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Abstract Reconstruction algorithms
make it possible to retrieve a surface
from the Delaunay tetrahedralisation
(DT) of a point sampling, whose
density reflects the surface local
geometry and thickness. Most of
these algorithms are static and some
work remains to be done to handle
deforming surfaces. In such case, we
defend the idea that each point of
the sampling should move with the
surface using the information given
by the motion to allow fast recon-
struction. In this article, we tackle
the problem of producing a good

evolving sampling of a deforming
surface S, and maintaining its DT
along the motion. The surface is
known only through a projection
operator (O1) :R3 → S, and a nor-
mal operator (O2) that returns the
oriented normal at a point on the
surface. On that basis, we offer some
perspectives on how reconstruction
algorithms can be extended to the
tracking of deforming surfaces.

Keywords Delaunay tetrahedralisa-
tion · Surface reconstruction · Particle
sampling

1 Introduction

Increasing computational power and new data acquisition
techniques have created a growing interest in the visu-
alisation of dynamic phenomena. The understanding of
moving and deforming surfaces can find many applica-
tions in medicine, physics, the entertainment industry, etc.,
but the problem of tracking surfaces has of yet been sel-
dom addressed, except for substantial contributions in the
field of level-set methods. We should also mention the
work of Cheng et al. [6], who addressed this problem for
skin surfaces in the case of a very special motion. Previous
works mainly focused on maintaining a point sampling or
a surface triangulation, but to our knowledge most existing
methods usually turn out to provide insufficient informa-
tion on the surface. For instance, in the case of surface
triangulation-based methods, topological changes can not
be systematically detected.

Instead of maintaining a surface triangulation, we pro-
pose the alternative of continuously reconstructing the
surface triangulation from the Delaunay tetrahedralisa-

tion (DT) of a moving surface point sampling. Therefore,
the approach we develop here is twofold: it first consists in
maintaining a point sampling bound to a moving surface,
so that the point distribution favours a good behaviour
of Delaunay-based reconstruction algorithms; secondly, it
preserves the DT associated to the point sampling along
the motion. Indeed, it has been shown that a topologically
and geometrically sound approximation of a surface can
be recovered from the DT of a point sampling if the latter
fulfils special requirements (nerve theorem, Edelsbrunner
and Shah [10]). Moving surface tracking can thus be re-
duced to maintaining the DT of an evolving good point
sampling, and the present article provides a robust frame-
work for localisation or reconstruction algorithms based
on the DT.

Our method is yet another particle sampling with the
particularity that it relies heavily on its underlying DT.
The latter provides a proximity data structure and car-
ries local and global information on geometric features.
The particle sampling method was first introduced to the
graphics community by Szeliski and Tonnesen [24] to
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simulate deformable surfaces and by Turk [25] for sur-
face texture generation (see Fig. 1 for example of defor-
mation). It was spread by Witkin and Heckbert [28] who
clearly presented the problem through a simple numeri-
cal scheme. The technique consists in attaching particles
to the surface and assigning to each of them an energy de-
riving from the interactions with other particles. Starting
from an initial distribution, an iterative optimisation pro-
cess allows a local minimum to be found that corresponds
to a uniform distribution over the surface.

Although our algorithm can be used in any static situ-
ation, it might be slower than several other recent algo-
rithms in this case. It has been designed for a moving
surface, where the solution of a point sampling at time t
is a good initial configuration for the optimisation scheme
at time t +∆t. We provide a fast method, first by using
the DT to improve the numerical scheme involved in nu-
merous existing methods, but also by setting up a strategy
for fast update of the DT.

We assume the surface S to be without boundary
and C1 at any time except when and where topological
changes happen. The surface is probed only through two
operators: a projection operator

O1 :R3 → S
x �→ p̃

where p̃ is the nearest point to x that belongs to the sur-
face; and a normal operator

O2 : S →R3

p �→ n

where n is the oriented normal to the surface at the co-
ordinates of p. The results presented hereafter have been
obtained using implicit surfaces ( f(x) = 0), along with
a Newton–Raphson scheme (cf. Appendix 2) for the pro-
jection operator and the normalised gradient n = ∇ f/|∇ f |
(computed using a first order finite differences scheme) for
the normal operator. Our method handles motion in a dis-
crete manner: at each time step, it maintains a point sam-
pling which adapts to the local curvature and thickness,
and maintains its DT. The adaptation has some limits, for
instance, when and where topological changes occur, the
point density does not grow to infinity: This is equiva-
lent to the assumption that topological events arise be-
tween two time steps. Currently, our algorithm handles
all kinds of topological changes except the appearance of
a new connected component. This restriction follows from
the very little knowledge we have of the surface through
O1 and O2, but further information about the surface can
be used to solve this problem.

Contributions. To our knowledge, this is the first time
a DT is used along with particle sampling to track a de-
forming surface. It allows for very few assumptions to be

made on the surface while providing a good approxima-
tion of the surface using curvature and thickness adapta-
tion. In a purely technical point of view, the contributions
of this paper are:

– A new local curvature and thickness estimation of
a sampled surface

– An improvement of the particle sampling scheme, in
the coordinate descent strategy, in the computation of
the Levenberg–Marquardt step and in the method to
adapt the sampling to the curvature and the thickness
of the surface

– A new strategy to update the DT in a lazy manner such
that it does not destabilise the optimisation scheme

Organisation. Section 2 provides a state of the art par-
ticle sampling method. Section 3 describes our adaptive
particle sampling method. In Sect. 4, we explain our algo-
rithm for fast update of the DT and in Sect. 5, we illustrate
the validity of the framework, using it for the reconstruc-
tion of a moving surface, and to present some benchmarks.

2 Related work

The particle sampling (PS) method has been used for nu-
merous purposes. Witkin and Heckbert [28] introduced
it to tackle implicit surface visualisation and deforma-
tion problems. However, the PS method was later used
to mainly handle static problems: implicit surface visual-
isation [17], texture mapping [29], implicit surface poly-
gonisation [11, 15, 22, 26], surface simplification [20]. Ac-
tually, distributing a point set on a manifold is a widely
investigated topic in applied mathematics [14]. Levet et
al. [16] presented an anisotropic PS method based on the
Witkin–Heckbert method to achieve point rendering [17]
of an implicit surface. They later proposed a geometric
method to perform a fast, almost optimal, particle sam-
pling of a static surface, which needs several optimisation
steps to reach an optimal configuration. Surprisingly, the
PS method has been used mainly for static problems, al-
though it appeared to be slow, as the iterative process
might need a lot of steps before reaching a satisfying
solution of the problem starting from a bad initial con-
figuration. Nevertheless, it is obviously fast for motion
problems, when the solution of the problem at time t is
a good initial configuration of the problem at time t +∆t.

If the use of the PS method has been restricted to static
cases, it is most probably because of localisation difficul-
ties. Indeed, previous works rely on a localisation grid
which needs to be refined, at a high computational cost,
when it is too coarse. When dealing with an adaptive point
sampling of a moving surface, such a method looses ef-
ficiency, as the grid needs to be refined almost as soon
as curvature changes appear, and becomes totally ineffi-
cient if the grid is too refined. In this article we propose
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to use the DT as an alternative powerful proximity struc-
ture. Hierarchical localisation structures such as octree or
kd-tree used along with a k-neighbour algorithm, such as
those proposed in [23], might be competitive compared
with the DT, as such a data structure could be updated rela-
tively quickly after the motion of one point. However, as
we choose to maintain the DT for Delaunay-based recon-
struction algorithms to be run on top of our algorithm, we
find it elegant and valuable to use it to support the particle
sampling.

The particle sampling method relies on an energy
associated to the interaction between particles. Szeliski
and Tonnesen [24] first used a Lennard–Jones potential
function drawn from the physical Van der Waals forces
to simulate this interaction. De Figueiredo et al. [11]
used spring-mass force systems to sample and polygo-
nise an implicit surface, and Turk used a reaction-diffusion
model for textures generation [25] and surface retil-
ing [26]. Witkin and Heckbert [28] proposed an optimisa-
tion scheme based on Gaussian repulsion to visualise and
deform an implicit surface. The sampling produced is uni-
form with respect to the R3 Euclidean metric restricted to
the surface. Karkanis et al. [15] compared this last method
to with their polygonisation algorithm, but their use of
the PS method leads to an unbearably slow algorithm.
Crossono and Angel [8] later proposed some modifica-
tions of the Witkin–Heckbert method, in order to work on
3D density images. They used the same repulsion energy
as in [28] but set up a strategy to progressively adapt the
scaling factor to the local curvature. Rösch et al. [21] ex-
tended the Witkin–Heckbert method to algebraic implicit
surfaces with boundaries and self-intersections. Meyer
et al. [18] also proposed several improvements of the

Fig. 1. Morphism between the bunny and a torus (top), and deforming sphere sampling (bottom), illustrating the dynamic adaptability of
the sampling to the curvature and thickness changes of the surface

Witkin–Heckbert method, in order to avoid the tuning of
too many parameters, and to make adaptive sampling: they
derived a new energy which is less influenced by scale
changes, and which can be tuned to control the number
of particles needed or speed up computation. They also
introduced the Levenberg–Marquardt method, therefore
avoiding the tuning of the gradient step in the optimisation
scheme, and added new coefficients in the energy expres-
sion so that it leads to adaptive sampling. Though this
latter article provides deeper understanding of the particle
sampling method and proposes some clever ideas, the re-
sults are still deceiving, as the algorithm remains slow and
the adaptation to the curvature very limited.

3 Adaptive particle sampling

Given a surface S and a metric dS defined on it, the particle
sampling aims at distributing a set of points such that the
distribution satisfies the best packing problem. This con-
sists in maximising the smallest distance among N points
bound to S

dN
S = max

p1,...,pN∈S
min

1≤i< j≤N
dS(pi, pj). (1)

According to [3], for N being sufficiently big, it can be
considered that any best packing configuration is uni-
formly distributed on S relative to the metric dS. The solu-
tion of the best packing problem thus always corresponds
to a well spaced distribution over the surface S (Fig. 2).
However this problem is never solved directly as the func-
tion to be maximised in Eq. 1 is non-regular (i.e. C0 but
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Fig. 2. Hexagonal packing, solution of the best packing problem in
the plane with the Euclidean metric

not differentiable). Instead, it is a common approach to de-
fine an energy E : (S)card(P ) −→ R on the point set P ,
which is generated by mutual repulsion between each pair
of points

E =
∑

i∈P

Ei =
∑

i∈P

∑

j �=i

Eij (2)

where Eij = f(dS(pi, pj)) is a C2(S × S) function cen-
tered on point pj . In practice, dS is approximated by the
Euclidean metric d in R3 and an optimisation scheme is
used to find a minimum of this energy. The sampling is
uniform in the sense of the geodesic metric dS only if
the support of the energy functions at each point is suffi-
ciently small and the distribution on the surface is dense
enough.

3.1 Choice of the energy function

Needless to say, the energy function has to be carefully
chosen so that the point distribution corresponding to the
energy minimum is as close as possible to the solution of
the best packing problem. The Gaussian energy

Eij = e
− r2

ij

σ2
i

(where ri j = pj − pi and rij = d(pi, pj)) was first used by
Witkin and Heckbert in [28]. This energy can lead to bad
minimal energy configuration if the scaling factor σi is too
small or too big as shown in Fig. 3. Witkin and Heck-
bert [28] set up a complex scheme to control σi , but we
find that a direct method to scale the energy consists in
defining σi as a function of d(pi, pj0), where pj0 is pi’s
nearest neighbour (see Fig. 3)

σi = rij0√
2
.

With this “moving” definition of σi , pi is submitted to the
repulsion of at least one particle throughout the process.
At equilibrium it will be stuck in a well defined minimum,
which is equidistant from the closest particles. Other par-
ticles do not have any influence on the definition of that
minimum since their contribution to Ei is negligible in
that area. This means that they can be suppressed from the

Fig. 3. To be a suitable repulsion energy, the Gaussian energy of
a particle induced by its nearest neighbour should be such that
σ√
2

< r < 2σ , where r is the distance between the two particles

definition of Ei ; this is of critical importance from a com-
putational point of view. Moreover, the DT is a geometric
structure that states proximity relationships on a set of
points, and allows us to wipe out the problem encountered
in previous PS methods of localising relevant points. For
the energy expression Ei , we consider only the neighbours
of pi in the DT, and among them, we prune irrelevant
ones, i.e. those whose normal to the surface clearly in-
dicates that they belong to other parts of the surface and
those located beyond a distance 2σi from pi . The scaled
energy now reads

Ei =
∑

j∈neighbours(pi)

e
− r2

ij

σ2
i .

This energy is stable, efficient and can be computed very
quickly. It further simplifies the calculus of our optimisa-
tion scheme.

3.2 Optimisation scheme

Uniformly distributing a set of points by minimising an
energy E on a surface is a difficult optimisation problem.
The energy expression is far too complex to be readily
used in an advanced optimisation method. Since variables
(i.e. particles) are loosely coupled, it is worth applying
a simple coordinate descent method where only one par-
ticle is free at a time and all the others remain fixed
(cf. Fig. 4), as done by Meyer et al. [18].

3.2.1 Coordinate descent

Given the energy E(k) associated to the point sampling’s
configuration k, if the displacement of at least one particle
leads to E(k +1) such that E(k +1) < E(k), we proceed
with the coordinate descent. When no particle displace-



Dynamic Delaunay tetrahedralisation of a deforming surface

Fig. 4. Coordinate descent method in the plane along the directions
of the axis

ment leads to a decrease of the energy, the minimum
has therefore been reached, and the iterative process is
stopped. This method can be quite inefficient if particles
are selected one after the other, because some particles
might be in a position where they can not minimise the
energy any further. Therefore, we improved the scheme
by only selecting particles that can lead to substantial de-
crease of the energy: when the displacement |mi | of a par-
ticle pi is big with regard to its scale factor σi , i.e.

|m|
σi

> THRESHOLD,

(in practice, we set the THRESHOLD to 0.05) we decide
that its nearest neighbours and itself are good candidates
for further steps. When there is no longer any candidate,
all particles are stabilised and the algorithm terminates.

Algorithm 1. Coordinate descent
Require: E an energy function, {p1, . . . , pN} ⊂ R3

Ensure: E(p1, . . . , pN ) reaches a local minimum
let Candidate_list be a FIFO list
push every point in Candidate_list
while Candidate_list is not empty do

pop a candidate pi and compute its new position pnew
i

if
d(pnew

i −pi )
2

σ2
i

> THRESHOLD then

push pnew
i in Candidate_list

push the nearest neighbours of pnew
i in Candidate_list

if not already in it
end if

end while

When all particles are fixed except particle pi , the
latter is moved to a new position so that the diminu-
tion of E in this “direction” is maximum. If we assume
Eij ≈ Eji ∀ j (cf. Eq. 2), decreasing E is then equivalent to
decreasing Ei and the problem is reduced to minimising
the energy

Ei(pi) : S −→R.

Note that, here, Ei is a function of pi only, since all the
other parameters are fixed. We now assume that if the dis-
tribution is dense enough, the surface can be considered

to be almost plane in the region which contains pi and
its nearest neighbours. Let Ti be the corresponding tan-
gent plane. Under such conditions, the problem is almost
equivalent to minimising

Fi(pi) : Ti −→R

where Fi = ∑
j �=i Fij and Fij = ed(pi ,qj)

2/σ2
i . Fi refers to

the “tangential”energy of particle pi , and qj is the projec-
tion of pj on Ti . Reducing the energy minimisation 3D
problem to a problem in the tangential plane leads to sub-
stantial computational acceleration. This approach further
ensures that particles are bound to the vicinity of the sur-
face, preventing any displacement to the opposite side of
the surface. However, this new optimisation process must
be constrained by the decrease of Ei(pi).

3.2.2 Optimising Fi with regards to pi

The Hessian matrix Hi of an energy Fi , expressed as
a function of rij ( j = 1, . . . , Ni , j �= i) can be developed
into

Hi = ∂2 Fi

∂p2
i

=
Ni∑

j=1, j �=i

[
∂2 Fij

∂r2
ij

(
ri j

rij
⊗ ri j

rij

)

+ 1

rij

∂Fij

∂rij

(
I − rij

rij
⊗ rij

rij

)]
. (3)

According to Meyer et al. [18], the second term inside the
sum can be ignored, since first order derivatives tend to
zero in the vicinity of the minimum. A first order approxi-
mation of the displacement hi of particle pi which ensures
that ∇Fi(pi + hi) = 0 is

hi = −H−1
i ∇Fi .

This approximation alone might lead to erratic behaviour
and might not converge when starting from a remote
point, because the Hessian’s approximation is not valid.
This problem is solved by applying the Levenberg–
Marquardt (LM) method. The latter is a trusted region-
based method which proposes to condition the Hessian
matrix in an adaptive way. The conditioned Hessian ma-
trix reads

H̃lm
i =

{
Hll

i .(1+λi)

Hlm
i , l �= m.

The LM method ensures that there always exists a λi > 0
such that hi lays in the neighbourhood of the initial pos-
ition pi (i.e. within the distance to the nearest neigh-
bour).

This optimisation scheme is modified to find the min-
imum of Fi in Ti , and the following constraint is further
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added:

Ei(p0, . . . , O1(pi +hi), . . . , pn)

≤ Ei(p0, . . . , pi, . . . , pn).

See Algorithm 2 for the pseudo-code of the LM method.
The details of the calculus for the LM step are given in
Appendix 1.

Algorithm 2. Levenberg–Marquardt (LM)
Require: Ei ∈ C2(S), pi ∈ S and λi > 0
Ensure: Ei(O1(pi +hi)) < Ei(pi)

let hi(Fi) ← H̃−1
i ∇Fi

while Ei(O1(pi +hi)) < Ei(pi) do
λi ← 10×λi

compute H̃i (Eq. 3)
hi ← H̃−1

i ∇Fi
end while
λi ← λi

10
return hi

3.3 Changing the metric for adaptive sampling

The particle sampling method presented in the previous
sections relies on the DT of the sampling. The DT pro-
vides direct information on neighbouring relationships
and ensures that the geodesic metric can be approximated
by the Euclidean one. Our article further aims at provid-
ing a robust method to produce a sampling configuration
that favours reconstruction algorithms based on the DT.
Amenta et al. [2] proved that, provided the input point-
set density is proportional (with a sufficiently small co-
efficient) to the distance to the medial axis (ε-sample),
their CRUST algorithm produces a surface approxima-
tion which is similar to the surface itself from both ge-
ometrical and topological points of view. A review of
the algorithms which provide similar guaranties is given
in [4, 9].

In practical cases, it is difficult to check whether
a point-set is an ε-sample for a given surface. Alle-
gre et al. [1] therefore proposed an alternative method
which relies on other interesting properties of point sam-
plings. Their idea consists in using a geometric radius
based on the normal deviation, and a local thickness,
rather than the distance to the medial axis. The geo-
metric radius and the local thickness are both defined
on continuous surfaces, but they can be readily approx-
imated on point samplings. Exploiting the DT and the
normal operator O2, we propose a novel approximation
of those quantities. These approximations are used to
define a new metric, which is then used in our optimisa-
tion scheme, therefore ensuring that the point distribution
adapts to the local curvature and to the thickness of the
deforming surface. In the following sections, we give
the definitions of the normal deviation and the thickness,
and present the way they are used in the optimisation
scheme.

3.3.1 Normal deviation radius

The normal deviation knd
i of the sampling at pi is defined

by

(
knd

i

)2 = max
j∈N(i)

1−ni ·nj

r2
ij

where N(i) refers to the neighbours of pi in the DT
which are on the same side of the surface (i.e. ni ·nj > 0);
rij refers to the distance between pi and pj (as above),
while ni and nj are the normals to the surface in pi and pj ,
respectively (cf. Fig. 5).

3.3.2 Thickness

The thickness at point pi is a property defined on the sur-
face, which corresponds to the distance between pi and
the nearest point that lies on an opposite region of the sur-
face (see Fig. 6). It is estimated from the DT by

(thi)
2 = min

j∈Ndel(i),ninj<0
d2

ij

where Ndel(i) refers to the Delaunay neighbourhood of pi .

3.3.3 Adaptation coefficient ki

The adaptation coefficient ki is a combination of the
Delaunay-based information carried by knd

i and the

Fig. 5. Normal deviation (knd
i )2 = 1−cos(Θ)

r2
ij

Fig. 6. Radius of curvature rk (red) and thickness th (grey)
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surface-based information carried by thi . We use this co-
efficient to distort the metric locally

k2
i = max

(
(
knd

i

)2
,

1

th2
i

)

3.3.4 Changing the metric

In previous works, an adaptation of the point sampling to
the curvature was achieved by adding weights in front of
the Ei in the energy expression Eq. 2 [18], or by modify-
ing the scaling radius σi [8, 15]. It turns out that modifying
the scaling radius leads to extremely slow convergence,
while adaptability is limited when adding weights. The
key to handling adaptation is not to modify anything in
the energy expression, but to change the metric instead
(Fig. 7)

d2(p1, p2) =
(

k2
1 + k2

2

2

)
|p1 − p2|2.

Note that the scaling radius σi is defined using this new
metric. The notion of surface neighbourhood is not af-
fected by the metric change, therefore the DT is still
defined using the Euclidean metric. Results of the adap-
tation can be seen on the deforming sphere of Figs. 1
and 8.

3.3.5 Controlling density

In order to provide an adaptive sampling while ensuring
fast convergence of the PS method, some points need to
be added or removed in the course of the algorithm. We

Fig. 7. Neighbourhood of pi in the feature size dependent metric

thus define the following rules: As soon as a particle pi is
no longer a good candidate, i.e. if σi < Σmin the particle is
deleted; if σi > Σmax the particle splits into two particles
that are pushed in the candidate list, Σmin and Σmax being

Fig. 8. Adaptive reconstruction of the Stanford bunny (13K points)
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a user defined threshold. In our experiment we noted that
good results were obtained with Σmax ≈ 2Σmin.

4 Fast update of the DT

When a particle has been moved, the DT needs to be up-
dated accordingly. No satisfying methods have yet been
released to update the DT efficiently, but many strategies
are still possible.

4.1 Overview of existing algorithms

Most existing works deal with the Delaunay update of
several points simultaneously in motion. Guibas and Rus-
sel [13], proposed three different algorithms to update the
vertices of the DT simultaneously. The first one is based
on the kinetic data structures (KDS) introduced by Bash
and Guibas [12]. The idea behind the KDS is to main-
tain a set of certificates which ensure that the Delaunay
properties remain valid. When a certificate fails, the KDS
recomputes the parts of the structure which need to be
changed and updates the set of certificates. There is one
certificate per facet. The KDS method is unbearably slow
when all the points move simultaneously, since the al-
gorithm needs to separate the roots of a degree-6 poly-
nomial to determine a certificate’s failure time. Moreover,
the KDS can not handle degenerate cases where several
events happen at the same time (for instance, when more
than six points are cospherical or more than four points are
coplanar).

The idea of the second method is to update only what
needs to be updated to recover the DT, relying on two
predicates:

– The embedding predicate which is true for a vertex if
all the tetrahedra incident to this vertex are embedded
in R3

– The Delaunay predicate which is true for a vertex if
every union of two adjacent tetrahedra incident to this
vertex are of Delaunay (meaning the circumscribing
sphere of one tetrahedron does not contain any vertex
of the other tetrahedron in its interior)

All the vertices are moved to their final position, and
in a first step, the vertices whose embedding predicate has
failed are successively removed from the DT and put in
a list until the tetrahedralisation is embedded in R3. In
a second step, the same strategy is applied on vertices
which the Delaunay predicate has failed. At the end of
these loops, the remaining tetrahedralisation verifies the
Delaunay properties, and all the removed points are rein-
serted in the DT.

The removal operation and the localisation task re-
quired for reinserting a point are the most time-expensive
routines of this strategy. Guibas and Russel finally pro-
posed an improvement of the second step of the second

method, by trying to flip in order to recover the DT from
the embedded tetrahedralisation. The flipping heuristic
can fail as reported in [13]: in this case, the DT has to
be recomputed from scratch. Fortunately enough, this last
strategy did not fail so often in their experiments and ap-
peared to be the fastest presented in their benchmarks.

4.2 Moving vertices one after another

In the present situation, vertices are moved one after the
other, and the information on the previous position of
a vertex can thus be used for fast localisation of its target
position. If a vertex violates the embedding or the Delau-
nay predicate, the inserting-removing strategy can then be
performed on that basis (see Algorithm 3). This strategy
reduces the localisation cost to zero in the case of small
particle displacement. However, the point removal rou-
tine monopolizes 9/10 of the global computational time.
In our method, the Levenberg–Marquardt scheme ensures
that a particle can not escape its first-neighbour ring in one
step. Therefore, when a point moves, its neighbourhood is
only slightly altered and we can update the DT in a lazy
manner, without disturbing the optimisation scheme.

Algorithm 3. move_point
Require: v ∈ E a vertex of the DT DT(E), pnew ∈R3

Ensure: DT is the DT of E when v has moved to pnew
let pold be the position of v
set v to the position pnew
if v does verify the embedding predicate then

if v does verify the Delaunay predicate then
return

end if
end if
set v to its old position pold
insert pnew in DT
remove v from DT

4.3 Lazy update

We propose to associate two distinct positions to each ver-
tex of the DT: the first one corresponds to the true position
which is used in the sampling optimisation, while the sec-
ond one is fictitious and allows the Delaunay properties
to be satisfied. We also define a strategy to ensure some
DT-based relevance between the two positions. A score is
associated to each vertex, indicating how strongly its true
position violates the embedding and Delaunay properties
after a move:

– If the vertex does not verify the embedding predicate at
its true position, its score is incremented by s1.

– If the vertex does verify the embedding predicate, but
does not verify the Delaunay predicate at its true pos-
ition, its score is incremented by s2.

When the score of a vertex reaches slimit, the vertex is
moved by insertion/suppression (as we stated experimen-
tally that it is faster to insert first and then remove than the
inverse).
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Table 1. Algorithm profile, with basic (top) and lazy (down) De-
launay update, on the following experiment: a set of 3000 points is
distributed on the ellipsoid, starting from a very bad configuration
and ensuring that particles can be neither added nor deleted. All the
particles have to move until they reach their equilibrium position
and the algorithm thus meets all situations from the worst case to
the best one as shown in Fig. 9. Hence, the experiment reflects the
relative cost of each subroutine on the average

Name Subroutine CPU time (%)

Move_point 92.59
Remove 74.31

Delaunay_predic 6.58
Insert 2.90

Embedding_predic 0.62
Locate 0.06

LM 7.41
Lazy_move_point 81.15

Remove 49.00
Delaunay_predic 11.59

Embedding_predic 2.70
Insert 2.06
Locate 0.07

LM 18.85

The laziness consists in deferring the updating of the
neighbourhood of a point as long as possible. In our al-
gorithm, the values of s1, s2 and slimit were set to 2, 1
and 4, respectively. We experimentally stated that if the
maximum score value is higher than 4, the update scheme
is “too lazy” and influences the optimisation scheme. In

Fig. 10. Morphism between the bunny and the torus (50 frames), the blue and red lines show the number of particles removed and added
during the computation of the ith frame, respectively; the green line represents the CPU time required to compute one frame

fact, the latter converges more quickly, but the final con-
figuration is too different from the solution of the best
packing problem.

This strategy might not win the prize of elegance, but
it reduces the calls to the vertex removal routine by more
than 3, and reduces the computation time by a factor of 3.
The Delaunay update routine still remains the bottleneck
of the whole algorithm as shown in Table 1.

5 Applications and results

We have tested our algorithm on various examples includ-
ing static and dynamic shapes defined by different implicit
surface representations. Indeed, implicit surfaces provide
direct expressions for the operators O1 and O2. Simulation
results show that our method ensures excellent adaptation

Fig. 9. Very bad initial distribution (left), and final configuration
(right), on the ellipsoid with 3000 points
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to the curvature and thickness of the surface, and that geo-
metrical and topological changes are always handled prop-
erly. Three different kinds of representation were used,
namely skeletal implicit surfaces, frequency-based repre-
sentation using spherical harmonics [19], and variational
implicit surfaces using radial basis functions. A good test
for our algorithm is the morphism of two shapes. We used
the work of Turk and O’Brien on variational implicit sur-
faces [27] to compute a morphism between the Stanford
bunny and a torus (Fig. 1, top).

As far as the DT is concerned, we used the data structure
design offered by the CGAL library [7], since it provides
average constant time operation for the “neighbours re-
quest”, “point insertion” and “point removal” routines. To
illustrate the adequacy of dynamic particle sampling with
Delaunay-based reconstruction methods, our algorithm
was coupled with the Delaunay-based convection algorithm
proposed by Chaine [5]. All the shapes presented in this
article were extracted from the DT using this approach.

Figure 10 presents a synthetic benchmark of the al-
gorithm running on a 50 frames morphism between the
bunny and the torus, starting with about 8000 points
and ending with 4800 points. We ran this experiment on
a AMD64 3000+ with 2 Gb of memory. It took 3 s to com-
pute a frame on average, 1.6 s on average when no big
geometrical changes occurs, and a lot longer when such an
event happens, namely, around topological changes, when
the ears of the bunny collapse (three connected compo-
nents appear and then collapse) and when handles appear
(three handles appear and two of them then disappear).
During these big geometrical changes, many particles
have to be removed or inserted in some regions to satisfy
the required density. Moreover, due to the bad shape of the
implicit function near topological changes, the projection
operator sometimes fails to reproject an inserted point at
its nearest point on the surface, and some points are there-
fore inserted and immediately removed thereafter, which
explains why the curve of removed points follows those of
added points on the graph of Fig. 10.

6 Conclusion and future works

In this article we have coupled the particle sampling
method to the problem of tracking the DT associated to
the sampling. In particular, we have shown that the DT
properties can be exploited in replacement of the usual lo-
calisation grid, and allows a parameter-free definition of
the energy involved in the particle sampling method. The
DT was further used to define a new metric which reflects
the surface local curvature and thickness. This metric is
used to adapt the sampling to surface geometrical proper-
ties, and permits the obtaining of a DT which is very well
adapted to reconstruction purposes.

On that basis, we have improved existing numerical
schemes by exploiting the local points’ configuration, and

speeded up convergence. As far as maintaining the DT is
concerned, we have adopted a lazy update strategy that
allows to postpone heavy operations as long as they are not
considered necessary. The bottleneck of our algorithm is
obviously the vertex removal and the update of the DT. Our
present investigations aim at suppressing the need for point
removal in the update algorithm. In particular, we worked
on a KDS that moves one vertex at a time. The latter is
expected to work well, since certificates are only degree-2
polynomials in this case. However, to date, our results with
this KDS have not been as good as expected. The present
work is naturally oriented towards kinetic surface recon-
struction issues. However it shall also be extended to sur-
faces where the operators O1 and O2 are not easily supplied.

Appendix 1: Details of the calculus for the
optimisation step

In [18], the optimisation step is calculated in R3 and pro-
jected in the tangent plane afterward, but when the step
is computed in the tangent plane directly, the calculus is
much more simple. For instance we avoid the inversion of
a 3×3 matrix. Let {o ∈ R3, a ∈ R3, b ∈ R3} be a coordi-
nate system for the tangent plane Ti , where o = p0

i (the
subscript 0 refers to the initial position of the particle).
We denote v(1) and v(2) the coordinates of a vector v ∈ Ti
along a and b, respectively. At each time step of the coor-
dinate descent, σi is constant. The tangential energy Fi is
then C∞ and the calculus of ∇Fi and Hi is very simple.
Let sij be the projection of ri j on the tangent plane Ti , and
nij = rij

rij
, as shown in Fig. 11. The tangential energy reads

Fi =
∑

j∈Ni

e
−

( sij
σi

)2

.

The Hessian matrix Hi(Fi) defined on Ti is

Hlm
i =

∑

j∈Ni

e
−

( sij
σi

)2
(

4

σ4
i

s2
ij −

2

σ2
i

)
nl

ijn
m
ij .

Fig. 11. Vicinity of pi



Dynamic Delaunay tetrahedralisation of a deforming surface

The tangential energy gradient is

∇Fi = −
∑

j∈Ni

2

σ2
i

e
−

( sij
σi

)2

sij .

The displacement hi in Ti therefore reads

hi = − 1

H̃11 H̃22 − (H̃12)2

(
H̃22 −H̃12

−H̃12 H̃11

)
∇Ei

and can be expressed as

hi = h(1)
i a +h(2)

i b.

In practice, we do not use the Euclidean metric in
the evaluation of hi , but a modified metric instead (cf.
Sect. 3.3.4).

Appendix 2: The Newton–Raphson method

The Newton–Raphson scheme allows us to reproject
a point on an implicit surface ( f(X) = 0); it can be
modified following the idea of the Levenberg–Marquardt

method, with a mix between a good guess and a gradient
descent:

Algorithm 4. Newton–Raphson
Require: f ∈ C1(R3) (implicit func.), p ∈ R3 and ε << 1
Ensure: f(p) < ε (p is on the surface)

let λ ← 1 ∈ R
while | f(p)| > ε do

let p̃ ← p− f(p)
∇ f(p)

(1+λ)∇ f(p)·∇ f(p)

if | f( p̃)| < | f(p)| then
p ← p̃
λ ← λ

10
else

λ ← 10λ
end if

end while
return p
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