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Input: a face photo and 
an audio sequence

Output: an artistic talking-face video of 
portrait line drawings

Output: an artistic talking-face video of 
portrait cartoon

or

Figure 1: Ourmethod generates an artistic animation of a face portrait from a single face photo and a speech signal. In addition
to line drawings, our method can be easily applied to portrait cartoon. The input image by SKV Florbal (Public Domain).

ABSTRACT
Animating a single face photo is an important research topic which
receives considerable attention in computer vision and graphics. Yet
line drawings for face portraits, which is a longstanding and popular
art form, have not been explored much in this area. Simply concate-
nating a realistic talking face video generation model with a photo-
to-drawing style transfer module suffers from severe inter-frame
discontinuity issues. To address this new challenge, we propose a
novel framework to generate artistic talking portrait-line-drawing
video, given a single face photo and a speech signal. After predicting
facial landmark movements from the input speech signal, we pro-
pose a novel GAN model to simultaneously handle domain transfer
(from photo to drawing) and facial geometry change (according to
the predicted facial landmarks). To address the inter-frame disconti-
nuity issues, we propose two novel temporal coherence losses: one
based on warping and the other based on a temporal coherence dis-
criminator. Experiments show that our model produces high quality
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artistic talking portrait-line-drawing videos and outperforms base-
line methods. We also show our method can be easily extended to
other artistic styles and generate good results. The source code is
available at https://github.com/AnimatePortrait/AnimatePortrait.
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1 INTRODUCTION
Animating a single face photo is an important problem in com-
puter vision and graphics, which finds many applications in film
production, virtual avatars and social media (e.g., [Kemelmacher-
Shlizerman et al. 2014]). Compared to real faces, artistic line draw-
ing facial animation can evoke different human experiences (e.g.,
[Luo et al. 2006]), leading to stronger visual effect by removing
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the distraction of irrelevant details, enabling new interaction and
entertainment applications. However, audio-driven artistic talking
drawing video generation from a normal face photo has not been
explored much so far.

In our study, we pay attention to face portrait line drawings
which are a highly abstract and expressive style. Compared to clut-
tered styles (such as oil painting and cartoon), portrait drawings
only use a sparse set of line stroke elements. We explore the prob-
lem of animating portrait drawings from a single face photo and a
speech signal (Fig. 1). This problem is challenging since it involves
two tasks: (1) audio-driven prediction of changes in facial expres-
sion, and (2) domain transfer from photos to artistic drawings.

Directly concatenating realistic talking face generation methods
and domain transfer methods (applied independently frame by
frame) will cause severe inter-frame discontinuity problems. For
the target artistic portrait line drawing style, this problem is even
more disastrous because the appearance and disappearance of the
sparse line elements are more visible than discontinuous changes
of colors (e.g., in other art styles).

Existing talking face generation methods have explored the
idea of generating facial landmarks from speech [Chen et al. 2019;
Zhou et al. 2020]. Given an audio-synchronized landmark sequence,
[Zhou et al. 2020] used warping to animate a single portrait image.
However, since every frame is warped from the input portrait image,
the temporal coherence is overly strong, which makes the gener-
ated video look unnatural and fake under large head movements.
As we will later show, such unnaturalness becomes more obvious
when applying a similar approach to animating line drawings.

In this paper, we propose a novel method to generate a talking
portrait line drawing video from a single face photo and a speech
signal. First, we use an audio translation network to predict fa-
cial landmark movements from the input speech signal. Then we
propose a novel generative adversarial network (GAN) model that
simultaneously achieves domain transfer (from photo to drawing)
and facial geometry change (according to facial landmarks). The
inputs to the proposed generatorG include a face photo p, p’s facial
landmarks lp and the target facial landmarks lt . The output is a
portrait line drawingG(p, lp , lt ) with the same identity as p and the
same landmarks as lt . To alleviate the burden of collecting real artis-
tic portrait drawing videos for training, we design a novel training
scheme for generators in our model such that only static portrait
drawing data is needed. To address the inter-frame discontinuity
problem, we propose two novel temporal coherence losses.

The main contributions of our work are three-fold: 1) We pro-
pose a novel feature warping framework to generate artistic and
expressive talking portrait line drawing video. 2) We conduct both
geometry change and artistic style transfer using a single GAN
model learning from static portrait drawing data, and ensure tem-
porally coherent animation via two novel coherence loss terms. 3)
We propose a scheme for separate processing of foreground and
background to avoid inappropriate background warping. Experi-
ments demonstrate that our method is better than baseline methods
and can generate high quality artistic talking drawing videos. We
extend our method to other artistic styles and generate good results.

2 RELATEDWORK
2.1 Photo to portrait line drawing transfer
Transforming a face photo into a portrait line drawing is a chal-
lenging problem in artistic style transfer, because the face has high
semantic constraints and the target style is highly abstract. Neural
style transfer methods [Gatys et al. 2016; Li et al. 2019b] often fail
in this task because the Gram matrix is not suitable for the target
style which has little texture, and example-guided transfer cannot
capture well the characteristics of the line drawings [Yi et al. 2020].

GANs [Goodfellow et al. 2014] have achieved success in many
image-to-image translation problems and researchers began to de-
sign GAN-based models for photo to portrait line drawing trans-
lation. APDrawingGAN [Yi et al. 2019, 2021] learned portrait line
drawing generation from paired data of face photos and correspond-
ing line drawings. This method applies a composite GAN model
consisting of global and local GANs, with a new distance transform
loss and a line continuity loss to improve the line generation quality.
To avoid the requirement of paired data, [Yi et al. 2020, 2022] pro-
posed an asymmetric cycle structure in a novel GAN model, which
is also capable of generating multi-style portrait line drawings.
However, these methods only deal with static portrait line drawing
generation. When synthesizing portrait drawings frame-by-frame
in real video, serious discontinuities can be clearly observed.

2.2 Speech-driven talking face generation
Speech-driven talking face generation is a challenging cross-modality
learning problem, which has attracted increasing attention in recent
years. Many methods have been proposed, which take a speech
signal and some visual contents of a target person as inputs, and
generate a talking face video of the target person. These methods
can be classified into two categories: (1) person-specific methods
that require plenty of video information of the target person for
training [Suwajanakorn et al. 2017; Thies et al. 2020], and (2) gen-
eral methods for arbitrary persons [Chen et al. 2019; Chung et al.
2017; Vougioukas et al. 2018, 2020; Zhou et al. 2019, 2020].

In the first category, [Suwajanakorn et al. 2017] synthesized talk-
ing face video of Obama by learning from hours of Obama’s videos
of speeches using a recurrent neural network to predict lip motion
from audio features. [Thies et al. 2020] proposed a deep neural net-
work based on a latent 3D face model to generate talking face videos
from speech, which requires a 2-3 minutes target person video as
training data. [Richard et al. 2021] synthesized 3D face animation
from a speech signal based on cross-modality disentanglement.

In the second category, the methods learn a general talking face
generation model using 2D image-based techniques, which are
applicable to an arbitrary target person. Facial landmarks are usu-
ally used to control face generation [Ha et al. 2020; Siarohin et al.
2019; Wang et al. 2019; Zakharov et al. 2019], and some methods
use landmarks to guide the talking face generation: [Chen et al.
2019] translated an audio sequence to facial landmarks and gener-
ated videos conditioned on the landmarks; [Zhou et al. 2020] also
used facial landmarks as an internal representation, but applied a
morphing-based method to animate a cartoon image. [Chen et al.
2020] modeled head motion and facial expression separately and
generated talking face videos with rhythmic head motion predicted
from a reference short video. [Zhou et al. 2021] modularized the
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Figure 2: The framework of our method. (a) We use the speech to facial landmark translation module fromMakeItTalk [Zhou
et al. 2020], which uses two branches (a speaker-agnostic branch and a speaker-specific branch). (b) We propose a GANmodel
to generate a temporally coherent talking line drawing video from the input photo and target 2D facial landmark sequence, with
natural and consistent head and hair movement. The face photo is courtesy of Merenda Mattia (Public Domain).

representations into speech content, head pose and identity spaces
and generated talking faces with pose controlled by a pose source.

All the above methods only generate face animation based on
the input speech, but do not consider domain/style transfer for
expressive art forms. In contrast, our method achieves both talking
face animation and artistic style transfer in a single GAN model.

3 METHOD
3.1 Overview
Given a single face photo and a speech sequence as inputs, our pro-
posed method generates an expressive artistic talking portrait line
drawing video that is synchronized with the speech. The problem
not only requires facial changes according to speech, but also needs
style transfer from normal photos to artistic line drawings.

To solve the problem, we use facial landmarks to bridge the
gap between audio and the talking portrait line drawings. The
framework of our method consists of two stages (Fig. 2).

Stage 1. We first use the speech to landmark translation module
fromMakeItTalk [Zhou et al. 2020] to predict facial landmarks from
the input speech sequence. The inputs are a speech signal and the 3D
facial landmark positions detected from a face photo. The outputs
are displacements for the facial landmarks. The module extracts
deep representations of content and speaker identity from the audio,
and uses a speaker-agnostic branch and a speaker-specific branch
to predict landmark displacements. By taking the x ,y coordinates
of the 3D landmark positions, we can easily get the 2D landmarks
to provide input for the next stage. Details are presented in Sec. 3.2.

Stage 2. We design a GAN model to generate artistic talking
portrait line drawings from the input face photo and target 2D facial
landmarks. The generator needs to achieve both facial geometry
changes (according to landmark positions) and style transfer (from
photo to artistic drawing). In addition to content loss, identity
preserving loss, adversarial loss and geometry loss that constrains
facial changes, we propose two novel temporal coherence losses to
improve the temporal coherence of the output video. To alleviate
the burden of collecting real artistic portrait drawing video, we
train the generator using only unpaired photos and static portrait
drawing data. Details are presented in Sec. 3.3.

3.2 Speech to facial landmark translation
To predict facial landmarks from a given speech, we use the speech
to facial landmark translation module from MakeItTalk [Zhou et al.
2020], which predicts 3D facial landmark displacements from an
input audio using disentangled content embedding and speaker
embedding of the audio. First, 3D facial landmarks q ∈ R68×3 are
detected from a face photo using a 3D landmark detector [Bulat
and Tzimiropoulos 2017]. Then the module uses two branches to
predict the landmark changes, one speaker-agnostic branch, and
one speaker-specific branch (Fig. 2(a)). It extracts speaker-agnostic
content representation and speaker identity embedding from the in-
put speech signal. The speaker-agnostic content animation branch
takes the content embedding as inputs, and estimates general facial
landmark displacements. The speaker-specific animation branch
takes the content and identity embedding as inputs, and predicts
speaker-specific facial landmark displacements. The final landmark
displacements are the sum of predicted displacements from the two
branches. Using this module [Zhou et al. 2020], the final landmark
displacements contain both general speaker-agnostic displacements
predicted from the audio content embedding only, and speaker-
specific displacements that also consider speaker identity.

3.3 Talking portrait drawing video generation
To simultaneously achieve style transfer and facial geometry changes,
we design a GAN model (Fig. 3) to transform a face photo and a
target 2D landmark into a portrait line drawing, which has the same
facial geometry as the target landmarks and the same identity as
the input face photo. The generation model needs to solve two chal-
lenges: (1) simultaneous facial geometry deformation and artistic
style transfer; (2) generating temporally coherent artistic portrait
drawing video by learning from static portrait drawing data.

Denote the face photo domain as P, the 2D landmark domain as
M, and the artistic portrait line drawing domain as D. We learn
a mapping function Φ that maps from (P,M) to D, using a set of
real face photos S(p) = {pi |i = 1, 2, · · · ,np } ⊂ P and a separate
set of artistic drawings S(d) = {di |i = 1, 2, · · · ,nd } ⊂ D as train-
ing data. Our model consists of 1) a generator G (transforming a
photo to a deformed drawing conditioned on target landmarks), 2)
a global discriminator Dд and 3 local discriminators Dln ,Dle ,Dl l
(discriminating the regions of the generated drawings from real

https://flickr.com/photos/merendamattia/39742738535/
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Figure 3: We propose a GAN model to generate temporally coherent and expressive talking portrait drawings from a single
photo and a 2D landmark sequence. (a) The model consists of a photo-to-drawing generatorG, a global discriminator Dд , local
discriminators Dln ,Dle ,Dl l , and a temporal coherence discriminator Dcoh . (b) The detailed architecture of generatorG, which
performs both facial geometry changes and style transfer. The face photo is courtesy of Sergey Kochkarev (Public Domain).

artist drawings), and 3) a temporal coherence discriminator Dcoh
(discriminating whether two drawings are temporally coherent).

3.3.1 Architecture. Generator G takes a face photo p, the facial
landmarks lp inp (encoded as a binary image where the background
is black and the landmarks are drawn as white dots), and target 2D
facial landmarks lt as input, and outputs a portrait line drawing
G(p, lp , lt ) whose facial geometry is consistent with lt while the
identity is similar to p. G is designed with a feature space warping
strategy to deform the facial geometry and consists of five parts:

(1) An image encoder consisting of one flat convolution and
two down convolution blocks, which encodes face photos
and extracts necessary image features.

(2) A landmark encoder consisting of one flat convolution and
two down convolution blocks (with fewer channels than
the image encoder), which encodes landmarks and extracts
landmark features.

(3) A feature warping module which warps the image feature
according to flow map. We warp with two flow maps (first
warping with each separately, and then concatenating the
warped features): given two 2D landmarks detected by [Chen
2021], a) flow map A is predicted by a flow regression net-
work [Li et al. 2019a], which takes two landmarks as input
and outputs a flow map, and the training data is synthesized
by fitting a 3D face model to a photo pair and projecting them
to 2D to compute the ground-truth flow map, and b) flow
map B is calculated by interpolating the position difference
between two sparse landmarks. Flow map A is predicted by
a flow regression network trained using a 3D face model,
which is more accurate, but is unconstrained for regions out-
side the face. Flow map B complements it to better cope with
regions outside the face. Each time, the feature warp is ap-
plied once after one convolution layer of the image encoder,
and we repeat the process for each convolution layer, as
shown in Fig. 3(b). This essentially applies feature warping
at different scales, which better aligns face image features
to the target pose. The outputs of the 3 image encoders are
merged using a convolution layer. See the appendix for an
ablation study to validate our design.

(4) A transfer module consisting of nine residual blocks [He
et al. 2016], which combines warped image features and

landmark features and transfers the feature from the source
to the target domain. the landmark features are concatenated
with the image features 3 times, before the 1st, 4th and 7th
residual blocks, respectively.

(5) An image decoder consisting of two up convolution blocks
and a final convolution, which reconstructs the final output
drawing. See appendix for full details.

Drawing discriminators Dд ,Dln ,Dle ,Dl l . The drawing discrim-
inators discriminate generated drawings from real ones. We design
a global drawing discriminatorDд to extract full image features and
decide whether a full drawing is real. Following [Yi et al. 2020], we
further design three local discriminators Dln ,Dle ,Dl l to discrim-
inate the nose, eye and lip parts of the drawings respectively, in
order to enhance the generation quality of these important features.
Dд ,Dln ,Dle ,Dl l adopt the PatchGAN [Isola et al. 2017] structure,
with three down convolution blocks and two flat convolution blocks.
The discriminators output probability maps of real/fake for patches.

Temporal coherence discriminator Dcoh . The temporal coher-
ence discriminator discriminates whether two drawings are tem-
porally coherent. The input to Dcoh is the concatenation of two
drawings. Dcoh also adopts the PatchGAN structure with three
down convolution blocks and two flat convolution blocks. It outputs
the probability maps of temporal coherency for two correspond-
ing patches in the input drawings. In order to train the temporal
coherence discriminator Dcoh , we make use of portraits from an
artistically stylised film, which is transferred into line drawings
by a line extractor [HAT 2018]1 (Sec. 4.1), and feed 3 types of in-
puts, i.e., 1 kind of real samples and 2 kinds of fake samples: 1) line
drawings in adjacent frames of the portrait film as real samples, 2)
two generated drawings conditioned on two slightly changed 2D
target landmarks as fake samples, 3) line drawings in non-adjacent
frames of the film as fake samples.

3.3.2 Foreground extraction and blending strategy. Since the ge-
ometry change is guided by facial landmarks, some undesirable
background warping effects are likely to occur following the cur-
rent design. However, the background should remain static before
and after the warping. To avoid unwanted background warping, we
process the foreground part and the background part separately.
1The processed film portraits are only an approximation to the target portrait line
drawings, and are only used for training the temporal coherence discriminator, but
not for any generator.

https://flickr.com/photos/skochkar/26728343899
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Figure 4: Visualization of the loss calculation process. The
face photo is courtesy of SergeyKochkarev (Public Domain).

Given an input face photop, we first extract foreground maskmp
using MODNet [Ke et al. 2020]. We then feed the foreground image
of the face photo pf into the generatorG , and predict the line draw-
ing corresponding to the target landmarks, i.e. do = G(pf , lp , lt ).
For the background image pb , we apply the method [Yi et al. 2020]
to generate a static portrait line drawing db .

The final output drawing is the blended result of do and db . Since
the foreground mask changes after the facial geometry changes,
we predict the foreground of do by warping the foreground mask
mp with the flow map predicted in the feature warping module
in Sec. 3.3.1. Denoting the warped foreground mask as m′

p , the
blended result is calculated as:

d = do ·m′
p + db · (1 −m′

p ) (1)

3.3.3 Loss functions. Our loss function consists of six loss terms.
Adversarial loss. The adversarial loss measures the discrimina-

tion ability of drawing discriminators. Denote the set of global and
local discriminators as DD . The adversarial loss is formulated as

Ladv (G, DD ) =
∑

D∈DD

Ed∈S (d )[logD(d )]

+
∑

D∈DD

Ep∈S (p)[log(1 − D(G(p, lp, lt ))]
(2)

where lp contains the facial landmarks of p, lt includes target land-
marks randomly selected from artistic drawing landmarks. G and
DD are trained in an adversarial manner (i.e., G minimizes this
loss and DD maximizes this loss) to direct the generator towards
generating drawings closer to real drawings.

Warping-based content loss. To constrain the content in gen-
erated drawings, we use a synthetic drawing to approximate the
ground truth. We first apply the method [Yi et al. 2020] to generate
a static portrait line drawing ds for the input photo p. Then we
apply the differential image warping moduleW 2 based on sparse
landmarks to warp ds into the target landmarks’ geometry. The
warped static drawingW (ds , lp , lt ) has the same geometry as lt
and the same identity as p, and thus could serve as an approximate
ground truth. The content loss is formulated as

Lcontent (G) = Ep∈S (p)[ | |W (ds , lp, lt ) −G(p, lp, lt ) | |1] (3)

Note that the warped drawing may contain artifacts since the warp-
ing flow is estimated based on sparse landmarks (see warped draw-
ings in Fig. 4). Thus this loss alone is not sufficient for good results.

Geometry loss. We further use landmarks to constrain the ge-
ometry of generated drawings. We use a landmark detector [Chen
2021](which uses MTCNN [Zhang et al. 2016] to detect face and
2We use the differential warping moduleW from [Cole et al. 2017] to warp the image.

then MobileFaceNet [Chen et al. 2018b] to detect landmark) to ex-
tract the 2D coordinates of the 68-point landmarks of generated
drawings. Denote the 2D coordinates of the target landmarks lt as
x(lt ), and the landmark detector as Rland . This loss term is

Lдeom (G) = Ep∈S (p)[ | |x (lt ) − Rland (G(p, lp, lt )) | |2] (4)

where both coordinates are normalized into the range [0, 1].
To generate better lines for the lip region, we define a lip line

maskMl ip_l ine (see the example in Fig. 4) from the lip landmarks
and expect the pixels in the lip line mask region of the generated
drawing to be close to black (so that the lip contour is drawn). The
geometry loss for lip is formulated as

Lдeom_l ip (G) = Ep∈S (p)[ | |G(p, lp, lt ) ·Ml ip_l ine | |1] (5)

Identity preservation loss. We constrain the output drawing to be
the same identity as the input photo p by minimizing the distance
between identity features of the generated drawing and the static
portrait line drawing of p. We use a pre-trained SphereFaceNet [Liu
et al. 2017] Riden to extract identity features. The loss term is

Liden (G) = Ep∈S (p)[ | |Riden (ds ) − Riden (G(p, lp, lt )) | |1] (6)

Note that we extract identity features on the static drawing of p
instead of directly on p to avoid the influence of different domains.

Temporal coherence loss based on inter-frame warping. For each
input photo p, we generate two drawings conditioned on two target
landmarks lt1 and lt2 with slight changes. We use the differential
warping moduleW to warp the first generated drawingG(p, lp , lt1)
to the second set of target landmarks lt2, and require that the
warped drawing should be similar to the second generated drawing
G(p, lp , lt2). This loss term is formulated as

Lcoh1(G) = Ep∈S (p)[ | |W (G(p, lp, lt1), lt1, lt2) −G(p, lp, lt2) | |1] (7)

Temporal coherence loss based on coherence discriminator. We
observe that using the loss term (7) alone is not sufficient to ensure
the temporal coherence in generated drawing animation. So we
propose one more temporal coherence loss, which is the adversarial
loss for the temporal coherence discriminator Gcoh . To learn from
real portrait films, we denote the set of adjacent frame pairs in the
processed portrait film as S(adj) and the set of non-adjacent frame
pairs as S(nadj). This loss term is formulated as

Lcoh2(G, Dcoh ) = E(d1,d2)∈S (ad j )[logDcoh (d1, d2)]
+Ep∈S (p)[log(1 − Dcoh (G(p, lp, lt1), G(p, lp, lt2))]
+E(d3,d4)∈S (nad j )[log(1 − Dcoh (d3, d4))]

(8)

For the non-adjacent frame pairs set S(adj) it is hard to determine
the temporal extent of multiple similar adjacent frames. Therefore
we choose two frames from two different processed film clips, so
they are different enough, as shown in Fig. 3.

Finally the overall loss function L(G,DD ,Dcoh ) is a combination
of the six loss terms and the mapping ϕ is learned by solving:

min
G

max
DD,Dcoh

L(G, DD, Dcoh ) = Ladv (G, DD ) + λ1Lcontent (G)

+ (λ2Lдeom (G) + λ3Lдeom_l ip (G)) + λ4Liden (G)

+ λ5Lcoh1(G) + λ6Lcoh2(G, Dcoh )

(9)

https://flickr.com/photos/skochkar/26728343899
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Table 1: Quantitative evaluation (FID, SSIM, and LMD).

Methods FID ↓ SSIM ↑ LMD ↓

ATVG+UPD 162.1 0.923 2.74
SDA+UPD 185.2 0.913 2.76

MakeItTalk+UPD 143.0 0.951 2.64
UPD+Warp 151.9 0.975 2.64

Ours 135.2 0.974 2.64

4 EXPERIMENTS
We implemented our method in PyTorch. The experiments are
performed on a computer with a GeForce RTX 2080 Ti GPU. The
parameters in Eq.(9) are empirically set as: λ1 = 5, λ2 = 50, λ3 = 50,
λ4 = 3, λ5 = 10, and λ6 = 0.5. The output resolution is 256 × 256.

4.1 Experiment Setup
Training setting: For the talking line drawing generation network,
we collect face photos from both the internet and a facial expression
database [Yang et al. 2020], and construct a photo set of 1,603 images.
The collected face photos cover different facial expressions, head
poses, races, and ages. We also collect portrait line drawings by
professional illustrators from the internet. To provide more portrait
drawings with intense expressions, we generate some synthetic
drawings using the unpaired portrait drawing (UPD) method [Yi
et al. 2020] and construct a set of 1,451 line drawings (see the second
style in UPD and examples shown in the appendix). We further
use the portrait film “A Scanner Darkly” to provide samples for the
temporal coherence discriminator. The frames in the film are color
portraits drawn by artists. We use a line extractor [HAT 2018] to
convert them into black and white line drawings to approximate
our target style. Some examples of line drawings and processed
portrait film frames are presented in Fig. 3, and more are presented
in the appendix. We use Adam optimizer with learning rate 0.00005,
β1 = 0.5, β2 = 0.999, and batch size is 1.

Test setting: (1) First, we set the first frame of a real video as the
input face photo, and set the audio signal extracted from that video
as the input speech signal. We collect 118 video clips (of different
identities) from the VoxCeleb2 dataset [Chung et al. 2018] and 18
real videos (each of 7 ∼ 35 seconds length) from the internet. (2)
Second, we take an arbitrary face photo and an arbitrary speech
signal collected from the internet as the inputs.

Table 2: User study results. Each column shows the percent-
ages of four methods selected as the best for each criterion.

Methods Naturalness ID preserve Lip sync Take-all
ATVG+UPD 1.0% 0.6% 22.7% 1.3%
SDA+UPD 1.5% 0.8% 2.1% 1.1%
UPD+Warp 14.6% 23.7% 12.6% 14.2%

Ours 82.9% 74.8% 62.6% 83.3%

4.2 Comparisons
To the best knowledge of the authors, we are the first to generate
an artistic and expressive talking drawing video from a real face
photo and a speech signal. For comparison, we construct three
baselines by concatenating existing realistic talking face generation
and static portrait line drawing generation methods.

Baseline 1 combines two steps: (1) generating a realistic talking
face video from a single face photo and a speech signal, and (2)
transferring each frame in the video into a portrait line drawing.
We select two state-of-the-art open source methods (ATVG [Chen
et al. 2019] and SDA [Vougioukas et al. 2018]) for the first step, and
select the UPD method for the second step. The resulting baselines
are denoted as ATVG+UPD and SDA+UPD.

Baseline 2 first transfers the input face photo into a portrait line
drawing using UPD, and then applies facial reenactment to this
drawing by using the speech-to-landmark network and image warp-
ing based on landmarks. We denote this baseline as UPD+Warping.

Baseline 3 first generates realistic animation by MakeItTalk, and
then transfers it into line drawing style by UPD.

We compare our method and baselines: ATVG+UPD, SDA+UPD,
UPD+Warping,MakeItTalk+UPD. Some qualitative results are shown
in Fig. 5 and animated results are shown in the accompanying demo
video. Inter-frame discontinuities are clearly observed in baseline1
methods (ATVG+UPD, SDA+UPD). This is due to the fact that each
video frame is generated separatelywithout considering inter-frame
relations. The results of baseline2 (UPD+Warping) often show un-
pleasant distortion. The overly strong temporal coherence and the
distortion effects degrade the naturalness, as there are not even
minor variations normally expected with facial dynamics. The base-
line 3 (MakeItTalk+UPD) results are less temporally coherent, since
UPD stylizes photos without guaranteeing coherence. In compari-
son, our method generates naturally artistic results with inter-frame
continuity, good lip synchronization and identity preservation.

https://flickr.com/photos/merendamattia/39742738535
https://flickr.com/photos/130851488@N04/16516573787
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(c) w.o.
content loss

(d) w.o.
geometry loss

(e) w.o.
identity loss

(f) w.o.
coherence loss1

(g) w.o.
coherence loss2

(h) ours(a) inputs (b) generated
landmark
sequence

Figure 6: Ablation study: (a) inputs, (b) landmark sequence,
(c-g) results w/o content loss (c), geometry loss (d), identity
loss (e), temporal coherence loss1 (f) and loss2 (g), and ours
(h). The input photo byGRAPHISLIMITED (Public Domain).

4.3 Quantitative evaluation
Metric evaluation. We conduct quantitative evaluation using three
metrics: (1) FID [Heusel et al. 2017] for individual frame quality and
similarity between the generated and real distributions; (2) inter-
frame SSIM for inter-frame coherency evaluation; (3) lip landmark
distance (LMD) [Chen et al. 2018a] for lip synchronization. We
evaluate ours and the comparison methods on 118 video clips from
the VoxCeleb2 dataset [Chung et al. 2018], and calculate the average
score of the metrics. Quantitative results are summarized in Table 1.
The results show that ours, MakeItTalk+UPD and UPD+Warping
are the best on LMD, ours and UPD+Warping are the best on SSIM,
and ours is the best on FID. See appendix for full details.

User study. Due to the subjective nature of the portrait line
drawings, we conducted a user study to compare our method with
three baseline methods, i.e., ATVG+UPD, SDA+UPD, UPD+Warping.
We randomly chose 18 real videos from the VoxCeleb2 dataset and
the internet, and used their first frame and audio tracks to generate
18 talking drawing videos for eachmethod. Participants were shown
the input face photos and four generated drawing videos side by side
(using a randomized order to avoid bias), and they were required to
answer four questions: 1) which result is the best in terms of head
movement and naturalness; 2) which result is the best in terms of
line drawing quality and identity preservation; 3) which result is
the best in terms of audio synchronization; 4) which result is the
best by considering all the factors in the previous three questions.
57 participants finished the user study and 4,104 responses were
collected in total. Results of each method being selected as the best
under the criterion in each question are summarized in Table 2. Our
method achieves the best performance in all evaluation criteria.

4.4 Ablation study
We perform an ablation study on the key factors in the proposed
method: (1) content loss, (2) geometry loss, (3) identity preservation
loss, (4) temporal coherence loss1 based on inter-frame warping,
(5) temporal coherence loss2 based on the temporal coherence
discriminator, and (6) foreground-background separation scheme.

As shown in Fig. 6, without the content loss, the semantic infor-
mation in local facial regions is quite different from the input photo.
Without the geometry loss, the lip movements are small and lip

(c) without foreground-
background separation

(a) inputs (b) generated
landmark
sequence

(d) ours

Figure 7: Ablation study: (a) inputs, (b) landmark sequence,
(c) results w/o foreground-background separation (back-
ground text moves), and (d) Ours (background text static).
The photo by Smithsonian Institution (Public Domain).

synchronization is poor. Without the identity loss, the generated
faces look less similar to the input face. Without the two coherence
losses, the generated results have worse inter-frame continuity
than ours. As shown in Fig. 7, without the foreground-background
separation scheme, the background is warped and generates worse
results: as shown in Fig. 7(c), the text on the whiteboard is warped
in the results without the foreground-background separation, while
in our results (Fig. 7(d)) the background text remains static.

4.5 Extension to other artistic styles
Our method can be easily extended to artistic portrait animation of
different styles. To demonstrate this, we further extend our method
to a cartoon style, by training on cartoon images collected from the
internet. An example is shown in Fig. 1. More results, details and
more styles are in the appendix and demo video.

5 CONCLUSION AND LIMITATION
In this paper, we propose a novel method for generating an expres-
sive artistic talking line drawing video from a single face photo
and a speech signal. Our method (1) achieves both facial geometry
change and artistic style transfer in a single GANmodel, (2) ensures
temporally coherent generation via two novel coherence loss terms,
and (3) proposes a scheme for separate processing of foreground
and background to avoid unnatural background warping. Experi-
ments demonstrate that our method is better than three baseline
methods and can generate high quality artistic talking line drawing
videos. Our proposed method can be easily extended to other styles,
e.g. cartoon style, and generate high quality results. There are still
some limitations: our method does not perform well when the in-
put is blurry or with exaggerated expression, or the foreground
separation is inaccurate, which we will improve in future work.
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