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Abstract. Generating stylized audio-driven gestures for robots and vir-
tual avatars has attracted increasing considerations recently. Existing
methods require style labels (e.g. speaker identities), or complex prepro-
cessing of data to obtain the style control parameters. In this paper, we
propose a new end-to-end flow-based model, which can generate audio-
driven gestures of arbitrary styles with neither preprocessing nor style
labels. To achieve this goal, we introduce a global encoder and a gesture
perceptual loss into the classic generative flow model to capture both
global and local information. We conduct extensive experiments on two
benchmark datasets: the TED Dataset and the Trinity Dataset. Both
quantitative and qualitative evaluations show that the proposed model
outperforms state-of-the-art models.
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1 Introduction

When people speak, they often make arm and hand movements that accompany
what they say. These movements, called co-speech gestures, are important in
human communication, as they contain rich non-verbal information [8, 39]. Ex-
isting studies have shown that co-speech gestures can help listeners concentrate
and better understand the meaning conveyed in oral messages [7, 39]. There-
fore, when developing virtual avatars or interactive robots, it is highly desired
to generate natural co-speech gestures accompanying their messages, which can
improve communication and enhance vividness and realism.

Yet, the problem of audio-driven co-speech gesture synthesis is challenging
and intrinsically ill-posed due to the one-to-many relationship between audios
and gestures, i.e., the same audio input may correspond to multiple reasonable
gestures. Most of the early approaches are rule-based [9, 25, 26, 40], which re-
quire complicated mapping rules from audio to motion. These approaches not
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Fig. 1. Overview of our proposed stylized audio-driven gesture generation method. We
jointly train a generative flow model with a global encoder using unlabelled gesture
data. In the synthesis stage, we can manipulate the gesture style given an extra gesture
sequence as the target style.

only need a great deal of efforts in designing rules, but also are often too frag-
ile to work for complicated application scenarios. In recent years, data-driven
approaches [16, 27, 43] have demonstrated their potential in gesture genera-
tion. These methods utilize CNN or RNN based models, which are trained
in an end-to-end manner. Since conventional deterministic networks that they
use [16, 27, 43] tend to learn one-to-one mapping functions, the generated re-
sults often become the average of all potential target gestures and thereby lack
diversity.

Furthermore, different people have different styles of co-speech gestures. Pre-
vious studies attempt to control the styles of generated gestures. Yoon et al. [42]
and Ahuja et al. [2] directly use the speaker’s identity as style label and embed
it into a latent style space during training. However, it is often difficult to ob-
tain such labelled data in the real-world application scenarios. Alexanderson et
al. [5] provide more fine-grained style control, such as movement speed and hand
position, but the price is a tedious preprocessing of motion data for obtaining
control parameters.

Due to the multi-modal nature of co-speech gestures, we prefer stochastic
over deterministic model. Flow-based generative models [10,18,24] can generate
different plausible results for a single input by randomly sampling the latent
distribution, which is much desired for the gesture synthesis task. Therefore in
this paper, building upon MoGlow [18], we propose a probabilistic and autore-
gressive model using normalizing flows to generate audio-driven gestures. Due
to widespread availability of unlabelled, real-world gesture data, we propose to
manipulate the style of synthesized gestures without the need for style labels
during training. Specifically, given an extra target gesture sequence as input,
we transfer the style of the target gesture to our generated gesture, which is
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similar to the task of style transfer. By assigning different target styles, we can
generate co-speech gestures of arbitrary styles. Fig. 1 provides an overview of
our proposed method.

Existing generative flow models [10, 18, 24] mainly focus on capturing de-
pendency within local features. In our study, we also draw attention from Au-
toEncoder which can effectively capture the global feature. In particular, our
proposed method jointly train a generative flow model with a global encoder
in an AutoEncoder manner to aggregate both the local information and global
information. Moreover, we find that only using ordinary L1 or L2 loss cannot
effectively measure the difference between the real motion and the generated
motion well. Inspired by the success of perceptual losses [22] used in image style
transfer tasks, we design a new gesture perceptual loss to help the joint train-
ing process and improve the generation quality. We observe that our model can
synthesize a large variety of natural and human-like gestures that match the
audio input well. We evaluate our proposed model on two benchmark datasets:
TED Dataset [43] and Trinity Dataset [12, 29]. Results show that our approach
surpasses other state-of-the-art methods in both datasets.

2 Related Work

2.1 Audio-Driven Gesture Synthesis

Early methods for generating co-speech gestures are typically rule-based [9,25,26]
before flourishing development of deep learning methods. Wagner et al. [40]
provide a detailed survey of these rule-based methods, which require a great deal
of human efforts to design mapping rules. To alleviate human efforts, some data-
driven methods are proposed to learn the mapping between prosody features
and motions. Specifically, Hidden Markov Models (HMMs) have been used to
generate prosody-driven motion sequences [30,31].

In recent years, VAEs [23] and GANs [15] achieve a great success on im-
age generation problems. These neural network models are also used to predict
gesture sequences. Ginosar et al. [14] propose an encoder-decoder structure and
train the network with both regression and adversarial losses. Li et al. [32] intro-
duce a conditional VAE model to solve this co-speech gesture generation task.

Classic deep learning models (e.g. CNN or RNN) are deterministic and often
suffer from the mean problem when applying to regression problems such as
gesture synthesis. Although adversarial learning can reduce this problem to some
extent, GAN has its limitations, including intractable log-likelihood and unstable
training processes. Henter et al. [18] propose a probabilistic network to model the
conditional probability distribution of gesture data, which can not only describe
the one-to-many mapping elegantly but also increase the diversity of generated
results. However, each flow step of their model only supports linear operations,
restricting its expressiveness. Qian et al. [37] complement the audio input with a
learnable vector, which reduces ambiguity and turns the one-to-many mapping
between the input audio and generated gesture into a one-to-one mapping.
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2.2 Style Transfer of Motion

Image style transfer, which extracts and transfers the artistic style of one image
to another, has been well studied. Gatys et al. [13] first introduce a neural style
transfer algorithm. Johnson et al. [22] train a feed-forward network to solve the
optimization problem in real time. Huang et al. [21] propose an AdaIN layer to
transfer arbitrary styles.

These image-oriented methods are further extended to motion style transfer.
Holden et al. [20] introduce a framework that enables motion edition and style
transfer. Du et al. [11] propose to use a conditional VAE to learn motion styles,
which improve the efficiency of previous approaches. Aberman et al. [1] train
their network with unpaired motion data using the AdaIN mechanism and can
disentangle motion content and style automatically. Wen et al. [41] propose an
unsupervised motion style transfer method using a generative flow model.

Similarly, in gesture synthesis, it is also desired to edit and/or transfer the
style of the generated gestures. Though there are previous works on synthesizing
such stylized gestures [14,30,35], these methods are only able to learn individual
styles. To overcome the challenges, Yoon et al. [42] use speaker identity as an ad-
ditional input and project it into a style embedding space. By sampling through
this space, they can manipulate the gesture styles. Bhattacharya et al. [6] further
improve their work [42] by adding an Affective Encoder to learn affective features
from the seed poses. Ahuja et al. [2] introduce a supervised learning method that
can perform gesture style preservation and style transfer tasks. Another study [5]
provides high-level controls over gesturing styles, such as movement speed and
spatial extent. But the motion data needs to be preprocessed first to extract
control parameters. In contrast, our model is trained on unlabelled gesture data,
and can transfer arbitrary styles without any preprocessing procedure, thereby
is more suitable for practical applications.

3 Approach

3.1 Preliminaries on Generative Flow Model

Generative flows, which belongs to generative models, provide advantages such
as tractable log-likelihood and efficient inference. Given a set of data X = {x1,
x2, ... , xn}, that subject to an unknown distribution, generative flows aim to
model the probability distribution pθ(X) of X by minimizing the negative log-
likelihood:

NLL(X) =
1

n

n∑
i=1

− ln pθ(xi) (1)

Unlike VAEs or GANs, generative flows are capable of optimizing this neg-
ative log-likelihood exactly. The main idea is to find an invertible and differ-
entiable function g that transforms a simple, fixed distribution Z to a new,
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complicated distribution X. As the function g is invertible, generative flows can
perform efficient sampling as well as efficient inference: x = g(z), z = g−1(x),
where x is a data sample and z is a latent variable corresponding to x.

The mapping function g can be extremely complex. To increase expressive-
ness, flow models compose plenty of simple nonlinear transformations {gi}Li=1

together to construct the final function: g = g1 ◦ g2 ◦ ... ◦ gL. The transformation
between two distributions can be described as follows

z = hL
gL−→ hL−1

gL−1−−−→ ...
g2−→ h1

g1−→ h0 = x (2)

z = g−1(x) = g−1
L (g−1

L−1(...g
−1
1 (x))) (3)

x = g(z) = g1(g2(...gL(z))). (4)

The stacked sequence of inverse transformations {g−1
i }Li=1 is called normal-

izing flow. By applying the change-of-variables formula, we can derive the exact
log-likelihood of one data sample x as:

ln pθ(x) = ln pϕ(z) +

L∑
i=1

ln

∣∣∣∣det( ∂hi

∂hi−1

)∣∣∣∣, (5)

where pϕ(z) is the tractable, fixed probability distribution (typically Gaussian

distribution or Student’s t distribution) and det
(

∂hi

∂hi−1

)
is the determinant of

the Jacobian matrix of g−1
i . Calculating the determinant of a dense matrix is

computationally expensive. Thus, in usual cases, flow transformations are care-
fully designed to make the Jacobian matrix diagonal or triangular.

3.2 Generative Flow with Global Encoder

Our proposed model can be regarded as an autoregressive sequence-to-sequence
model. When generating the t-th frame of a gesture sequence x, our model is
conditioned on τ frames of previous poses xt−τ :t−1 and τ + 1 frames of audio
control signals at−τ :t. Specifically, all the condition information are fed into every
affine coupling layer in the network. Thus, the gesture synthesis procedure can
be developed as:

p(x|a) = p(x1:τ |a1:τ )
T∏

t=τ+1

p(xt|xt−τ :t−1, at−τ :t) (6)

Previous studies [19, 33, 34] find that flow-based models have the problem
of local dependency, meaning that each flow transformation mainly focuses on
capturing dependency within local features. To address this issue, we design
an additional global encoder, which is shared by every flow transformation, to
provide the global information required by the flow model. The detailed structure
of our global encoder can be found in section 3.4. At each time step, this encoder
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Fig. 2. Architecture of the affine coupling layer. We first split the input feature I into
two parts, then keep the first part I

′
unchanged and transform the other I

′′
into O

′′
.

Finally, we concatenate O
′′
with O

′
to get the output. ⊕ denotes the element-wise sum

and ⊙ is the Hadamard product.

embeds the previous pose histories and audio control signals separately and then
integrates them to obtain the final global feature ft. The global feature is then
concatenated with original autoregressive poses as well as audio signals and fed
into neural networks to produce the bias and scaling parameters [bt, st] used
in affine coupling layers (shown in Fig. 2). Mathematically, at time step t, we
denote the input feature and output feature of the affine coupling layer as It
and Ot. The input is first split into two equal parts [I

′

t , I
′′

t ]. We keep half of
the input unchanged, then shift and scale the other half of the input based on
parameters extracted by the neural network of the affine coupling layer. The
coupling operation can be defined as:

[O
′

t, O
′′

t ] = [I
′

t , (I
′′

t + bt) ⊙ st] (7)

[bt, st] = NN(I
′

t ; xt−τ :t−1; at−τ :t; ft) (8)

where ⊙ is the Hadamard product. Note that the inverse operation can also be
easily obtained

[I
′

t , I
′′

t ] =
[
O

′

t, s−1
t O

′′

t − bt

]
. (9)

As Fig. 3 shows, we propose to jointly train the global encoder with the
generative flow in an end-to-end manner. Specifically, we use the invertible flow
model as our decoder and train our model like an AutoEncoder. The complete
training process can be described as follows. Firstly, we transform the training
gesture data into the latent vector conditioned on control signals and global fea-
tures through the forward normalizing flow. In the meantime, we minimize the
NLL loss derived in section 3.1. Then, we sample from the latent, fixed distribu-
tion randomly to get the new latent vector and transform it into the synthesized
gesture pose conditioned on the same global features and controls through the
backward normalizing flow. We simultaneously minimize the reconstruction loss
Lrecon, which measures the L1 distance between the real motion and the synthe-
sized motion. Through the pass of the forward flow, we train the flow model to
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Fig. 3. Overview of our proposed training framework. Through the pass of the forward
flow and backward flow, we can jointly train the global encoder with the generative
flow to complement each other in an end-to-end manner.

take full advantage of global features. Through the pass of the backward flow, we
train the global encoder to capture meaningful features. See the supplementary
material for the detailed structure of the invertible flow.

3.3 Gesture Peceptual Loss

Our reconstruction loss Lrecon computes the difference between the generated
gesture and the ground-truth gesture. However, the low-level L1 loss is insuffi-
cient to measure the difference well. Inspired by the image perceptual losses [22],
we further propose a new gesture perceptual loss to train our model. To the best
of our knowledge, there is no pre-trained inception network for gesture data (like
VGG-Nets [38] for images). Therefore, we train our own feature extraction net
using the training set. Our feature extractor has a convolutional encoder-decoder
structure. Denote by x the real gesture motion, x̂ the synthesized gesture motion,
and ω the 4-th layer of our feature extractor encoder. As ω is a convolutional
layer, ω(x) and ω(x̂) are feature maps of dimension C ×H ×W . Thus, we can
describe our proposed loss as:

Lgp(x̂, x) =
1

C ×H ×W
∥ω(x̂)− ω(x)∥1. (10)

Note that this loss encourages synthesized motion and real motion to have similar
feature representations. Our ablation study further demonstrates that this loss
facilitates the joint training process of our model and improves the quality of
generated results. Finally, we train our model with the combined loss:

L = NLL+ λ1Lrecon + λ2Lgp, (11)

where λ1 and λ2 are the pre-defined weights. In our experiments, we empirically
set λ1 = 1.0 and λ2 = 0.1.
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Fig. 4. Structure of proposed global encoder. Autoregressive pose histories and audio
control signals are encoded as low-dimensional vectors by two TCN encoders, respec-
tively. The two vectors are then concatenated together and passed through a series of
fully connected layers to get the final global feature.

3.4 Network Structure

Our neural network builds upon the MoGlow [5] network. Specifically, we keep
the structure of Actnorm layers and invertible 1 × 1 convolutions. As for affine
coupling layers, we replace LSTMs with GRUs. We observe that in this task,
GRU can generate results comparable to LSTM, but is more concise and com-
putationally efficient, and has a faster convergence rate due to the fewer pa-
rameters. Besides, the previous MoGlow model with LSTM has a limitation in
that the generated results rely more heavily on autoregressive histories than
audio control signals. A possible reason for this is the overly complex gating
mechanism of LSTM, which makes the network retain too much redundant in-
formation from previous states. Our proposed model with GRU can alleviate
this problem to some extent. We also adapt the zero initialization technique
proposed by Kingma et al. [24], making each affine coupling layer performs the
identity function at the initial state.

Our global encoder (shown in Fig. 4) consists of a series of fully connected
layers and two TCN (Temporal Convolution Network) encoders stacked by many
residual building blocks. Each building block is initialized by Kaiming Nor-
mal [17] and includes four basic operations: a 1D convolution, a batch normaliza-
tion, a residual operation, and a ReLU activation. Empirically, we assume that
this architecture is designed to extract the global features of gestures and audio
sequences and the correlations between them. Furthermore, the global encoder
can be trained efficiently as it is based on temporal convolutions.

4 Experiments

We implement our network using PyTorch. Our model is optimized using Adam
on an NVIDIA A100 GPU. We choose the Student’s t distribution as the fixed
latent distribution as it provides a more robust training process [4]. We conduct
our experiments on two benchmark datasets (described in detail in Section 4.1),
namely, TED Dataset and Trinity Dataset. For the TED Dataset, our model is
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trained for 80k iterations with a batch size of 200. For the Trinity Dataset, our
model is trained for 30k iterations with a batch size of 100.

4.1 Datasets

TED Dataset
TED Dataset, which is first proposed by Yoon et al. [43], is a large, English-
language dataset for gesture synthesis problems. It contains upper body pose
sequences, audio waveforms, transcribed speech texts, and speaker identities.
Pose data is extracted from 1,714 videos of TED lectures and converted to
3D data by using a pose estimator [36]. We resample the pose data at 15 fps
and slice each training sample into 42 frames. We use the initial 12 frames as
autoregressive pose histories and, following Yoon et al. [42], train our model
to generate the remaining 30 frames. The dataset is partitioned into a training
set (200,038 samples), a test set (26,245 samples), and a validation set (26,903
samples). We use the training set to train our model, the test set for quantitative
and qualitative evaluation, and the validation set for tuning our network.

Trinity Dataset
Trinity Dataset (GENEA Challenge 2020 [29]) proposed by Ferstl et al. [12] is
a dataset containing speaking gestures and corresponding audio signals. Unlike
TED Dataset, this dataset only consists of a single speaker and is collected using
a professional motion capture system, which results in better data quality. More-
over, this dataset contains full-body motion, including the speaker changing the
standing posture or taking a few steps back and forth. Following Alexanderson
et al. [5], we downsample the motion data at 20 fps and slice each training sam-
ple into 120 frames. The total duration of valid data is about 242 minutes and
Recording 008 session is held out for validation and evaluation. We take 5 frames
as historic poses and 20 frames as audio lookahead. We also augment the data
by mirroring the gesture motion with the speech unchanged.

4.2 Evaluation

Quantitative Evaluation
We compare our model with several state-of-the-art models on two datasets
using different metrics. On the TED Dataset, we compare with six representative
methods: attentional Seq2Seq (Seq2Seq) [43], Speech2Gesture (S2G) [14], Joint
Embedding Model (JEM) [3], MoGlow [5], Gestures from Trimodal Context
(GTC) [42], and Speech2AffectiveGestures (S2AG) [6]. On the Trinity Dataset,
we compare with two methods: Gesticulator [28] and MoGlow [5]. We use Fréchet
Gesture Distance (FGD), Percent of Correct Keypoints (PCK), Diversity (Div),
BeatAlign Score (BA), and Multi-modality Score (MM) for evaluation. Please
refer to our supplementary material for detailed descriptions of these metrics.

For Seq2Seq, S2G, JEM, we directly use some metric values as documented
in [42]. For GTC, S2AG, and Gesticulator, we utilize the pre-trained models
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Table 1. Comparison of our method with previous methods on two benchmark
datasets. Bold indicates the best.

Dataset Method FGD PCK Div BA(σ = 5) MM

TED

Seq2Seq [43] 18.15 0.809 40.08 0.319 -
S2G [14] 19.25 0.877 44.46 0.620 -
JEM [3] 22.08 0.880 44.61 0.508 -
MoGlow [5] 5.15 0.842 50.63 0.617 22.56
GTC [42] 4.40 0.850 48.70 0.618 -
S2AG [6] 7.22 0.861 47.25 0.619 -
Ours 3.30 0.850 52.00 0.622 22.63

Trinity
Gesticulator [28] 9.95 0.701 3.50 0.844 -
MoGlow [5] 7.61 0.726 3.81 0.852 2.12
Ours 6.76 0.730 4.34 0.875 1.60

provided by the authors. We train MoGlow from scratch following the same
configuration as in [5].

Table 1 summarizes the comparison results. On the TED Dataset, our method
achieves the best performance for almost all the metrics except PCK, indicating
that our generated gestures are high quality. Specifically, for FGD metric, we
achieve improvements of 25.0% and 54.3% over GTC and S2AG, which both
need trimodal contexts. Note that JEM, S2G, and S2AG are better than our
model in the PCK metric. A possible reason is that our model generates plausible
gestures from a probabilistic model, while the other methods tend to generate
averaged motion which lacks diversity. On the Trinity Dataset, our model also
surpasses two other state-of-the-art models. Although MoGlow achieves better
MM scores than ours, we emphasize that higher MM is only preferred when the
generated gestures are realistic and natural, because invalid and jitter motion
can also result in high MM scores.

Qualitative Evaluation
Fig. 5 shows the qualitative results of our method on the TED Dataset. The
synthesized poses are plotted as stick figures. We also demonstrate the full-body
generation results of the Trinity Dataset in Fig. 6. For better visualization, we
retarget the motion sequences to several 3D characters using Blender. Note that
the generated gestures are diverse and human-like, and match the input audio
well.

User Study
To further evaluate the quality of our results based on human perception, we
conducted a user study with 12 participants. Specifically, we asked the partici-
pants to watch six groups of videos, where each group contained three gesture
sequences synthesized by GTC [42], S2AG [6], and our method, respectively.
They were asked to rate each gesture sequence in terms of Realism, Matching
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Fig. 5. Qualitative results (visualized as 3D stick figures) of our method on the TED
Dataset. We also show the corresponding audio waveforms and texts.

Fig. 6. Full-body generated poses and corresponding audio waveform of the Trinity
Dataset. We retarget the pose sequences to 3D characters using Blender.
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Fig. 7. User study results of comparing our method with two state-of-the-art methods
on TED Dataset, i.e., GTC [42], and S2AG [6]. The left figure shows human rating
scores on three aspects: Realism, Matching Degree, and Diversity. The right figure
shows human preference over results generated by different method.

Degree, and Diversity. Moreover, the participants were required to choose one
gesture sequence in each group that they liked the most.

Fig. 7 shows the user study results. The left histogram demonstrates that
our proposed method outperforms the other two state-of-the-art methods. The
right histogram shows that the majority of participants (almost 70%) preferred
our synthesized gestures, again confirming that our results are more visually
appealing than the others. See also the supplementary material and demo video
for more results.

4.3 Ablation Study

We conduct an ablation study on TED Dataset to understand each part of our
model in detail. Specifically, we remove two components of the proposed model
separately: the global encoder and the gesture perceptual loss, and measure
FGD, PCK, and Div metrics. Table 2 shows the results of our ablation study.

By removing both global encoder and gesture perceptual loss, our model
are degenerate and become MoGlow, except that the LSTMs are replaced with
GRUs. We take this as our baseline. Without Lgp or global encoder, the FGD
and Div scores get worse, implying that the results are less natural and lack
diversity. Note that our proposed gesture perceptual loss is used to facilitate
the joint training process of the flow model and the global encoder. Therefore,
adding Lgp without the global encoder makes little sense and results in a slightly
worse performance than the baseline (Table 2, third row). As our proposed global
encoder and gesture perceptual loss are mainly used to enhance the global fea-
tures of gestures, thus, the improvement of our model under the FGD metric is
more significant than PCK and Div metrics. The ablation study confirms that
both the global encoder and the gesture perceptual loss have positive effects on
co-speech gesture generation.
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Table 2. Results of our ablation study. For FGD, lower values are better. For PCK
and Div, higher values are better.

Config FGD PCK Div(mm)

Proposed (no ablation) 3.30 0.850 52
Without Lgp 4.62 0.845 51
Without Global Encoder 6.26 0.848 50
Baseline 6.10 0.850 49

4.4 Latent Space Visualization

The GAN-based models usually lack latent representation of the data samples. In
contrast, normalizing flows can directly transform a gesture to its corresponding
latent code through the pass of the forward flow. By projecting these latent
codes onto a 2D space using t-SNE and coloring each sample according to its
style label (speaker’s identity), we can visualize the distribution of the latent
space of gestures. We observe that the models trained on the full TED Dataset
tend to extract general features and thereby cannot distinguish different samples
well in the latent space. Therefore, we train our model on a subset (with only
15 speakers) of the TED Dataset and visualize the results in Fig. 8 left.

Table 3. Comparison of the clustering results of our method and MoGlow on a sub-
set (15 speakers) of the TED Dataset. Higher CHI and SCoeff values indicate better
performance.

Method CHI SCoeff

MoGlow [5] 908.47 0.443
Ours 1149.34 0.517

We observe that latent codes are clustered into different groups, and samples
from the same speaker tend to be in adjacent spaces. It means that although our
model does not need labels and is trained in an unsupervised manner, it can still
learn the styles of gestures and can encode gestures with similar styles into nearby
locations in the latent space. Moreover, compared to MoGlow, we find that latent
codes inferred by our model are clustered more reasonably and the gap between
different categories is more significant. Mathematically, we compute the Calinski-
Harabaz Index (CHI) and the Silhouette Coefficient (SCoeff) to measure the
clustering result. Table 3 shows that our model can learn the distribution of
gesture styles better.
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Fig. 8. Visualization of the latent space (left) and a typical example of gesture style
transfer (right). We project the latent codes to R2 and color them based on their labels.
Gestures are transferred to a drastic and exaggerated style.

4.5 Manipulating Gesture Styles

Section 4.4 has demonstrated that the latent codes contain high-level properties
of gesture styles. Thus, by manipulating the latent codes during inference time,
we can control the style of synthesized gestures. Specifically, when generating the
stylized gesture, we replace the randomly sampled latent code with the specific
latent code inferred from the target style gesture sequence. Therefore, we can
generate audio-driven gestures with a specific style.

Fig. 8 (right) shows such an example. The original poses are gentle and
restrained with slight arm movement (first row). However, we want to generate
passionate and drastic motions (second row). The transferred results (third row)
show exaggerated gestures with widely open arms. Furthermore, the rhythm of
the transferred gestures is consistent with the original movements.

5 Conclusions

In this paper, we propose an end-to-end flow-based model to synthesize stylized
audio-driven gestures in an unsupervised manner. Our model is novel in that
it utilizes a global encoder to capture both the local and global features by
jointly training the encoder and the generative flow. We also design a gesture
perceptual loss to facilitate the joint training procedure and improve the quality
of the generated results. Both quantitative and qualitative evaluations on two
benchmark datasets show that the proposed approach outperforms state-of-the-
art methods. Moreover, the flow-based model allows us to explore the latent
space to transfer the styles of target gestures to our generated gestures.
Acknowledgments: This work was supported by the Natural Science Founda-
tion of China (No.61725204), Tsinghua University Initiative Scientific Research
Program, China Postdoctoral Science Foundation (No.2021M701891).
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