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Abstract—3D reconstruction from single-view images is a long-standing research problem. There have been variousmethods based on

point clouds and volumetric representations. In spite of success in 3Dmodels generation, it is quite challenging for these approaches to deal

withmodelswith complex topologyand fine geometric details. Thanks to the recent advance of deep shape representations, learning the

structure and detail representation using deep neural networks is a promising direction. In this article, we propose a novel approach named

STD-Net to reconstruct 3Dmodels utilizingmesh representation that iswell suited for characterizing complex structures and geometry

details. Our method consists of (1) an auto-encoder network for recovering the structure of an object with bounding box representation from

a single-view image; (2) a topology-adaptiveGCN for updating vertex position for meshes of complex topology; and (3) a unifiedmesh

deformation block that deforms the structural boxes into structure-awaremeshes. Evaluation onShapeNet and PartNet shows that STD-

Net has better performance than state-of-the-art methods in reconstructing complex structures and fine geometric details.

Index Terms—Single-view reconstruction, deformation driven method, structure preservation, topology adaptivity

Ç

1 INTRODUCTION

3D reconstruction plays an essential role in various
tasks in computer graphics and vision. Traditional

approaches mainly utilize stereo correspondence based on
multi-view geometry, hence are restricted to the coverage
provided by the input views. Such limitation makes
single-view reconstruction tricky due to large occlusion
and lack of correspondence with other views. With the

availability of a large-scale 3D shape database [1], deep
neural networks can effectively encode shape information,
enabling faithful 3D reconstruction from single-view
images. Although point clouds and voxel-based represen-
tations have been utilized for 3D reconstruction, they are
not able to express geometry details and may generate
missing parts or broken structures. Furthermore, the voxel
representation would cause high computational cost and
memory storage.

Triangle meshes are widely used in computer graphics
community thanks to its flexibility and effectiveness in
modelling geometric details. Recently, mesh-based deep
learning has received much attention [2], [3]. The triangle
mesh can be represented by the graph-based neural net-
work [4], [5]. Although these methods can reconstruct the
surface of an object, the reconstruction results are limited to
some categories of 3D models and miss structural informa-
tion of the object. In literature, 3D structure recovery is
mostly studied by traditional approaches, due to a lack of a
structural representation of 3D shape that is suitable for
deep neural networks. Thus, building up a deep neural net-
work that could directly recover the 3D shape structure of an
object from a single RGB image is important. Recent studies
show that cuboid primitives are widely used for structure
representation [6], [7], [8]. The cuboid structure representa-
tion can recover complete models with part relationship,
whereas the results estimated by 3D-GAN [9] may lose some
parts and lack the surface details of an object. To delicately
express a shape’s structural information by advancing the
cuboid representation, we propose a deep neural network to
reconstruct 3D objects by the mesh representation. Our
method is able to express complex structure and fine-grained
surface details of 3D objects.
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Mesh-based deep learning approaches mostly rely on
Graph Convolution Network (GCN) [2], [3], [10]. The com-
mon practice of these methods is to use GCN to deform a
pre-defined mesh that is generally a sphere, or deform a set
of primitives (square planar) to form 3D shapes. GCN is
effective in many classification and regression tasks. How-
ever, it is inadequate for reconstruction, generation and 3D
structure analysis, because of over-smoothness when aggre-
gating neighbour information at the vertex level. Further-
more, the existing GCN-based methods can only deal with
fixed-topologymeshes, whereas the cuboid structure is natu-
rally suitable for representing variable topological mesh.
Hence the existing GCNs are not suitable for the cuboid
representation. In this paper, we aim to address these chal-
lenges and reconstruct 3D meshed models with adaptive
topology and fine-grained geometric details from a single
RGB image. The key idea for single view reconstruction is
to obtain the structural representation of 3D objects with
cuboids and then deform them into concretemeshes through
an integrated deep neural network. The network, called
STD-Net, allows a 3D structure-preserving object model to
be reconstructed from a single RGB image. This paper makes
three contributions:

� Our method conducts 3D reconstruction by a mesh-
based learning framework that takes a single image
as input and constructs 3Dmeshedmodels with com-
plex structure and fine-grained geometric details.

� We represent 3D objects’ structure by recovering
cuboids bounding boxes from a single image that
can delicately express rich structural information.

� To the best of our knowledge, we are the pioneers to
investigate learning approaches for 3D shape recon-
struction with meshes in non-fixed topology.

2 RELATED WORK

2.1 3D Object Reconstruction

The voxel representation has been widely used for 3D shape
generation and understanding with the neural network [11],
[12], [13], [14], [15]. Although it is simple to be implemented
and has good compatibility, voxel representation is limited
by the resolution and computation cost of 3D convolution.
Recently, octree is exploited to develop computationally
efficient approaches [11], [16], [17], which solve the resolu-
tion issues to a certain extent but still rely on the subdivision
of a bounding volume rather than a local geometric shape.

Another popular representation for 3D shapes is point
cloud [18], [19], [20], which describes 3D shapes through a
set of points in 3D space. Naturally, the point cloud can rep-
resent the surface information of 3D objects with no local
connections between points. Hence the point cloud is flexi-
ble with sufficient degrees of freedom to match the 3D
shape with arbitrary topology. However, the irregular struc-
ture of point clouds poses a great challenge for deep learn-
ing; it is only able to produce relatively coarse geometry
and can not be used to directly recover a detailed 3D shape.

Recently, mesh models have been introduced in deep
learning for 3D generation and reconstruction tasks.
Image2mesh [21] proposes a learning framework to infer
3D mesh models from a single image using a compact mesh

representation. Pixel2Mesh [2] generates 3D mesh models
from an RGB image by deforming an initial ellipsoid mesh
in a coarse to fine manner, but fails to consider the structural
information in 3D representation, hence it can not recon-
struct complex-structure objects. AtlasNet [3] deforms a set
of primitives to generate parametric surface elements for 3D
shapes. Similarly, Pix2Surf [22] represents the shape with a
set of continuous parametric 3D surfaces while retains accu-
rate 2D to 3D surface point correspondences via the unsu-
pervised extraction of a learned UV parametrization.
GEOMetrics [10] presents an approach for adaptive mesh
reconstruction, which focuses on exploiting the geometric
structure of graph encoded objects. Although it takes addi-
tional voxels into consideration to provide the global struc-
ture, it can not express the local structure. Some methods
attempt to reconstruct category-specific mesh that is param-
eterized by a learned mean shape [23], [24]. Point2Mesh
[25] reconstructs a watertight mesh by optimizing the
weights of a CNN to iteratively deform an initial mesh to
shrink-wrap the given input point cloud. Gao et al. [26] uti-
lized a neural network to deform vertices of an initial tetra-
hedron mesh and to predict the occupancy for each
tetrahedron, which is the first to produce tetrahedral
meshes directly from single images. However, most of the
mesh-based methods deform a generic pre-defined mesh to
form 3D surfaces, which limits the types of objects they can
handle. Furthermore, they require a fixed-topology mesh
model, whereas our method allows input models with dif-
ferent topological types. As a result, our method is able to
generate more delicate structure for 3D shape.

Recent works based on implicit fields use either binary
occupancy [27], [28], [29], [30] or signed distance functions
(SDF) [31], [32], [33] as shape representation for learning
generative models. These methods predict binary occu-
pancy or SDF values at continuous sampled point locations.
Yariv et al. [34] represented the geometry with a zero level-
set of a neural network. Atzmon et al. [35] constructed
implicit neural representations from raw data by unsigned
distance regression to introduce better local minima. They
are not limited by resolution and are flexible to represent
different topology. However, they require artificially closing
shapes during post-processing, which often leads to loss of
detailed geometry, artifacts, or inner structures.

2.2 3D Structure Learning

Many works based on learning methods generate 3D mod-
els using voxels, point cloud and meshes. However, their
outputs are non-structured models, because they lack effec-
tive structural representation for 3D shapes. Some works
attempt to address this issue through non deep-learning
approaches. For example, Xu et al. [36] modeled 3D objects
from photos by utilizing an available set of 3D candidate
models. Huang et al. [37] jointly analyzed a collection of
images and reconstructed the 3D shapes from existing 3D
models collections.

Researchers have explored the possibility of expressing
3D structure through learning methods. Tulsiani et al. [12]
proposed a deep architecture to map a 3D volume to a 3D
cuboid primitive, which has potentials to automatically dis-
cover and exploit consistent structure in data. Niu et al. [38]
developed a convolutional-recursive auto-encoder that
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entails structure parsing of a 2D image and structure recov-
ering of a cuboid hierarchy. Gao et al. [39] reported SDM-
Net to jointly encode shape structure and geometry for 3D
mesh models by using a two-level variational auto-encoder,
which encodes the part geometric deformation and part
relationships together. Meanwhile, Mo et al. [6] proposed
StructureNet, a hierarchical graph network, to produce a
unified latent space to encode models with complex struc-
ture. Our method adopts the idea from StructureNet and
expresses complex structure information by a hierarchy of
cuboid bounding boxes, and thus can reconstruct the 3D
shape with complex structure and arbitrary topology.

2.3 Graph Convolution Neural Network

Graph convolution neural network [40] is a popular choice
in 3D shape analysis [41] and 3D reconstruction [2]. Unlike
traditional CNN which is defined by 2D images and 3D
voxels with regular grids, GCN regards the mesh as a graph
and learns features by using graph convolution. The poten-
tial of graph convolution is to capture structural relations
among node of data. However, the irregular structural
attributes of graphs pose huge challenges to the convolu-
tions on graphs. The issues in deep learning on graphs
mainly come from the complex and diverse connectivity
patterns in graph-structured data.

Defferrard et al. [42] proposed an approach to approxi-
mate the filters by applying Chebyshev polynomials applied
on the Laplacian operator. This approximation was further
simplified by [43], which proposed a filter in the spatial
domain and achieved good performance on classification
task. The assumption of symmetric adjacency matrix in the
two spectral basedmethods above restricts the application of
undirected graph-structured data. The issue of extending
CNNs from grid-structured data to arbitrary graph-struc-
tured data remains unsolved. To adapt to the various topolo-
gies of graph data, Du et al. [44] implemented the graph
convolution using a set of fixed-size learnable filters. We
adopts the idea of topology adaptive graph convolutional

network (TAGCN) in [44] to construct GCN to achieve defor-
mation for meshed cuboid bounding boxes with different
structural topology types.

3 OVERVIEW

Fig. 1 shows the network architecture of our method (STD-
Net). Themethod is composed of two parts: structure recovery
network and mesh deformation network. The structure recovery
network is designed with an auto-encoder to predict the 3D
structure of an object from a single RGB image. The recursive
network architecture of decoder is designed in accordance
with that of StructureNet [6]. It can generate an object’s hier-
archy cuboid bounding boxes, which delicately describe
structural information in detail. These bounding boxes are
furthermeshed and placed into the GCNs in the next phase.

The mesh deformation network aims to deform the input
bounding box into a structure-preserving shape. It consists
of three blocks intersected by two graph unpooling layers.
Each block has the same network structure of 14 TAGCN
layers with 192 channels that accept variable topologies of
the graph. The TAGCN is constructed by the guidance of the
work in [44]. The unpooling layer works to add the number
of vertices to handle fine-grained geometric details. The fol-
lowing sections discuss in detail the two network parts.

Our method makes advances in 3D object reconstruction
by building up a mesh-based deep neural network, which
can directly recover the 3D shape structure of an object
from a single RGB image. Thus, the simultaneous expres-
sion of complex structure and fine-grained surface details of
3D objects becomes feasible. Our method advances the
cuboid representation to delicately express a shape’s struc-
tural information, and address the challenges of existing
GCN-based methods to deal with adaptive topology. To the
best of our knowledge, we are the pioneers to investigate
learning approaches at the mesh level to reconstruct 3D
shapes with arbitrary topology from a single-view image.
Most of current mesh-based methods deform a generic pre-

Fig. 1. Overview. Given a single-view input image, STD-Net first employs an auto-encoder to obtain bounding boxes covering the parts of the object.
Then, it adopt multiple mesh deformation and unpooling operations to progressively deform the mesh vertices and update the topology to approxi-
mate the target 3D object surface.
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defined mesh to form 3D surfaces, which limits the types of
objects they can handle.

4 STRUCTURE RECOVERY NETWORK

Recently, shape abstraction [6], [38] has been used to dis-
cover the high-level structure in un-annotated point clouds
and images. These works inspire us to use the decoder in
shape abstraction to recover the structure of an object. In
our method, an encoder is first employed to map a shape
(represented as a hierarchy of n�array graphs or cuboids)
to a latent feature vector z. Then, a decoder transforms the
feature vector z back into a shape (also represented as a
hierarchy of graphs or cuboids). The structure of an object is
represented by a hierarchical graph, and every node is rep-
resented by a bounding box. For the encoder part, the struc-
tural information of an image goes through a CNN network
and is transferred into a latent code as features. For the
decoder part, a recursively network unfolds features into a
hierarchical organization of the bounding boxes, which are
the recovered structure of the object.

4.1 Encoder

The encoder takes a 2D RGB image as input and obtains a
latent code containing object’s structure. Inspired by the
multi-scale network for detailed depth estimation [45], we
design a two-streamed network shown in Fig. 1. Different
from [45] whose two streams are both designed into a two-
scale network, the top stream in our encoder simply consists
of ResNet18 [46], which receives the original image as input
and is followed by two convolutional layers. The down
stream in our encoder includes a two-scale network similar
to [45] and four convolutional layers. The first scale
(ResNet18 instead of VGG-16 in [45]) captures the informa-
tion of the whole image; and the second one produces a
detailed mask map with a quarter of the input image, which
estimates the object’s contour providing strong cues for
understanding shape structure of an object. The output of
features from the two streams are then cancatenated and
further encoded into n�D vector (n ¼ 256) by two fully con-
nected layers, thus capturing the object structure informa-
tion from the input image.

4.2 Decoder

We adopt the recursive network architecture in Structure-
Net [6] as a hierarchy of graphs in the decoder that perform
graph convolution and message-passing operations at each
recursive level. In the whole structure recovery network,
the latent code can be regarded as the root features of the
structure tree. The decoder gradually decodes the node fea-
ture code into a hierarchy of features until it reaches the leaf
nodes where each of them can be parsed into a vector of box
parameters. The details of the decoder’s architecture can be
referred to [6]. We first use the graph decoder to transform
a latent code into its child graph, and then use the box
decoder to transform the resulting feature code of each child
back into the bounding box parameter, which is a 10-d vec-
tor representing the center, scale and rotation. Following
the graph decoder in [6], the box decoder is implemented as
multi-layer perceptrons.

5 MESH DEFORMATION NETWORK

Given a hierarchy of bounding boxes fBig generated in Sec-
tion 4 and ground truth fSig, our goal is to deform the
bounding box to make it as close as possible to the ground
truth shape. As depicted in Fig. 1, the mesh deformation
module takes a meshed bounding box defined by a set of
vertex positions as input and outputs predicted deformed
meshes. Thus, the bounding boxes expressing different
topology can be deformed to reconstruct the shape of vari-
able objects through this deformation network module.

5.1 Network Structure

In the mesh deformation network, three deformation blocks
are intersected by two graph unpooling layers to progres-
sively achieve the mesh deformation. Each deformation
block regards the graph as input. The graph represents the
meshed bounding box and the shape of 3D object will be
recovered by the vertices of the bounding box. The unpool-
ing layer aims to increase the number of vertices, which can
increase the capacity of handling fine-grained geometric
details. We will investigate the influence of greater number
of deformation block on the predicted results in Section 6.4.

The three deformation blocks with the same architecture
contain 14 TAGCN layers with 192 channels. The first block
takes the initial meshed bounding box as input, and the
remaining two blocks take the output from the previous
unpooling layer as input. For each TAGCN layer, the GCN
is constructed in accordance with [44]. We only concern a
small local region around the vertex. By defining a path of
length m on a graph as sequence v ¼ ðv0; v1; . . . ; vmÞ, vk 2 V ,
the small region can be determined by the node path. The
convolution formula used in each convolution layer is

Xlþ1 ¼ fðAKXlW
l
K þ . . .þA1XlW

l
1 þXlW

l
0Þ (1)

where A is the adjacency matrix,Xl is the input vector in the
lth convolution layer, f is the nonlinear activation function,
and Wk are the learnable weights. Experiments show that
k ¼ 2 can achieve good performance. The convolution
defined in Eq. (1) is similar to the traditional convolution
operations. In the convolution layer of traditional CNN, the
receptive field is a small rectangle in the grid. In GCN, this
field is also a small region around the vertex. The operation
in Eq. (1) calculates a linear combination of the signals of
nodes k which hop away from the start node. Moreover, we
propose a deep network with several shortcut connections,
which can alleviate the over-smoothing in GCN. In addition
to the output of the network, a branch applies an extra
TAGCN layer to the last layer and outputs the 3D coordi-
nates. Similar to Pixel2Mesh [2], we add a new vertex at the
center of each edge to form each unpooling layer, which can
increase the number of vertices in GCN.

5.2 Training and Losses

The training procedure is divided into two stages. First, the
mask network is trained to estimate the object mask of the
input image. In the next stage, we jointly refine the mask net-
work and train the structure recovery network to estimate
the part-level boxes of object. The structure recovery network
loss is computed as the sum of the box reconstruction error,
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which is calculated by squared differences between the input
and reconstructed boxes.

Lrecovery ¼ CHSðT ðBiÞU; T ðBjÞUÞ (2)

where CHS is the squared version of Chamfer distance, T is
a 4D transformation matrix that transforms the unit cube
into the bounding box of a part, Bi and Bj are the predicted
bounding box and ground truth bounding box of a part
respectively, and U is a set of sampled vertices on the pre-
defined unit cube.

After generating the object’s part-level boxes, we use the
deformation network to deform the box of a part into a 3D
shape. The mesh deformation network is supervised by
hybrid losses including the CD loss, normal loss, Laplacian
loss and edge length loss. The CD loss measures the nearest
neighbor distances between two point sets. Weminimize the
two directional distances between the deformed bounding
boxes and the ground truth shape. The CD loss is defined as

LcdðP;GÞ ¼
X

x2P
min
y2G

kx� yk22 þ
X

y2G
min
x2P

kx� yk22 (3)

where P and G are the two point sets. Akin to 3dn [47] and
GEOMetrics [10], which do not simply compute the CD loss
between the predicted points and ground truth points, we
uniformly sample the same number of vertices from the pre-
dicted mesh and ground truth mesh and then compute the
CD loss between them. More precisely, for each triangular
face, we first compute its area and store it in an array along
with the cumulative area of triangles visited so far. Next,
we select a triangle with a probability ratio between its area
and the total cumulative area. It can be seen in Fig. 2. For
each selected triangular face defined by vertices v1; v2 and
v3, a new point r can be sampled uniformly from the surface
by the following formulation

r ¼ ð1� ffiffiffi
u

p Þv1 þ
ffiffiffi
u

p ð1� wÞv2 þ
ffiffiffi
u

p
wv3 (4)

where u;w � Uð0; 1Þ. Hence, the final CD loss (Lpts) can be
written as

Lpts ¼ LcdðSampleðP Þ; GÞ (5)

Given that the CD loss does not concern the connectivity
of mesh vertices, the predicted mesh could suffer from a
few floating vertices and self-intersections. Thus, we add
some geometric-aware regularization terms, including a
normal loss, a Laplacian loss and an edge length loss. These
terms prevent the vertices from moving in excessively long
distance and can potentially avoid mesh self-intersection.
The normal loss Lnormal measures the normal consistency
between the generated meshes and ground truth meshes.
The laplacian loss Llaplace flattens the intersection angles of

adjacent faces to make surface smooth. Lastly, the edge loss
Ledge penalizes the flying vertices and overlong edges to
guarantee the high-quality recovered 3D geometry. These
terms of loss can be calculated by following the work of [2]:
Lnormal ¼

P
p

P
q¼argminqðjjp�kjj22Þ

jjhp� k; nqijj22, where q is the

closest vertex for p and k is the neighbor of vertex p;
Llaplace ¼

P
p jjd

0
p � dpjj22, where dp is the laplace of the vertex

p; Ledge ¼
P

p

P
q2NðpÞ jjp� qjj22, where NðpÞ is the neighbor

of the vertex p.
The total loss of deformation module thus is

Ldeform ¼ Lrecovery þ Lpts þ �1Lnormal þ �2Llaplace þ �3Ledge

(6)

where �1; �2; �3 are the hyper-parameters that weight the
importance of each loss.

6 EXPERIMENTS

In this section, we demonstrate the performance of STD-Net
on structure-preserving reconstruction from single RGB
images by taking the benefits of the mesh-based structure
representation. We train the proposed model using the
PyTorch and evaluated the results by a PC with NVIDIA
GeForce GTX 1080 Ti and 32G RAM. We compare the
results of our method and those of other relevant works,
and also present an ablation study to demonstrate how indi-
vidual component of our model contributes to its overall
performance.

6.1 Dataset

Since StructureNet [6] is trained on PartNet [48], we use the
intersected datasets of ShapeNet [1] and PartNet [48] as our
main datasets for training and testing STD-Net. In the pre-
pared datasets, each object is decomposed into a hierarchi-
cal graph of parts and every part is labeled. Each shape is
rendered with 24 different views, and the rendered image
resolution is 224� 224. The rendered images are then set up
as the inventory for input images. Each category is split into
a training, a validation, and a test set with a ratio of 7:1:2
respectively, which is also similar to the works [2] [10].

6.2 Implementation Details

6.2.1 Structure Recovery network

For the encoder, the mask estimator consists of a two-scale
network and four convolutional layers. As for the decoder,
we use the pre-trained shape abstraction decoder from
StructureNet [6]. Training the structure recovery network is
divided into two stages. We first train the network for esti-
mating an object mask for the input image. The first and sec-
ond scale network are trained jointly. Second, we train the
encode and decoder together, during which a gradually
decreased learning rate for the encoder is used.

6.2.2 Mesh Deformation Network

Prior to training this network, we prepare the pairs of
bounding box and mesh in PartNet. For each category, a
bounding box(OBB)-to-mesh mapping is trained from the
ground truth. These mappings are trained with Adam Opti-
mizer (b ¼ 5e�4) and a learning rate of 3e�5. We conduct the

Fig. 2. Sampling strategy from predicted mesh.
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training for 3000 iterations and empirically stop it, during
which the best model is selected by evaluating the valida-
tion set every 10 iterations. The hyper-parameters setting is
used, as described in Eq. (6), are �1 ¼ �2 ¼ 0:3, �3 ¼ 0:1.

6.3 Performance Evaluation

6.3.1 Quantitative Evaluation

Though the method based on implicit fields reported in
recent works [29], [31], [33], [49] can generate neat 3D mod-
els with variable topology, it uses either binary occupancy
or signed distance functions for shape representation, and
is thoroughly different from our work which is a method of
mesh representation for learning generative models. In
order to achieve an objective comparison, we evaluate the
performance of our work by quantitatively comparing it
with mesh-based approaches, including Pixel2Mesh [2],
AtlasNet [3], GEOMetrics [10], and even with an implicit
fields-based approach: IM-Net [49].

The comparison is conducted on five categories: Chair,
Table, Storage Furniture, Display and Lamp. We show the
comparisons on fourmetrics (CD, EMD, F1-score and 3D IoU)
with alternative approaches. These metrics are computed
between the ground truth point cloud and 10,000 points uni-
formly sampled from the generated meshes. Concerning that
the output of Pixel2Mesh [2] is non-canonical, we align their
predicted shapes to ground truth shapes by using the meta-
data available in the dataset. In accordance with IM-Net [49],
we voxelize meshes in different resolution (163, 323, 643) and
sample points in the volume and points near the surfaces to
train IM-Net progressively and then extract the predicted
mesh via Marching Cubes [51]. Table 1 lists out the perfor-
mance comparison between our approach and other methods
on these four metrics. The data shows that our approach

outperforms the state-of-the-art methods on most of the five
categories, inwhichmost models have complex structure and
topology, such as chairs, tables, storage furniture and lamps.
Our approach obtains a maximum 3D IoU over all categories
and amaximumF-Score over four categories.

In addition to the intersected datasets of ShapeNet and
PartNet, we also extend the training work of our learning
network to other categories in the rest of PartNet. It is found
that the training could be well converged, and the perfor-
mance data is collected and listed out in Table 2, which
shows our method also has superiority in the metrics of
EMD, F1-score and 3D IoU than IM-Net [49] and Structure-
Net [6] on these categories.

6.3.2 Qualitative Evaluation

Except for the quantitative evaluation in above, we also ren-
dered the generated 3D models by our approach and other
approaches to achieve a qualitative evaluation. Fig. 3
presents the comparison of rendered models of shape recon-
struction by alternative approaches on the five categories.
These results demonstrate that our approach can generate
more accurate reconstruction of objects with variable topol-
ogy from input RGB images and capture complex structure
and fine-grained surface details effectively. By contrast,
although Pixel2Mesh [2] can reconstruct the shapes, it fails
to reconstruct some complex structures due to employing a
deformation strategy on a zero-genus ellipsoid template
mesh, which can be seen from the results of the chairs with
structured backrest, storage furniture and tables in Fig. 3.
AtlasNet [3] can generate meshes with more outlined shape,
however, it also can not generate the fine structure of
objects, as shown in the results of chairs, storage furniture
and tables. Moreover, both Pixel2Mesh [2] and AtlasNet [3]
require fixed topology in their approaches. GeoMetrics [10]
can reflect the structure of objects in some categories, such
as the tables, but the structure parts of tables are very

TABLE 1
This Table Lists Out a Quantitative Performance Comparison of
Our Approach and Other Approaches Including Pixel2Mesh[2],

AtlasNet [3], GEOMetrics [10] and IM-Net [49]

Chair Table SF Display Lamp

CD loss #
Pixel2Mesh 1.79 1.99 2.37 2.76 1.70
AtlasNet 1.71 1.85 2.09 1.98 1.31

GeoMetrics 1.69 1.85 2.41 1.72 1.85
IM-Net 1.75 1.82 3.31 2.03 2.35
Ours 1.58 1.64 2.34 1.75 1.29

EMD loss #
Pixel2Mesh 3.52 3.73 2.56 2.92 5.15
AtlasNet 3.86 3.98 3.90 3.12 3.23

GeoMetrics 3.63 2.81 3.51 3.41 4.12
IM-Net 3.05 2.61 2.91 2.87 4.21
Ours 3.37 2.71 2.22 2.78 3.99

IoU "
Pixel2Mesh 40.27 43.89 53.38 44.32 22.32
AtlasNet 47.93 43.31 42.34 48.21 32.34

GeoMetrics 48.91 49.15 57.14 45.23 24.17
IM-Net 48.04 37.21 39.20 36.40 34.26
Ours 50.12 52.23 61.23 49.44 37.19

F-score "
Pixel2Mesh 54.38 66.37 55.12 51.39 48.15
AtlasNet 59.81 67.21 71.15 59.52 53.12

GeoMetrics 56.61 66.33 59.52 61.09 58.65
IM-Net 54.98 69.82 67.24 48.82 55.85
Ours 66.09 72.85 70.76 63.32 62.21

TABLE 2
This Table Lists Out the Performance Data

of Other Categories in PartNet [48]

Bowl Faucet Kinfe Scissors Hat

CD #
IM-Net 1.01 1.04 1.64 2.42 1.76

StructureNet1 1.45 3.80 5.04 3.74 5.42
StructureNet2 7.81 1.74 3.22 4.36 2.28

Ours 1.69 3.96 5.01 2.55 1.42

EMD #
IM-Net 2.80 1.77 2.40 3.27 5.78

StructureNet1 4.78 11.37 10.35 11.39 7.15
StructureNet2 5.95 7.95 7.38 4.42 5.81

Ours 0.15 3.18 3.18 1.87 0.94

IoU "
IM-Net 38.61 8.38 30.23 20.30 16.45

StructureNet1 26.33 9.61 4.16 2.88 15.29
StructureNet2 12.75 12.39 27.18 13.73 2.19

Ours 77.64 40.73 41.43 48.81 73.57

F-score "
IM-Net 41.14 29.35 38.97 35.62 15.50

StructureNet1 18.84 14.39 26.62 19.59 36.12
StructureNet2 36.72 46.05 29.97 34.16 44.44

Ours 84.15 51.55 47.33 59.52 82.08

StructureNet1 means the mesh models by using Poisson reconstruction, Struc-
tureNet2 means the mesh models by using the algorithm [50].
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Fig. 3. A. The reconstruction results on the intersected datasets of ShapeNet [1] and PartNet [48]-part I. (a) Input images; (b) Pixel2Mesh [2]; (c) Atlas-
Net-25 [3]; (d) GEOMetrics[10]; (e) IM-Net [49]; (f) Ours; (g) Ground truth. (B)The reconstruction results on the intersected datasets of ShapeNet[1]
and PartNet [48]-part II. (a) Input images; (b) Pixel2Mesh [2]; (c) AtlasNet-25 [3]; (d) GEOMetrics [10]; (e) IM-Net [49]; (f) ours; (g) Ground truth.
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coarse. IM-Net [49] can generate more neat results on the
modes with simple structure, but fails to recover the com-
plex structure of models accurately, as shown in the results
of storage furniture and tables.

More results on other categories in the rest of PartNet are
also rendered and depicted in Fig. 9, which shows that our
approach can reconstruct 3Dmodels of objects in variable cat-
egories with both concrete shapes and delicate structures. We
also render the intermediate results of our approach including
the predicted masks and boxes from the input images, which
lay consistent basis to achieve high quality generated 3D
shapes. Fig. 4 shows the results of mask prediction from our
mask estimator. By referring to [52], we use depth mask to

help to represent the object’s 2.5D sketch. Our mask estimator
is capable of capturing detailed structure of objects, which
provides the structure information for the following network.

Fig. 3. B. The reconstruction results on the intersected datasets of ShapeNet [1] and PartNet [48]-part I. (a) Input images; (b) Pixel2Mesh [2]; (c) Atlas-
Net-25 [3]; (d) GEOMetrics [10]; (e) IM-Net [49]; (f) Ours; (g) Ground truth. (B)The reconstruction results on the intersected datasets of ShapeNet [1]
and PartNet [48]-part II. (a) Input images; (b) Pixel2Mesh [2]; (c) AtlasNet-25 [3]; (d) GEOMetrics [10]; (e) IM-Net [49]; (f) ours; (g) Ground truth.

Fig. 4. Results of object mask prediction of our approach.

1792 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 3, MARCH 2023

Authorized licensed use limited to: Tsinghua University. Downloaded on February 01,2023 at 09:43:17 UTC from IEEE Xplore.  Restrictions apply. 



In particular, we compare our results with the results of
StructureNet [6] in terms of bounding boxes and meshed
model. For training StructureNet, an auto-encoder for
reconstruction of bounding box or point cloud is trained,
and a pre-trained ResNet18 [46] encoder in ImageNet [53] is
refined with our training dataset. The training process of
StructureNet is conducted respectively for the five catego-
ries. As shown in Fig. 5, our method (our encoder +
StructureNet’s decoder) can generate a better bounding box
than that of StructureNet (both encoder + decoder from

StrucutureNet). Furthermore, since StructureNet is not tai-
lored to mesh representation, we reconstruct mesh models
from the point clouds generated by StructureNet respec-
tively using Poisson surface reconstruction [54] and the
algorithm in [50], which are classic alternations for mesh
generation. Fig. 5 shows that the mesh models by our
method has higher quality than those by StructureNet both
in shape and structure recovery. We also make quantitative
comparison with StructureNet on the mesh models, as listed
in Table. 3. The results indicate that our method outperforms

Fig. 5. Comparison between our approach with StructureNet [6]. (a) Input image; (b) Generated bounding boxes by our approach; (c) Generated
bounding boxes by StructureNet; (d) Predicted point cloud by StructureNet; (e) Mesh models of StructureNet by using Poisson reconstruction;
(f) Mesh models of StructureNet by using the algorithm [50]; (g) Reconstructed mesh models of our approach; (h) Ground truth.The qualitative results
compared with SDM-Net [39]. (a) Input image; (b) reconstructed by SDM-Net; (c) reconstructed by our method; (d) ground truth.
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StructureNet on the majority of four metrics (CD, EMD, F1-
score and 3D IoU).

In addition, we make comparison with SDM-Net [39].
Since SDM-Net is an auto-encoder for 3D mesh models, we
use the pre-trained models in SDM-Net and a pre-trained
2D image encoder (ResNet18 [46]) to map the 2D image into
the learned latent space in SDM-Net. Thus, 3D models can
be reconstructed by SDM-Net from the single view images.
As shown in Fig. 6, our method can reconstruct the models
with complex structure, while it is challenging for SDM-Net
to represent the complex structure models with composed
parts. The purpose of SDM-Net and that of this work is dif-
ferent: SDM-Net is designed as a deep shape generative
model for novel shape generation, while this method is
designed as a shape reconstruction network given a single
image. As demonstrated by StructureNet, the recursive
GNN is more suitable than the fully-connected layer for

modeling the complex relationships between a large of
parts. Thus our method can handle much more flexible
number of parts with complex structure, including handling
holes in the structure, as opposed to SDM-Net.

Regarding the box deformation, there is also a difference
between SDM-Net and our method. SDM-Net learns the
distribution of deformation feature of the training set with a
low-dimensional space and uses the space to represent the
box deformation, then recovers the deformation feature to
the 3D coordinates. In contrast, the method we proposed
directly uses a neural network to deform a box to 3D meshes
under the guidance of an RGB image, which is designed for
shape reconstruction.

6.4 Ablation Study

In this section, we investigate the influence of individual
components of our learning network and demonstrate their
importance through ablation studies.

TABLE 3
The Quantitative Results Compared With StructureNet [6]

Chair Table Hat Knife Lamp

CD loss #
StructureNet1 4.66 6.51 5.42 5.04 3.69
StructureNet2 1.16 2.90 2.28 3.22 3.21
Ours 1.58 1.64 1.42 5.01 1.29

EMD loss #
StructureNet1 7.59 8.35 7.15 10.35 13.02
StructureNet2 5.47 7.14 5.81 7.38 11.27
Ours 3.37 2.71 0.94 3.18 3.99

IoU "
StructureNet1 11.84 5.63 15.29 4.16 10.75
StructureNet2 18.62 7.07 2.19 27.18 9.64
Ours 50.12 52.23 73.57 41.43 37.19

F-score "
StructureNet1 41.05 35.61 36.12 26.62 38.89
StructureNet2 67.91 58.21 44.44 29.97 60.52
Ours 66.09 72.85 82.08 47.33 62.21

StructureNet1 means the mesh models by using Poisson reconstruction, Struc-
tureNet2 means the mesh models by using the algorithm [50].

Fig. 6. The qualitative results compared with SDM-Net [39]. (a) Input
image; (b) reconstructed by SDM-Net; (c) reconstructed by our method;
(d) ground truth.

Fig. 7. The figure shows the ablation study of mask estimator and image CNN module in the encoder.
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First, we make an ablation study to demonstrate the
effectiveness of the mask estimator in the encoder. As show
in Fig. 7, the hierarchy of cuboid bounding boxes of three
chairs with different structures look very similar if the mask
estimator is removed. With the help of the mask estimator,
we can obtain the bounding boxes with finer details. By
comparison, the bounding boxes recovered by StructureNet
for the chair backs of the three chairs have either inferior
shape and angle or incorrect holder compared to those of
ours and ground truth. It proves that the mask estimator
importantly helps to extract the complex topological struc-
ture information of the models. Also, we evaluate the
impact of image CNN module. From the results we can see
that the generated bounding boxes may lose some structural
expression and cause shattered topology, such as the chairs
in the first and third rows when the image CNN module is
removed.

Then, we make another ablation study on the number of
TAGCN blocks in the deformation network. In this study
the number of TAGCN block is changed as 3, 5 and 7. From
Fig. 8, we can see that the greater number of TAGCN block
has little influence on the predicted results. However, we
also find in the experiment that when the number of block
is over 7, the network is difficult to train due to the memory
expense. Meanwhile, we evaluate the impact of the TAGCN
by replacing them with naive GCN. Table 4 shows that the
TAGCN has a crucial improvement on the evaluation met-
rics (CD, F1-score and IoU), which is because that TAGCN
has better performance in deforming the bounding boxes to
corresponding shapes.

Furthermore, we make one more ablation study for the
contribution of different terms in the loss function on the
three Metrics (CD, F1-score and IoU). As shown in
Table 5, we can see that every term has great improve-
ment on the performance metrics. The recovery loss
Lrecovery helps to produce more accurate bounding boxes
representing the structure. Sampling loss Lpts helps the
deformation to produce plausible shapes. Laplacian loss
Llaplacian helps to produce smoothness in the deformation

field across 3D space and along the mesh surface. The
normal loss Lnormal and edge loss Ledge help to guarantee
a better topology and construct a better mesh in the
deformation process.

6.5 Limitation Discussion

The main limitations of our work are: (i) we use the
decoder in StructureNet [6] to recover the structure of
objects, which makes our final results also influenced by
the performance of StructureNet on recovering the object’s
structure, such as suffering from the errors of missing
parts, duplicate parts, detached parts in StructureNet; (ii)
the training data of images in our dataset are prepared by
the rendered images of 3D shapes in PartNet and Shape-
Net, thus using the real world images as input tends to
generate incorrect bounding boxes, which is also the same
as that of StructureNet, as shown in Fig. 10; (iii) the struc-
tural details of reconstructed models still have defect, such
as the corners of the table tops or monitor screens, which
are rounded instead of forming perpendicular angles (e.g.,
see tables and displays models in Fig. 3); (iv) large part
deformations are often not captured, such as the hat tops
and lamp covers, which are reconstructed with deformed
shape compared to the ground truth (e.g., see hats and
lamps models shown in Fig. 5).

7 CONCLUSION

In this paper, we propose a structure-preserving and topo-
logical-adaptive network for 3D objects reconstruction
from single images. Our method provides a graph repre-
sentation of 3D models with cuboid bounding boxes,
which can delicately describe the structure information of
an object. Thus, our method can reconstruct 3D models
with complex structure directly from a single image. Our
learning framework consists of a structure recovery net-
work and a mesh deformation network. The former is
designed with an auto-encoder that generates cuboid
bounding boxes for an object, and the latter consists of
three deformation blocks intersected with two graph
unpooling layers, which progressively deform the input
meshed bounding boxes into the meshed models. The
most significant feature of the mesh deformation network
is that it accepts a hierarchy of bounding boxes with differ-
ent topology types, which enables the reconstruction of 3D
models with various complex structures. Compared with
previous methods, our method could achieve better per-
formance in 3D shape structure-preserving reconstruction.
The future work of this paper would focus on improving

TABLE 4
This Table Shows the Ablation Study of TAGCN

and Naive GCN Layers

CD loss F1-score IoU

Naive GCN 3.550 30.84 12.76
TAGCN 1.390 72.98 52.6

TABLE 5
This Table Shows the Result of Ablation Study for Different

Terms in the Loss Function

CD loss F1-score IoU

STD-net 1.390 72.98 52.60
w/o Lrecovery 3.467 30.99 10.56
w/o Lpts 2.390 50.78 32.41
w/o Lnormal 3.357 31.28 10.68
w/o Llaplacian 3.550 30.84 20.54
w/o Ledge 3.812 36.46 10.41Fig. 8. The figure shows the ablation study of the number of TAGCN

block, which shows the greater number of TAGCN block has little influ-
ence on the predicted results.
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the capability to express the delicate structures of more
wide categories of objects and further improve the struc-
tural details of the reconstructed results.
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