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Triply periodic minimal surfaces (TPMSs) have been widely used in many engineering fields, including
tissue engineering, lightweight manufacturing, and biomedicine. Although TPMSs have many nice
properties that make them very suitable for thermal property analysis, there has been little work
that has applied TPMSs in this important field due to the high complexity of representation and
optimization. This paper presents an efficient representation and optimization of TPMS-based porous
structures for heat dissipation. First, the porous structure is established by a function representation
that is derived by the function representations of TPMSs. It inherits the good properties of TPMSs, such
as high surface-to-volume ratio, full connectivity, high smoothness, and controllability. Then, according
to the steady-state heat conduction equation, the heat dissipation problem can be formulated into a
minimization problem dealing with the mean temperature distribution using the given constraints.
Next, to solve the problem directly on function representation without remeshing, an efficient
optimization method with global–local interpolation is exploited. Finally, we obtain the optimized
porous shell structures with smooth period and wall-thickness changes. Different from traditional
TPMS-based methods, the proposed approach provides both efficient function representation and
optimization of TPMS-based porous shell structures for heat dissipation. Various experiments were
conducted showing that the proposed porous structures have obvious advantages in terms of efficiency
and effectiveness.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

How to construct lightweight and efficient structures for heat
issipation has received considerable attention in various engi-
eering fields. The traditional heat sink structures cannot achieve
igh thermal conduction efficiency. Porous structures have been
xplored for solving this problem, and they could efficiently pro-
ote thermal conduction. However, representation and optimiza-

ion become technical bottlenecks that limit their further de-
elopment. It is difficult for the traditional structure design for
eat dissipation, depending on the basic theory of heat transfer
nd practical experience, to solve the heat transfer problems
n complex structures. Later, topology optimizations of porous
tructures, such as tree-like topology structure, truss/frame struc-
ures, and micro-structures, were exploited to handle the above
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problems [1–4]. These porous structures can be used to calculate
the high degree of freedom of the cooling channel topology con-
figuration. However, these approaches share a common problem
that they have many of design variables and the optimization is
costly due to time-consuming remeshing.

Recently, TPMS-based porous structures have been widely ap-
plied in tissue engineering technology, lightweight manufactur-
ing, biomedicine, and other fields [5–7]. The TPMS-based porous
structures have various superiorities in generation and appli-
cations, such as perfect inter-connectivity, ease of and precise
controllability, high surface-to-volume ratio, and high specific
strength and stiffness to relatively low mass. Furthermore, porous
surfaces can be expressed by implicit functions, and they can be
easily controlled by period and wall-thickness parameters. There-
fore, they have been successfully used for engineering porous
scaffold designs. There are many publications of TPMSs, but most
of them represented TPMS-based shell structures (with thick-
ness) by discrete polyhedron mesh (tetrahedron or hexahedron),
which is extremely time and memory-consuming in optimization,

https://doi.org/10.1016/j.cad.2021.103123
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specially for large and complex porous structures. Moreover,
he traditional FEM-based processing methods of TPMS-based
orous structures are mostly heuristic methods without efficient
ptimization. Due to the complexity of representation and op-
imization, there has been little work on TPMS-based porous
tructures on heat dissipation.
In this paper, efficient representation and optimization are

xploited to obtain the proper period and wall-thickness of TPMS-
ased porous shell structures for heat dissipation. The structure is
onstructed by two parameter functions to dominate the porous
eriod and the wall thickness, respectively. The optimization is
fficient, because the calculations of integral and gradient can
e directly implemented on these functions without remeshing,
nd only simple uniform voxel elements are constructed once, to
erve as the background integration domain. As shown in Fig. 1,
he main optimization process consists of the period optimization
nd wall-thickness optimization. The former is considered to be a
oarse adjustment on the structure while the latter is considered
fine adjustment on the structure. First, the porous shell struc-

ures are expressed by implicit function, which is controlled by
wo parameter functions, including the period parameter function
nd the wall-thickness parameter function. Based on these, the
teady-state heat conduction equation with boundary conditions
an be easily built into a mathematical model directly using
function representation. Then, to solve above two continu-

us parameter functions, the optimization of the model can be
ransferred to few control points. From the viewpoint of dis-
retization, the two parameter functions can also be efficiently
alculated using the distance field constructed by the implicit
unction without remeshing. As a result, the optimized porous
tructures with smooth period and wall-thickness changes are
btained. The main contributions of this work can be summarized
s follows:

1. We derive a novel representation of TPMS-based porous
shell structure with two control functions, which inde-
pendently dominate the periodic holes and wall-thickness
of porous structures, respectively. The proposed porous
structures also inherit several good properties of TPMS,
such as high surface-to-volume ratio, smoothness, and con-
trollability.

2. We present a two-step optimization scheme that can be
directly executed on the function representation of TPMS-
based porous structures for heat dissipation. Moreover,
the porous structures can be analyzed and optimized di-
rectly on function representation without time-consuming
remeshing.

3. We adopt the optimization method with a global–local in-
terpolation to accelerate the efficiency of solving the prob-
lem of steady-state heat conduction. Various experiments
certified the efficiency and effectiveness of the proposed
method.

. Related work

ommon structural optimization for heat dissipation. There are
everal structural optimization methods for the heat transfer
roblem, such as element-based method, explicit method and
omposite method for multi-scale optimization. For the element-
ased methods, homogenization methods [8,9], solid isotropic
aterial with penalization (SIMP) methods [10,11] and evolution-
ry structural optimization (ESO) methods [12,13] are commonly
sed in the design of heat dissipation structures. Bendsøe and
igmund [14] directly extended the density method in structural
opological optimization to the heat transfer structure optimiza-
ion and studied simple steady-state heat conduction using a two-
imensional (2D) finite element framework. Gersborg-Hansen
2

et al. [15] solved the planar heat conduction problem through a fi-
nite volume method combined with SIMP method. Page et al. [16]
studied the two-dimensional numerical topology optimization of
anisotropic materials based on the finite volume method and the
SIMP method. Lin et al. [17] proposed a combination of traditional
SIMP method and deep learning method to accelerate the topol-
ogy optimization efficiency of two-dimensional heat conduction
problems. Gao et al. [18] studied 2D conduction problems using
an improved bi-directional ESO scheme. Li et al. [19] proposed
an ESO method for the design of 2D heat conduction in the
heat conduction field. Other element-based methods were also
used in the design of 2D thermally conductive structures. Boichot
et al. [20] attacked the conductive surface cooling problem by
using a cellular automaton algorithm simulating the morphing by
temperature gradients. Cheng et al. [21] realized bionic optimiza-
tion in the construction of efficient thermal conduction paths by
evolving the generation process and degeneration process of ma-
terials according to the temperature gradients. Another method
for heat dissipation design is the explicit method, such as the
level-set method [22,23] and component-based method [24,25].
Yamada et al. [26] proposed a mathematical model of topological
optimization for heat transfer by maximizing thermal diffusion as
the objective using a level-set method. Zhuang et al. [27] adopted
a combination of the level set method and topological derivatives
to solve the planar heat conduction problem, which considered
a variety of load conditions. Bejan [24] put forward constructal-
theory to solve the volumetric heat conduction problem. This
method first optimized the initial units to obtain the dimensional
parameters of the high heat conduction channel. Then, the as-
semblies were optimized step by step until the heat dissipation
channel covers the required heat dissipation area. In addition,
the composite method combines two or more topological meth-
ods in multi-scale topology optimization. Pizzolato et al. [28]
proposed a multi-scale topology optimization model for multi-
material structures, in which the structure, the layout of the
material subdomains and their micro-structures are optimized
concurrently. The macro-scale (the structure and the layout) is
described by the level-set method, while the micro-scale (micro-
structures) is represented by the SIMP method. However, most of
the above methods were constructed in 2D cases, and it is difficult
to directly extend them to 3D heat dissipation.

Some approaches have also been proposed for 3D thermal
conduction. Dede [29], Chen et al. [1], Burger et al. [2] and Alexan-
dersen et al. [30,31] considered the topology optimization of both
two- and three-dimensional heat transfer, resulting in optimized
topologies with tree features. However, the common problem
of these approaches is that they implicitly perform structural
optimization with many design variables, and it is costly to obtain
precise solutions. Lohan et al. [32] used a generation algorithm
that does not rely on the initial material distribution and grid to
recursively generate 3D tree-like topology design. But the lack
of self supports limits the scope of applications of the tree-like
structures. Cheng et al. [3] exploited level set method to optimize
a material density, then they mapped the density to obtain 3D lat-
tice structure for thermal conduction. However, the method has
limit on the solution accuracy and the structural flexibility, such
as anisotropic variation. Moreover, explicit geometric methods,
such as Moving Morphable Components (MMC) [33], had been
success applied to solve problems with few parameters. Inspired
by these work, we exploit more versatile and controllable TPMSs
to construct porous structures for the thermal conduction. Then,
an efficient optimization is adapted to solve the problem directly
using functions without remeshing.
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Fig. 1. Illustration of the optimization process for TPMS-based porous structures (P-TPMS). (a) Initial setting (red: heat source (50 W/m3); blue: cooling areas (0 ◦C)).
b) Cross-section of the 3D structure for period optimization and the corresponding temperature distribution in 2D (x = 1.2y plane). (c) Cross-section of the 3D
tructure for wall-thickness optimization and the corresponding temperature distribution. (d) Final optimized 3D porous structure. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
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PMS-based porous structures. TPMS-based structures have been
idely studied in various fields [34]. Rajagopalan et al. [35]

irst attempted to apply TPMSs to construct Tissue engineering
TE) scaffolds. The advanced mechanical properties of the porous
tructures were demonstrated in mechanical and cell seeding
ests. Melchels et al. [36] used K3DSurf software to generate
he TPMS structures and construct dimensional gradient pores
y adding a coefficient to the z value of the TPMS equation.
hey further explained that the mechanical properties of TPMS
caffolds can be controlled by the combination of materials and
ore architecture. Yoo [37,38] proposed modeling algorithms
sing the volume distance field and thin-plate radial basis func-
ion, which made it easy to construct internal structures with
mooth and natural changes. Cai and Xi [39] mapped TPMS
tructures to the designed shape by using coordinate interpo-
ation and shape function of finite elements. Yang et al. [40]
sed the sigmoid function and Gaussian radial basis function to
enerate heterogeneous porous scaffolds. Hu et al. [41] improved
he function of TPMSs by adding a parameter to control the
eriod and offsetting the TPMS surface. But they did not pro-
ide an optimization of the structure, instead, they exploited a
egmentation method to simplify the optimization at the cost of
ccuracy. Peng et al. [42] used the zero level set of TPMSs and
he marching cube method to construct the porous structures.
hey applied the porous structures to heat dissipation analysis.
owever, they focused on the modeling and characterization of
he TPMS-based porous structures but not the optimization of
he porous structures. Ming et al. [43] proposed a porous solid
tructure constructed by extended triply periodic minimal surface
or mechanical problems. But their method suffered from the lack
f topology (porous period) optimization and a limited porosity
f porous structures due to the design of their structures. Most
f the above design and applications of the porous structures are
imple and heuristic methods, which lead to undesired problems
n structural optimization and controllability. Furthermore, using
raditional FEM and heuristic methods to analyze and redesign
orous structures is time-consuming and error-prone, especially
or large objects. Due to the above problems, little work on TPMS-
ased porous structures has been devoted to solving the complex
eat dissipation problem. Therefore, more efficient and con-
rollable representation and optimization of TPMS-based porous
tructures is an urgent problem to be solved.

. Construction of TPMS-based porous structures

PMS. As minimal surfaces, the mean curvatures vanish at ev-
ry point. There are some commonly used TPMS, including P-
PMS, G-TPMS, D-TPMS, and IWP-TPMS, and these TPMSs can
lso be approximated by the zero-level surfaces of trigonometric
3

functions [34,36] as follows:

ϕP (r) = cos(2πx) + cos(2πy) + cos(2πz) = 0,
ϕG(r) = sin(2πx) cos(2πy) + sin(2πz) cos(2πx)

+ sin(2πy) cos(2πz) = 0,
ϕD(r) = cos(2πx) cos(2πy) cos(2πz)

− sin(2πx) sin(2πy) sin(2πz) = 0,
ϕIWP (r) = 2[ cos(2πx) cos(2πy) + cos(2πy) cos(2πz)+

cos(2πz) cos(2πx)] − [ cos(2 · 2πx)
+ cos(2 · 2πy) + cos(2 · 2πz)] = 0,

(1)

here r = (x, y, z) ∈ R3, x, y and z are the magnitudes in
he Cartesian coordinate system. TPMSs have many beneficial
roperties, such as high surface-to-volume ratio, high smooth-
ess, and fully inter-connectivity without enclosed hollows. It can
e easy to control the periods and shapes of TPMSs by adjust-
ng parameters. Moreover, TPMSs can also be used to construct
orous structures, which have good mechanical properties and
D manufacturability.

PMS-based porous structures. TPMSs can be expressed by im-
licit functions. We propose a new function representation of
PMS-based porous structures by directly operating on implicit
unctions in a Signed Distance Field (SDF). The periodic holes
genus) and wall-thickness of the porous structures can be con-
rolled by a period parameter function and a wall-thickness pa-
ameter function (distance bias), respectively. Moreover, the pe-
iod and wall-thickness parameters are continuous parameter
unctions (period control function P(r) and wall-thickness control
unction W (r)), which are used to control the changes of porous
tructures.
Given a type of TPMSs, the period control function P(r) can

e treated as a non-uniform scale of r . P(r) could be simply em-
edded into the function of the TPMS-based structures. However,
his will cause value scaling (like scale transformation) in the
DF when the period function P(r) changes. To eliminate the SDF
caling effect, we add a scale factor to the formulation that is
efined as follows:

0(r) = P(r) · ϕ

(
r

P(r)

)
= 0. (2)

Then, the wall-thickness of TPMS-based porous structures can
be controlled using two surfaces that are offset from the above
modified function by using the wall-thickness control function
W (r) as follows:

ϕW (r) = P(r) · ϕ

(
r

P(r)

)
− W (r) = 0, (3)

−W (r) = P(r) · ϕ

(
r

P(r)

)
+ W (r) = 0. (4)
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Fig. 2. Construction of the TPMS-based porous structure (P-TPMS, P(r) ≡ 1,
(r) ≡ 0.5). (a) and (b) are the illustrations of the 2D SDF (middle face: z
0.5 plane) and the 3D SDF, respectively. (c) is the corresponding 3D porous

tructure.

Finally, the TPMS-based porous structures can be directly rep-
esented by these functions using disjunction operator as follows:

(r) = −ϕW (r) + ϕ−W (r) −

√
ϕW (r)2 + ϕ−W (r)2, (5)

where the region of Φ(r) ≥ 0 represents a closed volumetric
porous shell structure, as shown in Fig. 2. The function repre-
sentation of TPMS-based porous structures inherits several good
properties of TPMSs, including high surface-to-volume ratio, full
connectivity, good smoothness, and high controllability. The high
surface-to-volume ratio and full connectivity are excellent in
terms of transferring heat. The high controllability provides di-
rectly computable optimization without remeshing for both pe-
riod and wall-thickness. The good smoothness and connectivity
are beneficial to 3D manufacturing because this guarantees the
manufacturing accuracy and the leftover materials (such as the
extra liquid in SLA) can be removed in 3D manufacturing.

4. Formulation of 3D heat dissipation

In this section, we formulate the 3D heat transfer problem us-
ing the proposed function representation of TPMS-based porous
structures. In this approach, we mainly focus on the problem of
steady-state heat conduction. Given a design domain, heat source,
adiabatic, and temperature boundary conditions, this approach
aims to obtain optimized TPMS-based porous structures with
proper period and wall-thickness.

4.1. Steady-state heat conduction formulation

The general energy equation of steady-state heat conduc-
tion [2] can be expressed as follows:

ρCp
∂T
∂t

= λ∇2T + Q , (6)

s.t.

T = T̄ on ΓT ,

λ
∂T
∂n

= qs on ΓQ ,

here ρ is the material density, Cp is the specific heat, Q de-
scribes the internal heat generation term, λ = (λx, λy, λz) is the
material thermal conductivity in x, y, z directions, T is a temper-
ature field, T̄ is a given temperature on the Dirichlet boundary
ΓT , and qs is the heat flux along boundary normal vector n of the
Neumann boundary ΓQ . For clarity, the heat conduction domain
with boundary conditions is illustrated in Fig. 3.

The steady-state assumption ( ∂T
∂t = 0) is considered here,

nd the equation can be further simplified to an isotropic case
y assuming λx = λy = λz . Thermal compliance is expressed
n the form of thermal energy, and the optimization problem of
4

Fig. 3. Illustration of generic design domain.

minimizing the thermal energy maximizes the structural thermal
conducting efficiency. Therefore, the heat conduction problem in
Eq. (6) can be rewritten using the Galerkin method [2] by adding
volume and gradient constraints as follows:

min
P(r),W (r)

C =

∫
ΓQ

H(Φ)qS · TdΓ +

∫
Ω

Q · TdΩ (7)

s.t.

a(ω,T ) = L(ω) + B(ω, T̄ ),

V =

∫
Ω

H(Φ)dΩ ≤ v̄,

∥ ∇P(r) ∥≤ ḡ,

here C (W · K ) is the thermal compliance to be minimized,
hich is the response of the structural temperature to external
hermal loads (internal heat source loads and heat flow bound-
ry). a(ω, T ) = L(ω) + B(ω, T̄ ) is the weak solution formulation
nd the derivation of the formulation is shown in Appendix, V is
he volume of the entire porous structure, v̄ is the corresponding
olume constraint, ∥∇P(r)∥ is the gradient of the period function
(r) (to obtain smooth porous changes, the gradient is used to
ontrol the degree of porous variation), ḡ is the corresponding
radient constraint, and H(x) is 0 when x is negative and 1
therwise. In order to realize differentiable derivative calculation,
he Heaviside function is updated to Hη(x) [33]

η(x) =

⎧⎪⎨⎪⎩
1, if x > η,
3
4 (

x
η

−
x3

3η3
) +

1
2 , if − η ≤ x ≤ η,

0, if x < −η,

(8)

where η is the parameter that control the magnitude of regu-
larization and the non-singularity of the global stiffness matrix,
respectively. Moreover, for porous structures, the material ther-
mal conductivity λ should be set to λ =

λS ·λD
δ·(λD−λS )+λS

, where δ
is the volume ratio of solid material, λS and λD are the material
thermal conductivity in the solid and void part, respectively.

4.2. Numerical implementation

The steady-state heat conduction equation with boundary
conditions can be directly converted into a computable math-
ematical model based on the function representation of TPMS-
based porous structures and the continuous control parameter
functions P(r) and W (r). The optimization of the mathemati-
cal model can be transferred to solve the above two continu-
ous parameter functions. In discrete calculation, the parameter
functions can be efficiently solved using the SDF that was con-
structed by functions without remeshing. Only finite elements
are needed to implement integral calculation, which makes the
proposed optimization more efficient than traditional FEM-based
optimizations.
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Fig. 4. Illustration of the global–local interpolation. (left) An example of a two-
dimensional interpolation. (right) A TPMS-based Porous structure constructed
using our global–local interpolation method. The period and wall-thickness of
the structure change smoothly and naturally.

4.2.1. Global–local interpolation
The calculation of continuous parameter functions can be

ransferred into an optimization with a finite number of design
ariables by using radial basis interpolation [44]. A global–local
epresentation of the RBF interpolation is proposed to reduce the
omplexity of calculation. The key idea of the local interpolation
s to divide the large coefficient matrix into smaller coefficient
atrices with weights.
Taking the period parameter P(r) for an example. Ω is first

ivided into nl finite sub-domains {Ωi}
nl
i=1 (nl = 8 by default).

The period function can be approximated by the local func-
tions obtained by the radial basis interpolation in local ellipsoids
(containing the corresponding sub-domains) as follows:

P(r) =

nl∑
k=1

ωk(r)∑nl
j=1 ωj(r)

· Pk(r) =

nl∑
k=1

ψk(r) · Pk(r), (9)

ωk(r) =

(
(Rk(r) − dk(r))+
(Rk(r) · dk(r))

)2

,

here ψk(r) is the weight coefficient defined by ωk(r), dk(r) =

r − Ck∥2 is the distance from interpolation point to the center
point Ck of an ellipsoid. The radial basis based on ellipsoid corre-
ponds to the cuboid subregion, while its common case (Gaussian
adial basis, etc.) corresponds to the cube subregion. (∗)+ is a
truncation function satisfied if x > 0, (x)+ = x, otherwise (x)+ =

0, and Rk(r) is a local interpolation of the period parameter in the
kth sub-domain Ωk defined as

Pk(r) =

nkt∑
j=1

Rki(r)aki +
m∑
j=1

qkj(r)bkj, (10)

where Rki(r) = (r − Oki)2log(|r − Oki|) is the logarithmic radial
basis function with R(x) = x2log(|x|), {Oki}

nkt
h=1 are the control

points in the sub-domain Ωk, nkt is the corresponding number,
qki(r) is a monomial expression of coordinates x, y, z and a
constant,m is the number of the primary term (m = 4 by default),
and aki and bkj are the unknown coefficients of the quadratic term
and the primary term, respectively.

The global–local radial basis interpolation in Eqs. (9) and (10)
can be further simplified as follows:

P(r) =

nt∑
i=1

Ni(r) · Pi, (11)

where nt is the total number of control points in Ω , Ni(r) is the
corresponding computable coefficient function and {Pi}

nt
i=1 are the

unknown design variables at the control points.
For clarity, a two-dimensional example of the global–local

interpolation is illustrated in Fig. 4 (left). Given n control points,
5

the global radial basis interpolation needs to calculate a dense
matrix with a size of n × n. At the same time, the local radial
basis interpolation needs to calculate a sparse matrix with a size
of n × n with a certain bandwidth. Take an example, the design
domain is divided into four sub-domains, we only need to calcu-
late four small dense matrices, then, combining the four matrices
by weights. Especially for large models with plenty of control
points, the global–local radial basis interpolation only needs to
calculate a few small matrices efficiently. Also, the global–local
interpolation method is insensitive to the control point density of
the sub-domains, and can easily modify the function values of the
control points locally. The proposed global–local interpolation can
improve computational efficiency, while making the structures
have smooth changes, as illustrated in Fig. 4 (right).

4.2.2. Discrete form
In discrete form, a super element technique [45] is adopted to

obtain an efficient calculation, while retaining a sufficient compu-
tational accuracy. Specifically, the 3D bounding box of a design
domain is first divided into evenly hexahedral finite elements,
called super elements. The super elements are used to generate
the temperature field, and the number of super elements ns is de-
termined by the volume of the bounding box (103 super elements
in a unit volume by default). Then, each super element is further
subdivided into smaller hexahedral elements, called background
elements. The background elements are used to perform more
precise geometric calculations. Here, the number of background
elements nb in each super element is set to 27 by default. As
shown in Fig. 5, the accuracy of our method in terms of the Max-
Temperature and the Thermal Compliance is comparable to the
commercial software: COMSOL Multiphysics, which is calculated
by the finite element analysis. Moreover, the proposed porous
structures are represented using functions, which avoids repeated
remeshing during the optimization. The simple finite elements
are used for integral calculation, hence, they only need to be
constructed once in the optimization.

The discrete form of the heat conduction formulation in Eq. (7)
can be expressed as follows:

min
P(r),W (r)

C = Q̃
T
T (12)

s.t.

KT = Q̃ ,

V =
1
8

Nb∑
i=1

8∑
l=1

Hη
(
Φ i

l

)
vb ≤ v̄,

G =
1

∥Ω∥

nl∑
i=1

L

⎛⎜⎜⎜⎜⎝
(

1
N i
b

∑N i
b

j=1

∇P i
j

p) 1
p

ḡi
− 1

⎞⎟⎟⎟⎟⎠ vΩi ≤ 0,

where T is the vector of temperatures, Q̃ is the vector of the heat
source and heat flux term, K is a stiffness matrix, Nb = nb × ns is
the total number of the background elements, ∥Ω∥ is the volume
of Ω , N i

b is the number of the background elements in the ith
sub-domain Ωi, vb is the volume of a background element, ∇P i

j is
the gradient of P(r) of the jth background element in the ith sub-
domain Ωi, vΩi is the volume of the ith sub-domain Ωi, p > 0 is
a penalty factor of the global gradient constraint, and

L(x) =

{
x2, if x ≥ 0,
0, if x < 0.

(13)
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Fig. 5. Accuracy comparison (temperature with a uniform colormap) between commercial software: COMSOL Multiphysics (left) and our method (right) under the
same thermal source and constraint conditions (0.3 W/cm2 is applied on the bottom with a fixed temperature on the top).
Fig. 6. Illustration of the parameter functions W (r) ≡ w and P(r) ≡ p for different types of TPMS-based porous structures. Variations of porosity in one unit are
emonstrated for w (left) and 1/p (right).
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. Sensitive analysis and optimization

Optimization of the proposed 3D heat dissipation consists of
wo parts, period optimization and wall-thickness optimization.
he period and thickness of the proposed TPMS-based porous
tructures are independently controlled by the period function
(r) and the wall-thickness function W (r), respectively. The
ethod of Moving Asymptotes (MMA) [46] is selected to solve

he design variables of the two-step optimization processes. The-
retically, the two functions can be optimized simultaneously.
owever, since the choice strategy of moving asymptotes affects
he convergence speed of the MMA optimizer [47], the com-
on asymptotes cannot guarantee the convergence efficiency

or both period and wall-thickness. Therefore, the simultaneous
ptimization strategy will lead to a slow convergence. To accel-
rate the optimization efficiency, we split the optimization into
wo sub-optimizations. Each sub-optimization is responsible for
ne function by fixing another one. Although the mathematical
odel of thermal dissipation problem is non-concave and its
onvergence cannot be proved [48], many experiments have
onfirmed the well numerical performance of MMA even for the
on-concave problems. In our experiments, we cannot prove the
onvergence or anything concerning about the approximation of
ptimized result. But the convergence of the two functions can be
chieved due to the monotonous regularity, which means that the
eriod parameters and wall thickness parameters have a mono-
onic effect on the maximum temperature and volume ratio when
ne of them is fixed, as shown in Fig. 7. Also, the period optimiza-
ion and wall-thickness optimization in all our experiments have
chieved the termination criterion of convergence. The termina-
ion criteria is set as ∥Ci−Cavg

i ∥

avg ≤ 1 × 10−4, ∥Vi−V avg
i ∥

avg ≤ 1 × 10−4,

Ci Vi

6

and V ≤ v̄, i = 11, 12, 13, . . . , where Ci and Vi are the thermal
compliance and volume in the ith iteration, respectively, v̄ is the
upper bound of the volume, Cavg

i and V avg
i are the average thermal

ompliance and volume in the last ten iterations, respectively.
oreover, the changes of the porous period (topological changes)
re more vigorous than the wall-thickness. We first optimized the
eriod function, which is considered a coarse adjustment on the
tructure. Then, the wall-thickness optimization was considered
fine adjustment. Different wall-thickness initializations have a
mall effect on the thermal compliance (the difference is less than
% of the average compliance), if they are shifted around the
ean value of available value ranges of W (r). Furthermore, our
xperiments showed that both the compliance energy and the
orous structures underwent few changes during the iteration
etween the period optimization and the wall-thickness opti-
ization. Therefore, there is no need for iterative optimization
etween the two functions.

eriod optimization. The period function P(r) is constructed by
adial basis interpolation on the control points (the variables
Pi}

nt
i=1), and the sensitive analysis can be calculated as follows:

∂C
∂Pi

= −T T ∂K
∂Pi

T

= −
1
8

ns∑
k=1

T T
k

⎛⎝ nb∑
j=1

∂λkj

∂δkj

8∑
l=1

∂Hη
(
Φ

kj
l

)
∂Pi

⎞⎠ K 0Tk, (14)

∂V
∂Pi

=
1
8

Nb∑ 8∑ ∂Hη
(
Φ

j
l

)
∂Pi

vb, (15)

j=1 l=1
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∂G
∂Pi

=
1

∥Ω∥

nl∑
j=1

L′
(
∇Gj

) ∂∇Gj

∂Pi
vΩj , (16)

∂∇Gj

∂Pi
=

1

N j
bḡj

(
1

N j
b

∥∇P j
s∥

p

) 1
p −1 N j

b∑
s=1

∇P j
s

p−1 ∂∥∇P j
s∥

∂Pi
,

here λkj and δkj mean the material thermal conductivity and
the volume ratio of solid material of the jth background element
in the kth super element, respectively, Φkj

l means the lth node
oint of the jth background element in the kth super element
nd K 0 is the initial stiffness matrix. The optimized porous struc-
ures with smooth period changes can be obtained by taking
C/∂Pi, ∂V/∂Pi and ∂G/∂Pi in the MMA optimizer. Since the
all-thickness function W (r) should be fixed and the structure
orosity monotonously increases with the increase of the period
unction P(r), the convergence of period optimization is easy to
chieve. In our experiments, the period optimization converged
ithin 70 iterations.

all-thickness optimization. Similarly, the wall-thickness func-
ion W (r) is also constructed by radial basis interpolation on
he control points (the variables {Wi}

nt
i=1, and the corresponding

ensitive analysis can be calculated as follows:
∂C
∂Wi

= −T T ∂K
∂Wi

T (17)

= −
1
8

ns∑
k=1

T T
k

⎛⎝ nb∑
j=1

∂λkj

∂δkj

8∑
l=1

∂Hη
(
Φ

kj
l

)
∂Pi

⎞⎠ K 0Tk, (18)

∂V
∂Wi

=
1
8

Nb∑
j=1

8∑
l=1

∂Hη
(
Φ

j
l

)
∂Wi

vb. (19)

Since the wall-thickness changes are smoother than period
hanges, the gradient constraint of W (r) is no longer needed.
inally, the optimized porous structures with both smooth period
nd wall-thickness changes can be obtained by taking ∂C/∂Wi

and ∂V/∂Wi in the MMA optimizer. Since the optimized period
function P(r) is fixed and the structure porosity monotonously in-
creases with increasing of wall-thickness function W (r), the con-
ergence of wall-thickness optimization is also easy to achieve.
n our experiments, the wall-thickness optimization converged
ithin 30 iterations.

. Experiments and discussions

This section describes the performances of the proposed op-
imized porous structures for heat dissipation that were demon-
trated in various conditions. All the experiments were conducted
n a 3.4 GHz Intel(R) Core(TM) i7 computer with 64G mem-
ry. The models in our experiment were P-TPMS-based porous
tructures that were set to 25 ∗ 25 ∗ 30 cm3 by default except
here noted. The material of the porous shell structures was
et as aluminum by default, whose thermal conductivity was
37 W/(mK). The heat sources (red parts) in the design domain
ere as follow: (1) the internal heat flux was set to 5 W/cm3

size: 3 ∗ 3 ∗ 3cm3 by default); (2) the inputting surface heat flux
as set to 1 W/cm2 (size: 6∗6 cm2 by default). The cooling areas
blue parts) are Dirichlet boundary conditions that were set to
fixed temperature 0 ◦C (degree Celsius) by default, and their

izes were set to the same as the corresponding heat sources by
efault. The volume constraint was set to 20% of the correspond-
ng solid model (bounding box) by default. To ensure that the
tudy was like an actual situation, air was filled into the void with
hermal conductivity as 0.001 W/(mK), and the other external
ides were heat adiabatic in the design space.
7

arameter functions. To better understand the TPMS-based
orous structures, the effect of parameter functions W (r) and
(r) on different types of porous structures are illustrated in
ig. 6. Variations of porosity in one unit were locally observed,
nd the parameter functions W (r) ≡ w and P(r) ≡ p were
et to be constant values. The local porosity variation in one
nit can be considered to be part of the global material distri-
ution, which is important to the heat dissipation. An optimized
orosity variation can dramatically enhance structural cooling
erformance. As shown on the top of Fig. 6, for the wall-thickness
arameter function W (r), the porosity variations of different
PMS-based porous structures are monotonic declined with some
ifferences. The porous structures degenerate into surfaces when
= 0 (as shown in the left part), and the structures will become

olid models when w is beyond its value range (as shown in
he right part). The value ranges of W (r) are inconsistent for
ifferent types of porous structures. Generally, the value ranges
re empirically set, such as W (r) ∈ [0.02, 0.95] for P-TPMS-
ased porous structures, W (r) ∈ [0.02, 1.35] for G-TPMS-based
orous structures, W (r) ∈ [0.02, 0.7] for D-TPMS-based porous
tructures and W (r) ∈ [0.02, 2.95] for IWP-TPMS-based porous
tructures, respectively. Similarly, the influence of the period
arameter function P(r) is illustrated in bottom of Fig. 6. Its
nverse of 1/P(r) can be analyzed for comparison. As 1/p in-
reases, the porous structures periodically become denser, and
urn into solid models when 1/p is larger than its value range.
he value ranges of P(r) are also inconsistent for different types
f porous structures. Similarly, the value ranges of 1/P(r) are
mpirically set, such as 1/P(r) ∈ [0.5, 2] for P-TPMS-based
orous structures, 1/P(r) ∈ [0.5, 2.7] for G-TPMS-based porous
tructures, 1/P(r) ∈ [0.5, 2] for D-TPMS-based porous structures
nd 1/P(r) ∈ [0.5, 2] for IWP-TPMS-based porous structures,
espectively. This also illustrates that different types of TPMS-
ased porous structures can have similar performances on heat
issipation, and our subsequent experiments also demonstrated
he performances. Moreover, we also illustrated the effect of
he two parameter on some physical properties. As shown in
ig. 7, under the same loading conditions (model size: 25 ∗ 25 ∗

25 cm3, bottom heat source size: 0.6 ∗ 0.6 cm2, cooling area: top
surface), the period parameters and wall-thickness parameters
have monotonic effect on the maximum temperature and the
volume ratio. The period optimization is considered to be a coarse
adjustment on the structure while the wall-thickness optimiza-
tion is considered a fine adjustment on the structure. Generally,
the proposed optimization can converge to an optimized solution
within total a hundred of iterations. In all the experiments,
the period optimization converged within 70 iterations, while
the wall-thickness optimization converged within 30 iterations.
Table 1 lists the time analysis and comparison for the porous op-
timization. The results indicate that our optimization is effective
due to the direct optimization on functions without remeshing.

Influence of the heat source and cooling area. To verify the ef-
fectiveness of the proposed porous structures, several examples
can be illustrated with different heat sources and cooling areas.
As shown in Fig. 8, different initial settings of heat sources and
cooling areas are given, and cases of symmetry, asymmetry, and
center-to-corners are shown from left to right, respectively. Both
3D optimized porous structures and the corresponding 2D cross-
sections with the temperature distribution are demonstrated. As
shown, the optimized structures automatically built obvious heat
conduction channels between the heat source and the cooling
areas, with smaller periods and larger wall-thickness. This will
improve the heat conduction efficiency and is consistent with
experience and common sense. Furthermore, the impact of heat

source and cooling area sizes are illustrated. Different sizes of
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Fig. 7. Effect of the parameter functions W (r) ≡ w and P(r) ≡ p on the maximum temperature and volume ratio, respectively.
Fig. 8. Illustration of the impact of heat source and cooling area positions. (a) Different initial settings of heat sources and cooling areas (symmetry, asymmetry, and
enter-to-corners). (b) Corresponding optimized porous structures. (c) Corresponding temperature distributions on 2D planes (middle face: y = 0 plane for the left
wo examples and x = 1.2y plane for the right one).
Table 1
Time analysis and comparison for the porous optimization. ‘‘Heating Size’’ means the size of the heat source,
‘‘♯Elements’’ means the number of background elements (the same resolution in FEM-based method), ‘‘P-Iteration’’ is
the number of iterations for the period optimization, ‘‘W-Iteration’’ is the number of iterations for the wall-thickness
optimization, ‘‘Our Time’’ and ‘‘FEM-Time’’ refer to the total optimization time (minutes) using our proposed method
and FEM-based method (including remeshing), respectively.
Model Size (cm3) Heating Size (cm2) ♯ Elements Optimization Our Time (m) FEM-Time (m)

P-Iteration W-Iteration

25 × 25 × 30 6 × 6 1.2 × 106 43 20 85.71 770.02
25 × 25 × 30 9 × 9 1.2 × 106 46 19 86.06 794.32
25 × 25 × 30 15 × 15 1.2 × 106 49 23 99.17 855.97
25 × 25 × 20 9 × 9 0.8 × 106 42 22 80.47 490.42
30 × 30 × 9 3 × 3 2.4 × 106 56 28 156.01 1912.48
heat sources and the corresponding cooling areas are demon-
strated in Fig. 9, from left to right, show the sizes are 3∗3 cm2, 9∗
8

9 cm2 and 15∗15 cm2, respectively. Similarly, both 3D optimized
porous structures and the corresponding 2D cross-sections with
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(

Fig. 9. Illustration of the impact of heat source and cooling area sizes. (a) Initial setting with different sizes of heat sources and cooling areas (from left to right:
3 ∗ 3 cm2 , 9 ∗ 9 cm2 and 15 ∗ 15 cm2 , respectively). (b) Corresponding optimized porous structures. (c) Corresponding temperature distributions in the 2D plane
middle face: y = 0 plane).
Fig. 10. Comparing with two kinds of traditional heat sink structures under the same initial conditions (size: 20 ∗ 30 ∗ 30 cm3 , volume constraint: 20% of the solid
model and heat source size: 30∗30 cm2). (a) General plug heat sink structure and its temperature distribution in 2D (middle face: y = 0 plane). (b) Heat sink structure
with a V-shape branch and the corresponding temperature distribution. (c) Our TPMS-based porous structure with only period optimization and the corresponding
temperature distribution. (d) Our porous structure with both optimized period and wall-thickness. Our optimized porous structures have higher thermal efficiency
(lower compliance and max-temperature of the structures), even when there is only period optimization.
the temperature distribution are illustrated. As the heat source
size increases, the wall-thickness near the heat source increases
markedly, which can be concluded from Table 2. To achieve a
high heat conduction efficiency, there is also a tradeoff between
the period and wall-thickness under the given volume constraint.
Moreover, these examples demonstrate that the changes in the
period and wall-thickness of the optimized structures are smooth
and natural. This is an important factor that will be beneficial to
structural stress and manufacturing, which we will investigate in
further work.

Comparison with traditional heat dissipation structures. To prove
the validity of the proposed method, we compared our opti-
mized porous structures with traditional heat sink structures,
9

such as a plug heat sink structure and a V-shape heat sink
structure, as shown in Fig. 10. For ease of comparison, all the
structures had the same volume constraints (20% of the solid
model), the same size heat sources (30 ∗ 30 cm2), and the same
average wall-thickness (Fig. 10(a), (b) and (c)). The proposed opti-
mized porous structures had a higher heat-conducting efficiency
(lower compliance and max-temperature of the structures), even
when there was only period optimization (Fig. 10(c)). The wall-
thickness optimization further enhanced the efficiency of thermal
conduction.

Comparison with lattice structures. Moreover, the optimized struc-
ture was compared with a 3D lattice structure proposed in [3]
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Table 2
Comparison of the average wall-thickness of models with different heat source size. ‘‘Heating Size’’ means the size
of the heat source, ‘‘Average wall thickness’’ can be obtained by dividing the volume by the surface area of the
specified cross-section, ‘‘♯L-Section’’ means the left cross-section near the heat source, ‘‘♯M-Section’’ means the
middle cross-section, and ‘‘♯R-Section’’ means the right cross-section.
Model Size (cm3) Heating Size (cm3) Average wall thickness (cm)

♯L-Section ♯M-Section ♯R-Section

25 × 25 × 30 3 × 3 0.486 0.403 0.283
25 × 25 × 30 9 × 9 0.498 0.361 0.260
25 × 25 × 30 15 × 15 0.518 0.350 0.250
Fig. 11. A Comparison between 3D lattice structure and our structure under the same conditions. (a) The initial setting (volume constraint: 50%; heat source (blue):
1 W/mm2; cooling areas: red (45 ◦C), green (22 ◦C)). (b) The optimized lattice structure in [3]. (c) Our optimized TPMS-based porous structure. Our optimized porous
tructure has a better thermal efficiency than the lattice structure in term of the maximum temperature. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
Fig. 12. Illustration of the optimization iteration curves, including the thermal compliance curve (left) and the volume curve (right).
c
O
e
t
w

nder the same conditions, as shown in Fig. 11. The optimized lat-
ice structure in [3] had a higher maximum temperature 101.1 ◦C,
nd the maximum temperature of the proposed porous structure
as 94.5 ◦C. Moreover, the optimized thermal compliance of the

lattice structure in [3] is 1.756 × 108 WK, and the optimized
hermal compliance in Eq. (7) decreases from 1.811 × 108 WK
o 1.679 × 108 WK (7.3% decrease). The smaller the thermal
 c

10
ompliance, the higher the efficiency of thermal conductivity.
ur optimized TPMS-based porous structure had better thermal
fficiency than the lattice structure in terms of the maximum
emperature and the thermal compliance. Since both methods
ere executed without remeshing, the optimizations were effi-
ient and the computational time was comparable. The proposed
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Fig. 13. A Comparison of different types of TPMS-based porous structures under the same conditions. (a) The optimized G-TPMS-based porous structure and the
emperature distribution in 2D (y = 0, XZ plane). (b) The optimized D-TPMS-based porous structure and the corresponding temperature distribution. (c) The optimized
WP-TPMS-based porous structure and the corresponding temperature distribution.
able 3
omparison of porous optimizations with different initial parameters. The ‘‘initial parameter’’, ‘‘P(r) ≡ p’’ and ‘‘W (r) ≡ w’’ mean consistent initial values of the periodic
arameter function and the wall-thickness parameter function, respectively. ‘‘Initial Value’’ and ‘‘Optimized Value’’ are the values before and after optimization,
espectively. ‘‘Iteration’’ is the total iteration of optimization.
Initial parameters Initial Value Optimized Value Iteration

P(r) ≡ p W (r) ≡ w Thermal compliance (W · K ) Volume ratio (%) Thermal compliance (W · K ) Volume ratio (%)

1.8 0.82 1.766 × 108 48.96 1.637 × 108 43.71 84
1.4 0.82 1.811 × 108 46.33 1.679 × 108 43.63 93
1.4 0.64 2.242 × 108 37.03 1.75 × 108 40.08 95
1 0.48 2.905 × 108 28.54 1.749 × 108 39.64 99
TPMS-based porous structures were obtained by directly optimiz-
ing both topology and geometry (wall-thickness). However, the
mapping method used to construct lattice structures in [3] may
cause some drawbacks. First, the mapping of density distribution
is inconsistent in local density distribution, which will lead to
a deviation of heat dissipation between the density distribution
and the actual lattice structure. Second, there must be a certain
material distribution in each unit, and it will lead to a waste of
material in the unimportant area for heat conduction. Finally, the
material alignment between adjacent lattices is difficult due to
the uniform parameter variables, and the continuity and smooth-
ness of structures are difficult to be controlled directly by density
mapping. Therefore, the accuracy and controllability of the lattice
structures seemed deficient, and the lack of smoothness will also
affect the heat dissipation and 3D printing. Moreover, the opti-
mization convergence of the proposed method is also illustrated
in Fig. 12. We can see that the period optimization converged
after 67 iterations, and the wall-thickness optimization converged
after 28 iterations. Finally, we obtained the optimized TPMS-
based porous structures within 100 iterations. In the processes
of period optimization the volume first decreased rapidly, then
increased to achieve a decline of heat compliance. There are two
local peaks of heat compliance in the initial period optimization,
because the topology is sensitive to the variables. In the period
optimization, both the volume and heat compliance decreased
steadily until they converge. The convergence curves also verify
the rationality of the optimization, in which the period optimiza-
tion is treated to be a coarse adjustment while the wall-thickness
optimization is treated to be a fine adjustment.

In order to better understand our structures, we also show
ore optimized results with different initial parameters. As listed

n Table 3, the results of porous optimization with different initial
arameters were compared under the same conditions (design
omain, heat source and heat dissipation surface).
11
Comparison of different types of TPMS-based porous structures. A
performance comparison of different types of TPMS-based porous
structures (G-TPMS, D-TPMS and IWP-TPMS) was also conducted
in Fig. 13. The first row shows the original TPMS-based porous
structures and their temperature distributions in a 2D plane (mid-
dle face: y = 0 plane). The second row shows the corresponding
optimized TPMS-based porous structures and their temperature
distributions. As shown, the maximum temperatures (degree Cel-
sius) of the initial TPMS-based porous structures were 20.8 ◦C,
27.4 ◦C and 26.6 ◦C, respectively, and the maximum temperatures
(degree Celsius) of the optimized TPMS-based porous structures
were 18.3 ◦C, 22.2 ◦C and 19.5 ◦C, respectively. Due to the struc-
tural similarity, there was little difference in heat dissipation
among the three types of TPMS-based porous structures. How-
ever, the optimized porous structures had certain improvements
in thermal conduction efficiency relative to the initial TPMS-
based porous structures. For example, the performance of the
IWP-TPMS-based porous structure improved by as much as 26.7%
in terms of the maximum temperature.

Limitations. Although the proposed optimization of TPMS-based
porous structures is more efficient than traditional FEM-based
computation, the solution accuracy is determined by the back-
ground elements (calculation of integral in the discrete form).
Both the FEM-based method and the meshless method suffer
from the same problem. We will continue to investigate opti-
mization to obtain a reasonable tradeoff between efficiency and
accuracy. Moreover, in this study, we focused on the problem of
steady-state heat conduction with a single material and simple
conditions. To further promote the heat-conducting efficiency,
we would like to extend our framework to heat dissipation un-
der forced convection conditions and the problem of fluid heat

transfer [49] in the future.
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. Conclusions

In this paper, an efficient optimization method is proposed
or TPMS-based porous shell structures for heat dissipation. The
roposed porous structures with function representations inherit
ood properties, such as full connectivity, good controllability,
igh surface-to-volume ratio, high smoothness, and good me-
hanical property. By applying the proposed porous structures to
D heat dissipation, an optimized porous structure with continu-
us geometry changes and smooth topology changes is obtained.
ompared with existing traditional heat sink structures, the pro-
osed porous structures substantially improve the efficiency and
ffectiveness of thermal conduction. Various experimental results
howed the effectiveness of the proposed method.
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ppendix

The equation in Eq. (6) can be rewritten into compliance en-
rgy by multiplying both sides with test function ω and calculate
he integration over the design domain as follows:∫
Ω

λ∇2TωdΩ +

∫
Ω

ωTQdΩ =

∫
Ω

ρCp
∂T
∂t
ωdΩ = 0. (A.1)

he above equation is equivalent to

−

∫
Ω

λ∇T∇ωdΩ +

∫
Ω

λ∇ (∇Tω) dΩ +

∫
Ω

ωTQdΩ = 0. (A.2)

Then, we obtain the weak solution formulation:∫
Ω

λ∇T∇ωdΩ =

∮
Γ

λ
∂T
∂n
ωdΓ (A.3)

=

∫
ΓQ

H(Φ)ωTqSdΓ +

∫
Ω

ωTQdΩ

+

∫
ΓT

λ∇ T̄ωdΓ .

The equation can be simply expressed as

a(ω, T ) = L(ω) + B(ω, T̄ ), (A.4)

here a(ω, T ) =
∫
Ω
λ∇T∇ωdΩ , L(ω) =

∫
ΓQ

H(Φ)ωTqSdΓ +

Ω
ωTQdΩ , and B(ω, T̄ ) =

∫
ΓT
λ∇ T̄ωdΓ . Therefore, we obtain the

ormulation in Eq. (7).
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