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ABSTRACT
Talking head video generation has received increasing attention re-
cently. So far the quality (especially the facial details) of the videos
from state-of-the-art deep learning methods is limited by either the
quality of training data or the performance of generators, and needs
to be further improved. In this paper, we propose a data pre- and
post- processing strategy based on a key observation: generating
a talking head video from a multi-modal input is a challenging
problem and generating a smooth video with fine facial details
makes the problem even harder. Then we propose to decompose
the problem solution into a main deep model, a pre- and a post-
processing. The main deep model generates a reasonably good talk-
ing face video, with the aid of a pre-process, which also contributes
to a post-process for restoring smooth and fine facial details in the
final video. In particular, our main deep model reconstructs a 3D
face from an input reference frame, and then uses an AudioNet to
generate a sequence of facial expression coefficients with an input
audio clip. To ensure final facial details in the generated video, we
sample the original texture from the reference frame in the pre-
process with the aid of reconstructed 3D face and a predefined UV
map. Accordingly, in the post-process, we smooth the expression
coefficients of adjacent frames to alleviate jitters and apply a pre-
trained face restoration module to recover the fine facial details.
Experimental results and ablation study show the advantage of our
proposed method.

CCS CONCEPTS
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1 INTRODUCTION
In this paper, we study the audio-driven talking head video gen-
eration problem, which aims to generate a realistic talking video
of a target person by inputting a reference frame and an audio
clip. Many methods have been proposed to address this problem.
E.g., some researchers directly edit the images to obtain the talking
video [4, 16, 19, 28], while some others utilize 2D facial landmarks
or 3D human face as intermediate representations to enhance the
quality of the generated talking videos [2, 10, 20, 22, 23, 25, 26, 30].
However, the quality of fine facial details in videos generated by
state-of-the-art deep learning methods is still limited by either the
quality of training data or the generator performance, which needs
to be further improved.

To address this problem, in this paper, we propose a simple yet
effective method, based on an observation that generating a talk-
ing head video from a multi-modal input is a challenging problem
and generating smooth videos with fine facial details makes the
problem even harder. Our method adopts a simple data pre- and
post- processing strategy to decompose this difficult problem into
several simple sub-problems and solve them one by one. In more
details, our method uses a simple and lightweight deep model (here-
after referred to as the main deep model) to generate a reasonably
good talking face video, in which the fine facial details need to be
further improved. Then with the aid of a pre-process, we apply a
post-process to restore smooth and fine facial details in the final
video.

We design the pre-processing to extract textures from the ref-
erence frame of the target person (instead of generating textures
of the target person using a generator as did in many previous
works [10, 20, 26]). For the main deep model, we use a simple au-
dio network AudioNet1 to generate a talking face video through
manipulating the shape of 3D human face reconstructed from the
input reference frame. We tolerate the imperfect results generated

1Our pre- and post- processing is general and can be applied to other lightweight deep
model as well.
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by the main deep model, i.e., the results may be jitter and miss fine
facial details. Then we apply a post-process focusing on inter-frame
smoothing and face restoration [21].

In the Talking Head Generation Track of ViCo Conversational
Head Generation Challenge 2022 using the dataset and baseline [29],
our method achieved the best results on the metric of cumulative
probability of blur detection (CPBD) [14] and won the third place
in the competition.

2 RELATEDWORKS
2.1 Audio-Driven Talking Head Generation
Recently, many deep neural network methods have been proposed
for the audio-driven talking head video generation task, which
takes an audio clip and a reference face image as input and outputs
a realistic talking video. Some early methods directly modify/edit
the reference frame at the pixel level to generate talking videos
[4, 16, 19, 24, 28]. Some other methods extract 2D facial landmarks
from the reference frame and use the input audio clip to drive these
landmarks [2, 30]. Recently, many researches reveal that 3D face
models can better serve as a bridge to represent the variations
during talking [10, 20, 22, 23, 26]. In this paper, we adopt the 3D
face as our intermediate facial representation.

2.2 3D Face Reconstruction
Reconstructing the 3D shape of the human face from a 2D image
or multi-view images is a challenging problem. The pioneering
work [1] proposes the widely used 3DMM model, which expresses
a 3D human face as a weighted sum of the principle components of
template faces and mean face; accordingly the reconstruction task is
converted into prediction of the weights. Another milestone is the
BFM dataset [15], which is made publicly available in 2009. After
that, based on the 3DMM model, many neural network methods
have been proposed to regress the coefficients of identity, expression
and pose, etc [5–7, 9]. In this paper, we use the methods in [5] and
[27] to reconstruct a high accurate 3D face from a reference frame.

2.3 Face Restoration
Face restoration is a task to recover high-quality human faces with
details and enhance colors from low-quality images with degrada-
tion (e.g., noise and blur). When the degradation model is unknown,
such as low-quality in-the-wild images, the face restoration will be
very challenging. To cope with this problem, previous researchers
usually use priors to guide the restoration of facial details and
textures, including geometry facial priors [3, 18], reference pri-
ors [12, 13] and generative priors [8, 21]. In this paper, we adopt
GFP-GAN model [21] as our face restoration module, due to its
outstanding performance in face restoration.

3 METHOD
3.1 Overview
The pipeline of our method is illustrated in Fig. 1. Firstly, the 3D
reconstruction is done on the reference frame to get the BFM coeffi-
cients [15] of the target person. Given an audio clip, our AudioNet
transforms it into a sequence of expression coefficients. Meanwhile,

our texture sampler generates high fidelity texture from the ref-
erence image based on the 3D face. Before rendering texture map
and 3D face to videos, our smoothing operator applies a window
to adjacent frames and smooth the BFM coefficients to avoid jitters.
Since BFM does not model the details in the mouth region, the
texture map lacks information in the mouth region. To compensate
for this, we add a StyleGAN-based submodule [11, 17] to complete
the mouth region of the rendering result to make the generated
videos more natural. Finally, the intermediate video is fed into a
face restoration module [21] to enhance the fine facial details, to
get the output of our entire pipeline.

3.2 Texture Sampler As Pre-Processing
Compared with generating texture maps or predicting BFM texture
coefficients, we consider that sampling textures from original refer-
ence image can capture high-frequency information in the texture,
which is beneficial to obtain high-fidelity rendering result. Thanks
to 3D face reconstruction, the 3D coordinates of human face’s ver-
tices in the world coordinate system can be transformed into the
image space, where each vertex finds its color from the nearest pixel
in the reference image. In order to generate a complete texture map,
we use a predefined UV map which records the UV coordinates of
all vertices, to paint the sampled color on corresponding position
in the texture map. For the unpainted pixels in the texture map, we
apply barycentric interpolation with the information of triangle
faces from reconstructed mesh to fill the pixels’ color. An example
of sampled texture is shown in the texture sampler part in Fig. 1.

3.3 Main Deep Model
3.3.1 AudioNet. In our method, the main deep model is the Au-
dioNet, which is a neural network model that generates expression
coefficients to control the variation of human face. The input of
AudioNet is 16 × 80 MFCC feature maps of a frame which are
transformed from input audio clip and outputs the transformed
expression coefficient 𝛽 ∈ R64 at the corresponding frame. At the
inference stage, the generated expression coefficients are used to
substitute the coefficients of the reconstructed result from refer-
ence image to form the talking face shape. We use two loss terms
to supervise the training process, which are L1 loss 𝐿1 and delta
loss 𝐿𝑑 :

𝐿1 =
64∑︁
𝑖=1

∥𝛽𝑖 − 𝛽𝑖 ∥1 (1)

𝐿𝑑 =

63∑︁
𝑖=1

∥(𝛽𝑖+1 − 𝛽𝑖 ) − (𝛽𝑖+1 − 𝛽𝑖 ))∥1 (2)

where 𝛽𝑖 , 𝛽𝑖 are the 𝑖-th element in the predicted and true expression
coefficients, respectively. 𝐿1 is designed to guide the regression, and
𝐿𝑑 is to ensure that AudioNet learns more accurate distribution of
expression coefficient. The overall loss is expressed as:

𝐿 = 𝜆1𝐿1 + 𝜆𝑑𝐿𝑑 (3)

3.3.2 Mouth Completion. After rendering texture map and 3D
face, we obtain a talking video without the mouth region because
the 3DMM model is not capable of modeling mouth and teeth. In
order to eliminate this unnatural artifact, we need to fill the mouth
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Figure 1: The pipeline of our method. The preliminary BFM coefficients are generated from 3D reconstruction of input frame,
which is used to obtain texture map. The expression part of BFM coefficients is then substituted by the output of AudioNet,
which is then smoothed. With texture map and BFM coefficients, the intermediate video is generated, which is followed by the
mouth completion and face restoration module that significantly refine the talking video.

region with reasonable content. To solve this problem, we introduce
StyleGAN [11] and StyleGAN encoder pSp [17]. The training pairs
for mouth completion module are obtained by cropping mouth
region using mouth landmarks. We mask out the mouth region
in cropped images to get source data, and regard the unmasked
counterparts as target data.

3.4 Post-processing
3.4.1 Smoothing Operator. Our method does not explicitly guar-
antee the inter-frame continuity, which may result in jitters in
generated videos. We notice that these jitters mainly take place in
the facial region, therefore we introduce smoothing operator to
alleviate jitters of human face by smoothing the expression coeffi-
cients (mouth completion is also applied after smoothing operation).
Given a target frame 𝑝𝑖 and its corresponding expression coeffi-
cients 𝛽𝑖 , we define the one-side window size 𝑙 as a hyperparameter
which indicates the smoothing range, therefore the number of in-
volved frames is 2𝑙 + 1. We calculate the weights of each frame in
the smoothing window as:

𝑤𝑝 =
1
2

(
1 − cos

(
𝜋 (𝑝 − (𝑖 − 𝑙 − 1))

𝑙 + 1

))
, 𝑖 − 𝑙 ≤ 𝑝 ≤ 𝑖 + 𝑙 (4)

where 𝑝 is the index of frame. Based on these weights, we normalize
them and calculate the smoothed expression coefficient of frame 𝑖
by the weighted sum of the expression coefficients in the smoothing
window:

𝛽 ′𝑖 =
𝑖+𝑙∑︁

𝑝=𝑖−𝑙

𝑤𝑝𝛽𝑝∑𝑖+𝑙
𝑗=𝑖−𝑙 𝑤 𝑗

(5)

For the boundary part of the video (i.e. the beginning and ending
parts of video), we adaptively scale the size of smoothing window.
For example, for the first frame, its 𝑙 is 0 because there is no frame
before it.

3.4.2 Face Restoration Module. We observe that if the face regions
in the training data are of low-resolution and blur, the generated
talking face videos tend to suffer from vagueness and degrada-
tion. To remedy this limitation, we propose to use a face restora-
tion module in the post process to restore face details inspired by
GFP-GAN [21]. Specifically, our face restoration module uses a
pretrained GAN to provide facial priors to restore diverse and rich
facial details. In more details, the facial priors are incorporated on
multi-resolution spatial features to produce final results of high
fidelity.

4 EXPERIMENT
4.1 Implementation Details
3D Reconstruction. We adopt Deep Face Reconstruction [5] and
WM3DR pretrained models [27] to reconstruct 3D faces in our
method.

AudioNet. Our AudioNet is trained on the training split of ViCo
dataset’s talking head generation part [29]. We extract audio clips
and frames from source videos, and get the BFM coefficients as well
as MFCC features of each frame, which are used to train AudioNet.
Our AudioNet is trained for 7,000 epochs on a single NVIDIA TITAN
RTX with loss weights 𝜆1 = 𝜆𝑑 = 1.

Mouth Completion Module. Our mouth completion network
is trained on the processed training pairs from ViCo training set
for 100,000 iterations, and other experimental settings are the same
as the official implementation in StyleGAN2.

Face Restoration Module. We use the GFP-GAN pretrained
model [21] for face restoration.

4.2 Qualitative Result
Based on the experiment setting described in Section 4.1, our model
can generate smooth realistic talking videos with fine facial details.
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Input Generated Consecutive Frames

Figure 2: Examples of our generated talking video. In order
to demonstrate the talking process, we randomly select four
consecutive frames.

We randomly choose three identities to show some of our results in
Fig 2. It is clear that the quality of our talking videos is not limited
by the low-quality of the input frame, while preserving the identity
and lip variations of the talking persons.

4.3 Quantitative Result
As the ground truth of test data is not available, we apply the
evaluation results from leaderboard of ViCo Challenge from https:
//vico.solutions/ for comparison. According to the evaluations, our
method is ranked No. 1 at the CPBD metric, showing that our
method generates videos with best clarity. However, our method
does not achieve the best results at PSNR, SSIM, and FID metrics.
The reason is that we use a face restorationmodule that is pretrained
on public high-quality face images to enhance the facial details,
and thus the module increases the difference between input frame
and generated result. Furthermore, we use a simple, lightweight
audio-drivenmodule, so the performance on the lip synchronization
metrics is not the best. Anyway, we regard that our post-process can
help generate more realistic talking videos with fine facial details
if they are appropriately combined with a more comprehensive
audio-driven model as the main deep model.

4.4 Ablation Study
In order to show that our post-process helps to generate better
talking head video, we remove the face restoration and smoothing
modules respectively. As shown in Fig 3, our method generates low-
quality talking videos after removing the face restoration module.
Meanwhile, we observe that the generated videos suffer from severe
jitters if we remove the smoothing operator.

4.5 Limitations and Discussions
Since we design a lightweight simple network as the main deep
model, our method does not achieve the best performance under
some evaluation metrics, such as lip synchronization. We believe
these limitations can be alleviated if a better and more comprehen-
sive main deep model is introduced. E.g., if we use the Wav2Lip
method [16], which is a talking head generation method that di-
rectly manipulate the frames on the pixel-level (we use a pretrained

Our method

w/o smoothing

w/o restoration

w/o smoothing and
restoration

Input frame

Figure 3: Results of ablation study. In order to show the vari-
ation of lips, we use the same four consecutive frames of
different settings.

Input frame

Input frame

Original

Post processed

Original

Post processed

Figure 4: Result of combining our post-process with Wav2lip.
Our post-process method can recover the degraded talking
head images fromWav2lip.
model from its official implementation), the generated results are
shown in Fig 4, indicating that the lip synchronization and iden-
tity is maintained after face restoration, and the image quality is
significantly improved. These results show that our pre- and post-
processes can work with different main deep models and generate
improved results.

5 CONCLUSION
In this paper, we propose to generate smooth and facial-details-
enhanced talking head video with data pre- and post-process tech-
niques. Experimental results show that these techniques can help
generate more smooth talking head videos with fine facial details.
Meanwhile, if we use the state-of-the-art Wav2Lip as the main deep
model and combine it with our data process techniques, the good
results demonstrate that our proposed method has the potential to
improve the generating results of existing talking video generation
methods. We believe that data processing methods are essential
components in talking video generation, and by reasonably adopt-
ing these methods, the existing talking head generation models can
be optimized, so as to obtain the videos of higher quality.
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