namely pixel-level
self-supervision (PSS) and fast CRF supervision (FCS). For lesion segmentation task, we train the network with seed
supervision and PSS. When extending to general segmentation task, we train the network with seed supervision, PSS and FCS.

number of categories is large, the number of channels
computed by CRF can be greatly reduced, and then the
computational efficiency is improved. In addition, it also
corrects the misclassification of the segmentation
network. We define the fast CRF loss [l using the
constraint loss computation method proposed in [27].

Final loss. The final loss function consists of three
loss terms: the seeding loss term /.., (adapted from [28]
which is the seed region constraint), the PSS loss term
lpss, and the FCS loss term [cs. The final loss function is
formulated as:

I = Ylgeq + plpss + Alcs (®

EXPERIMENTAL PROCEDURES

In this section, we validate our proposed method on
lesion segmentation task and extend our framework to
general segmentation task.

Experimental setup
We implemented the two-branch classification network

in Caffe [37] and the weakly-supervised segmentation
net-work in TensorFlow [38] on a PC with an NVIDIA

GeForce RTX 2080Ti GPU.

Datasets

PlantVillage. The performance of our method is eva-
luated on a real dataset of grape diseases extracted from
the public PlantVillage dataset. The images in this
dataset have image-level annotation of four different
categories (3 diseases + healthy).

The number of images in the training, val and test sets
are: (1) healthy: 338 training images, and 85 val images;
(2) black measles: 1,107 training images, 277 val
images, and 50 test images; (3) black rot: 944 training
images, 236 val images, and 50 test images; and (4) leaf
blight: 823 training images, 205 val images, and 50 test
images; 4,165 images in total.

To quantitatively evaluate lesion region segmentation,
a professional research assistant labeled the lesion
region of 50 images in the test set for each disease
category, 150 in total, using LabelMe. The labeling
principle is to label not only those obvious regions with
dark brown color, but also those regions with fading and
yellowing around those regions with high susceptibility,
and to be as careful and accurate as possible. Some
examples of labeling are shown in Fig. 1.
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Training and testing settings

For the two-branch classification network, we design the
network based on modified VGG-16 network in [23].
For the weakly-supervised lesion segmentation network,
we use a U-net [39] as the encoder-decoder network for
lesion segmentation.

We set 6, to 0.95 and 0.85 for foreground and
background to produce PSS in Eq. (6) in U-net training.
In Eq. (8), we set y =epoch/(epoch+1) and u=1-y
in U-net, where epoch is the current number of times
that the training dataset has passed the network (i.e., at
the beginning the weight for seeding loss is 0 and the
weight for self-supervision loss is 1). In order to match
this coefficient setting, we make special treatment for
PSS, taking PSS,.,, = PSS ,,US, as the supervision. In
the lesion weakly supervised segmentation network, the
FCS in Eq. (7) is not necessary, so we set y = 0.

Extension to general segmentation on VOC

To test the generalization ability of our method, we also
apply our method to general scattered object segmen-
tation. We demonstrate this by extending our framework
to work on the PASCAL VOC dataset, which achieves
comparable performance with the state-of-the-art
methods (DSRG [28], FickleNet [33]).

Dataset

PASCAL VOCI2. The PASCAL VOC dataset contains
20 object classes and background. For the segmentation
task, the training set contains 1,464 images, the
validation set contains 1,449 images and the test set
contains 1,456 images. Following the common practice
in [28, 40,], we use additional training images from [41]
to expand the training set to 10,582 images. Although
these images have pixel-level annotations, we only use
image-level labels in our method for training.

We regard images containing scattered regions of
varying sizes as an important type of natural images. So
although hour method is developed for lesion region
segmentation, we use the general PASCAL VOC dataset
as an example to show that in several classes that
contain this type of images, our method can achieve
good segmentation results.

Training and testing setting

When extending lesion segmentation to general VOC
segmentation, we use ResNetlOl [16] based
DeepLabv3+ [40] (instead of U-net [39]) as the encoder-
decoder network for general semantic segmentation

(VOC). The above different network choices are due to
the different numbers of categories in the two datasets.
For lesion segmentation, we prefer to build a network
that is fast and efficient in both training and prediction.
For the VOC dataset, it contains dozens of object types,
so a deeper network with large learning capabilities is
needed. The seeds are produced by [28], which are
further post-processed by CRF.

The training strategy is also different: on the VOC
dataset, we set all the three loss coefficients in Eq. (8) to
1.We first train the encoder network in a similar way as
DSRG, since the feature map output from the encoder is
of low resolution. Then the encoder parameters are
frozen, and the decoder is trained using our proposed
method. We use both the output of encoder and the
output of decoder to predict pixel-level pseudo-tag (as
no pixel-level ground truth is used), and select one of
the outputs based on the classification accuracy.
Following the previous work [28,30], we use a complete
DeepLabv3+ network to retrain on pseudo-tag in a fully
supervised way to improve results.
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