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Abstract—We present a system for vectorizing 2D raster format
carton animations. The output animations are visually flicker
free, smaller in file size, and easy to edit. We identify decorative
lines separately from coloured regions. We use an accurate and
semantically meaningful image decomposition algorithm which
supports an arbitrary color model for each region. To ensure
temporal coherence in the output cartoon, we reconstruct a
universal background for all frames, and separately extract fore-
ground regions. Simple user-assistance is required to complete the
background. Each region and decorative line is vectorized and
stored together with their motions from frame to frame.

The significant novel contributions of this paper are: (i) the new
trapped ball segmentation method, which is fast, supports non-
uniformly colored regions, and allows robust region segmentation
even in the presence of imperfectly linked region edges, (ii) the
separate handling of decorative lines as special objects during
image decomposition, which avoids results containing multiple
short, thin over-segmented regions, and (iii) extraction of a single
patch-based background over all frames, which provides a basis
for consistent, flicker-free animations.

Index Terms—Cartoon vectorization, Trapped-ball method, Im-
age decomposition, Foreground extraction

I. INTRODUCTION

Cartoon animation, i.e. cel animation, has a long history,
resulting in a large body of artistic work. Children and adults
enjoy the stylized characters, the drawing and animation styles,
plots, and soundtracks. Currently, such cultural heritage is
preserved and disseminated as digital video after conversion
from film using telecine. Such video is in raster format.

However, animated 2D cartoons intrinsically have a vectorized
nature. Cartoon making has a relatively fixed composition pro-
cedure, including an unchanging but moving background, and
an animated foreground. In comparison to real-world videos,
2D cartoon animations have simpler, more artificial contents,
composed of regularly (but not necessarily uniformly) colored
regions, and wide decorative lines, as shown for example in
Fig.2.

This particular nature of 2D cartoons means that there are
potential advantages in converting them to vector format:

• a vector format will generally allow higher compression
ratios for storage and transmission than raster format,
because of the small number of regions which can be
described by simple colour models,

• the vector format is resolution independent, readily al-
lowing display on devices with differing capabilities,

• a meaningful vector representation allows the cartoon to
be much more easily edited, e.g. to change the location

Fig. 1. left column: Original videos; right column: Vectorization results
showing region boundaries and decorative lines

of a character in a scene, or to add new objects in front
of some existing objects and behind others,

• a meaningful vector representation is much more useful
for multimedia information retrieval, allowing a search to
be made for objects of a particular shape,

• undesirable artifacts caused by lossy raster compres-
sion will be removed: instead regions will be strongly
coloured, with strong edges, which better fits the artistic
style of cartoons. This in turn allows better quality of
video to be transmitted if limited bandwidth is available,
and also has potential applications to cartoon restoration.

In recent years, various approaches have been proposed for
vectorizing rasterized images [1], [2], and commercial pack-
ages exist, e.g. Stanford VectorMagic [3]. However, these
do not take into account the particular features of cartoon

Fig. 2. Cartoon gallery
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animations, and in particular tend to suffer from oversegmenta-
tion. Furthermore, none of them provides temporal coherence.
Sýkora [4]–[6] made significant advances in vectorizing car-
toons, but his approach relies on a particular drawing style
in which meaningful regions are enclosed by thick bounding
lines, and as a result, is inapplicable to many modern cartoon
styles.

We note that specific challenges exist when performing 2D
cartoon vectorization. The simplicity of the cartoon’s contents
can be at times a disadvantage as well as an advantage. Small
amounts of flickering are more noticeable in simple cartoon
scenes than in real-world videos, and strongly decrease the
visual quality. Thus, accurate boundaries and locations of
segmented regions are necessary to achieve visual temporal
coherence. Segmentation should be semantically meaningful
in terms of the color regions and decorative lines output. We
take into account the particular nature of cartoons to solve
these problems.

Edge information provides a strong hint for decomposition of
cartoon animations, but extracted edges often contain gaps and
can not always be reliably joined. We overcome this problem
by using a novel trapped-ball method to stably segment each
frame into regions, guided by the edges, but which can cope
with gaps. The color in each region need not be uniform: any
desired color model may in principle be used (in practice here
we use a quadratic model). We separately reconstruct the static
background and extract moving foreground objects to provide
a layered representation in which the regions and decorative
lines are vectorized, and we record their motions. Simple user-
assistance is required to complete the background.

The significant novel contributions of this paper are: (i) a new
trapped ball segmentation method, which is fast, supports non-
uniformly colored regions, and allows robust region segmen-
tation even in the presence of imperfectly linked region edges,
(ii) the separate handling of decorative lines as special objects
during image decomposition, which avoids results containing
multiple short, thin over-segmented regions, and (iii) extraction
of a single patch-based background over all frames, which
provides a basis for consistent, flicker-free animations.

II. RELATED WORK

Sýkora’s [4]–[6] work on vectorization of cartoon animations
is the most closely related previous work to ours. In his case,
cartoons must have a foreground layer consisting of dynamic
regions each enclosed by clearly visible outlines. An edge
detector similar to a Laplacian of Gaussian filter is used for
outline detection, and is extensively discussed in his paper.
Foreground and background are extracted by the strong hints
of outlines in each frame, and then a graph-based region
matching process is used to find the region relations and
transformations between frames. His approach relies heavily
on correct and complete detection of the enclosing outlines.
Due to these strong restrictions, his approach fails on many
cartoons in practice, such as the one in Fig.2. Our method can
handle more complicated cartoons, with non-uniform shading,

and weaker edges. Importantly, we are able to compute a high-
quality segmentation without perfect edge detection.

High-quality vectorization of cartoons requires accurate seg-
mentation of relatively few meaningful regions. There is a
vast literature on image segmentation. Many sophisticated
color-based methods, such as mean-shift segmentation [7],
typically generate an over-segmented result with too many
regions of meaningless shape and flat shading when applied
to cartoons. Commercial software, such as Adobe Live Trace,
CorelTrace, and AutoTrace, also typically produces regions
with flat shading. Ardeco [1] can find regions of quadratically
varying color. However, as this method initially labels the
pixels randomly and refines the labeling, it too often produces
many small regions, and hence is unsuitable for our purpose.
We generate larger initial regions based on edge information,
and then refine these regions using color compatibility to find
precise region boundaries. Because we use edge information
to find initial regions, the final regions are larger and more
meaningful. However, we only label each pixel once, so our
method is much faster than many other segmentation methods,
taking just a few seconds per frame.

Sun also presents a semi-automatic image vectorization
method [2]. Complex images must be manually decomposed
into several semantic parts. Each part is then modeled using
an optimized gradient mesh Coons patch allowing for smooth
color variation. Use of a gradient mesh means that relatively
few regions are needed to represent an object. As the author
notes, his method has problems with images containing com-
plicated topologies, very thin structures, or many small holes.

Clearly, simply applying segmentation and vectorization on a
frame by frame basis will not produce good results, especially
in the presence of raster compression artifacts and occlusion.
Segmentation which is not coherent between frames will cause
flickering in the vectorized output. Previous approaches to
temporally coherent video segmentation [8]–[10] have tried to
avoid such problems via optimization. Although such methods
may be appropriate for real-world video, they do not produce
precise enough results for cartoons, as even minute inappro-
priate regions and outlines are clearly visible, especially when
present in the background, due to the smooth shading found
in cartoons. We assume that the cartoon has an unchanging
background over a sequence of frames, allowing us to achieve
temporal coherence by extracting a unified background before
detection of foreground objects and their motions.

III. OVERVIEW

Temporal video segmentation, which can segment a whole
video into independent video sequences, each with a dif-
ferent (possibly moving) background shot, is a well-studied
problem [11], [12]. We assume that such segmentation has
already been performed. We focus on vectorization of a single
sequence, which comprises a static background, possibly with
camera motion relative to it, and foreground moving objects.
Such static backgrounds are widely used in cartoon making.
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Fig. 3. Vectorization framework. The input at top left is the original cartoon video, and the output at bottom right the vectorized animation.

Fig.3 shows the framework of our system. We assume that
the input is a raster 2D animated cartoon, which may have
been regenerated from an original compressed using a lossy
compression method. We vectorize a raster cartoon sequence
as follows:

• In each frame, decorative lines are detected first, and these
together with edge detection results are used to build a
mask. The image is then segmented into regions using a
trapped-ball method, controlled by this mask.

• To achieve inter-frame coherence, the frames in the
sequence are registered by finding the homography fol-
lowing the approach in [13]. A static panoramic back-
ground image is reconstructed by first initializing it with
unchanging areas, and refined by adding regions identified
as belonging to the background. The moving objects
are extracted as a foreground layer, together with their
between-frame motions.

• The background and foreground key objects are vector-
ized: their boundaries are represented as curves and their
interiors filled using quadratic (or potentially any other)
color models, and the vectorized animation is output.

We now consider particular aspects in detail.

IV. SINGLE FRAME DECOMPOSITION

An important requirement for improving visual coherence is to
decompose the cartoon image into relatively few meaningful
objects. Typically, cartoon images contain two types of objects:
colored regions, and decorative lines—see Fig.2. Colored
regions need not have a uniform color, but can be described
using some simple model for color as a function of position,
e.g. a quadratic model.

Due to the typically large differences in shading between
neighboring regions, edge information provides a strong hint
for meaningful region segmentation. We thus use a Canny edge
detector [14] to extract edge information as a guide to image
decomposition.

However, directly using edge information to find region bound-
aries and decorative lines has various challenges:

• especially when processing compressed video, whatever
parameter settings are used, use of any simple edge
detector typically results in various edges being missing,
others containing gaps, and spurious noisy edges,

• wide decorative lines produce two parallel edges, which
can lead to many thin, and short, over-segmented regions.

We take these into account as follows. First, the decorative
lines are separately extracted in each frame. The pixels covered
by these lines are then combined with other pixels belonging
to edges detected in the frame, using a standard Canny edge
detector, to give a mask to control image segmentation.

Segmentation of each frame is performed using a novel
trapped-ball model, allowing us to overcome imperfections
in the edge detection results. The idea is that a suitably large
ball moves around inside a region delimited by the edge mask.
Even if the edge mask locally has a gap, the ball is too
big to go through it, and so will be limited to the initial
region. In practice, we use morphological operations from
image processing to implement this conceptual framework,
as detailed later. Unlike many segmentation methods, which
require regions to be of a uniform shade, we use a model
allowing spatial variation of color within each region. This is
by default a quadratic model, but any type of model could
be used, depending on user requirements on computation time
and image quality.
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(a) Segmentation mask (b) Trapped-ball segmentation (c) Our segmentation result (d) Mean shift segmentation result

Fig. 4. Single cartoon frame segmentation

We now give further details of decorative line detection and
trapped ball segmentation.

A. Decorative line detection

Unlike real video, which contains just edges between regions
of different colour, cartoons also often contain drawn decora-
tive lines, with small but finite width. The former correspond to
a high clour gradient, while the latter are specifically drawn by
artists to convey structure, motion, and other artistic meaning.
Some decorative lines are located within regions, while others
may be drawn at region boundaries for emphasis. As we
noted previously, edges and decorative lines give strong hints
for cartoon frame decomposition, but normal edge detectors
like the Canny edge detector are not suited to decorative line
detection. Using such a detector would find two edges, one
either side of the decorative line, leading to the decorative
line being considered to be a narrow region. Furthermore, edge
detectors typically lead to results with gaps, so to find these
narrow regions, we would need either an edge-linking method,
or a flood-filling method which can ignore gaps of a certain
size, to produce connected decorative lines. To avoid these
problems of producing narrow regions, and the difficulty of
connecting them, we detect decorative lines separately from
edges use a specialised approach. Sýkora’s method [4]–[6]
also detects decorative lines forming outlines of regions, but
they rely on an artistic style which produces closed decorative
lines. Unfortunately, decorative lines do not take this form in
most recent cartoon art styles: some regions are enclosed by
decorative lines, but others are only delimited by edges in
the image (i.e. places with a high gradient in colour). Sýkora
also assumes that decorative lines are the darkest regions in
a cartoon, which again does not always hold. We use a more
general approach to decorative line detection which overcomes
these problems, as well as being faster and giving more
accurate results. We first find the points on the centreline of
each decorative lines (which we call line points, to distinguish
them from edge points), and then link them. This accurately
locates the line. After that, we estimate the width of the line
using the repsonses of a Canny edge detector on either side
of the lines. We now explain in detail:

• First, we find line points. We convolve the image with
a second derivative of a Gaussian. Local maxima of the
result correspond to line points, and are found by using
non-maxima suppression as in the original Canny edge

detector [14]. This also gives a local line orientation for
each point.

• We next wish to link the line points to get contiguous lines
which are as long as possible. Steger’s linking algorithm
works by repeatedly adding points to the current line
provided that their orientation is consistent with that of
the line. Steger’s algorithm can break down due to noise
in the orientation estimates. Suppose the orientations at
successive points along the line are . . . ,αk−2, ,αk−1,αk.
Steger uses αk as the orientation of the line to find the
next point which will be added to the line. We overcome
noise by replacing αk by a smoothed version α ′

k, using a
weighted average:

α ′
k = ∑

i
ωk−iαi/∑

i
ωk−i

when deciding whether to add the next point to the line.
Closer points to the current point k are thus given greater
weight. The tuning parameter ω should be in the range
(0,1); we have used ω = 0.3 in all our examples.

• A traditional Canny edge detector is used to find both
edges of each line, from which we can estimate its
width. For robustness, we check for and discard outliers,
assuming the width changes smoothly, and also discard
lines of widths larger than 10 pixels.

Sample output is shown in Fig. 4(a). Each colored line is
one decorative line. Detecting such decorative lines separately
and representing them explicitly as lines with a given width
greatly improves the quality of the final vectorized result, as
otherwise, many short, thin, regions are found instead, leading
to an oversegmented result. Region boundaries where there is
a sudden change of colour, i.e. at conventional edges, are the
black edge pixels in Fig. 4(a).

B. Trapped-ball region segmentation

Next, we find the regions. Our algorithm is based on the desire
to find large regions, each represented by a single consistent
color model. We must also take into account while that the
segmentation mask found in the previous step gives guidance
as to where region boundaries should be, in practice the mask
will not form contiguous, ‘watertight’ boundaries, precluding
simple floodfilling.

One possibility is to try to perform edge-linking [15] on the
information in the mask. Unfortunately, such methods cannot
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(a) (b) (c) (d) (e) (f)

Fig. 5. Trapped-ball segmentation achieved by using morphological operations

give guarantee to close all gaps, and even a single failure may
result in two large regions being inappropriately fused.

Instead, to meet our above requirements, we have designed
a novel trapped-ball algorithm particularly suited to cartoon
segmentation. The basic idea behind our segmentation method
is to move a ball around, limited by the mask; each separate
area in which the ball may move determines a region of the
image. Fig. 4(b) illustrates trapped-ball segmentation. A best
first rule is used: at the start of the algorithm, we use a
large ball, and then iterate with balls of smaller and smaller
radius. Choice of ball sizes is discussed later. In practice,
the same effect as moving a ball can be achieved by using
morphological operations [16] from image processing, as we
shortly explain.

In detail, the following steps are iterated:

1) Trapped-ball Filling A ball-shaped morphological
structuring element of radius R is used. Fig. 5 illustrates
the morphological operations in use on a local area of
the whole image. Given the original mask (a), we first
use flood-filling, giving (b), or without the mask, (c). We
then use a circular structuring element having the size of
the trapped ball, and perform first an erosion operation
on (c), giving (d), then a dilation operation on (d) to give
(e), which is the result of the first pass of our trapped
ball filling; we again show this result with the mask for
reference in (f). (Note that the blue region is presumed
to extend outside the red box, explaining why erosion
does not shrink the blue region at the edges of the red
box).

2) Color Modeling After using the above process on the
whole image, multiple large regions result. We assume
that a single colour model is an adequate fit to each
such region, an assumption which works well in practice,
in terms of producing visually acceptable results, even
if counterexamples are not hard to construct—certainly,
any sudden changes in color would have produced edges.
By default we use a quadratic color model, in HSV
color space, as does Ardeco [1]. For each channel, the
color of the ith region at pixel (x,y) is modeled by the
function fi(x,y) = ai0 +ai1x+ai2y+ai3x2 +ai4xy+ai5y2.
The parameters ai j are determined by solving a linear
system equation for all pixels belonging to region i. As
each region is larger than the ball, we can be certain
there is adequate data to fit a color model to it.

3) Region Growing We next grow the regions generated
by trapped-ball filling. This is necessary because the
ball cannot penetrate into narrow pockets belonging to

regions, or pass through narrow necks separating parts
of the same region. As we do so, we use two constraints.
Firstly, edge pixels may not be added to a region.
Secondly, pixels added to a region should agree in color
with the prediction given by the color model for the
region, within the limits of human perception. In the
implementation, we label each pixel to indicate which
region it belongs to, null indicating not yet assigned to
any region.
Let us define the reconstruction error of a labeled pixel
to be the difference between its colour and the color
predicted by the color model for that region and pixel
position. To perform region growing, we put all region
pixels at the outline of the region into a priority queue,
based on their reconstruction error given that they are
already labelled; the queue is sorted by reconstruction
error. Then, we repeatedly pop the pixel with minimum
reconstruction error from the queue. We next check if the
same label could be used for each unlabeled neighboring
pixel, with a sufficiently small reconstruction error (in
practice, we require the difference in intensity to be
below 20). If so, this pixel’s label is updated, and it
is added to the priority queue. We repeat these steps
until the queue is empty, or the reconstruction error is
too large.

As the above steps are performed, all pixels newly given labels
are added to the mask, so that subsequent iterations do not
consider pixels which are already labelled.

Some pixels may remain unlabeled, so we reduce the ball
radius by 1, and iterate, labeling and growing smaller regions,
and so on, until the ball radius reaches 1. By now, all pixels
must have been labeled, and the image fully segmented.
Fig.4(c) illustrates our segmentation result for our earlier
example, and compares it with the mean shift segmentation
result (Figs.4(d), 4(a)). Clearly, our result has fewer regions,
and the regions we find are more meaningful.

Theoretically, the initial radius used should be equal to the
maximum distance of any pixel from some edge pixel; but in
practice, to make the algorithm faster, we use a value of 8
pixels, as in our experience, any gaps in the mask are almost
always smaller than this. Clearly, if highest quality results
are desired, the user can experiment with different initial ball
radius settings.

As a final step, we wish to get rid of regions which are too
small. A user chosen ‘fine detail’ parameter in the range 0 to
200 pixels decides the minimum permissible size of a region.
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(a) Stable background pixels (b) Final filled background

(c) Foreground over background

Fig. 6. Illustration of background filling and layer representation

Fig. 7. Vectorization of segmentation results

We merge any regions smaller than this with the neighboring
region with the most similar color model. This parameter helps
to provide a balance between file size and quality in the final
result.

V. INTER-FRAME COHERENCE

To achieve a high-quality vectorized result, we must avoid
even small amounts of flickering due to lack of temporal
coherence. This is especially important in the background, as
it is static, making flicker more apparent. Most methods for
achieving temporal coherence in video are based on global
optimization, and do not consider the particular requirements
for background coherence.

Registering the images in a sequence allows us to locate
each frame Ii in a global coordinate system by transforming
it to Ĩi via a homography Hi. To do so, we make various
assumptions: (i) the foreground area is not too large compared
to the whole image, and (ii) the background motion comprises
a translation and scale. While these may sound restrictive,

they generally hold for many cartoon animations. Under these
assumptions, registration methods such as SIFT [13] matching
or even brute force search work well. Using RANSAC, we
can detect outliers and overcome the jitter between frames.
We obtain visual coherence by separately reconstructing the
background as a single static panoramic image and extracting
the foreground objects in the global coordinate system.

We now discuss how background and foreground objects are
treated separately.

A. Background filling

Generally, a cartoon comprises several scenes. Each scene is
a sequence of frames with a constant background, on top of
which moving foreground objects are placed. A camera motion
(translation or zooming) is then often adding to produce
the final cartoon scene. We remove the camera motion by
registration, resulting in a background which should be entirely
static. We now discuss how we find the background of such a
scene. We use our per frame decomposition results as input,
and assume that each region found will either belongs to
the background or the foreground. Furthermore, parts of the
background may be occluded by foreground regions in each
frame. We first use a background initialization method based
on estimating the probability that each region belongs to the
background, by considering its temporal consistency, and then
use a patch based filling method which selects background
regions while dynamically changing the probability map.

Let B be the global background image, and M be a probability
map of the same size which estimate the probability for each
pixel that it belongs to background. Initially Mq is set to 0 for
every pixel q, meaning that Bq is unknown.

We now perform background image initialization, and patch-
based filling, as follows:

1) Background image initialization. Taking each image
Ĩ in turn, we find the set Sq of pixels corresponding to
each pixel Bq, by extracting the corresponding pixel Piq
in each Ĩi, if such a pixel exists. Bq is set to the median
color of Sq, and Mq is set as follows:

Mq =
|{Siq : |Siq−Bq|< Tc,∀Siq ∈ Sq}|

|Sq| ,

where Tc is the limit of visual ability to distinguish
color differences, which we take to be 20 units. If
Mq is sufficient large, e.g. larger than 90%, we regard
Bq as a ‘stable’ background pixel, in that its colour
is more or less unchanging over time. Fig.6(a) shows
the ‘stable’ pixels belonging to the background for a
particular video.

2) Patch-based filling. The background image is next
augmented with per-frame segmentation results. This
step recovers those background are that are occluded
by foreground regions at various times. We examine all
regions, and compute the probability that they belong to
the background, where Pi j is the probability for region
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(a)

(b)

(c)

Fig. 8. Vectorization results. Columns 1, 3: original video frames; columns 2, 4: corresponding vectorization results. (a), (b) Two clips from Tom & Jerry;
(c) A clip from Naruto, with a panning camera.

Fig. 9. Top: vectorization results using VectorMagic, our method and Adobe Illustrator Live Trace. Bottom: region boundaries.

(a) Composition of two clips (b) Object Editing

Fig. 10. Editing: (a) taking a character from one scene and putting him in another, (b) changing the shape of the character’s ears
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Ri j, the jth region in frame i found by averaging the
probabilities for its pixels:

Pi j = ∑
|Piq−Bq|<Tc,∀Piq∈Ri j

Mq/|Ri j|.

Higher Pi j means region has a larger probability that
belongs to background.
All regions in all frames are next sorted in descending
order of probability. Pixels belonging to the region with
highest probability are added to the background, and
M is updated accordingly. The background probability
of each region remaining in the list is then updated
and the list resorted. We then consider the remaining
region with highest background probability, and so on.
This process is quick as only a few regions need to be
updated and resorted each time. This process terminates
when either the background image has been completed,
or when the highest probability of any remaining region
being background is below some threshold value, at
which point remaining objects in the list are considered
to be foreground objects. We usually use 0.3–0.4 as
this threshold, dependent on the quality of the input
video. Too low a value may incorrectly fuse background
and foreground areas, while too high a value means
that the detected background will be smaller than it
could be, with certain background areas being treated as
foreground regions at higher cost. Generally, the lower
the threshold that can be used, the better, as having
a larger background area will provide better temporal
coherence in the results.
At the end of this process, the background image may
still contain holes where foreground objects always
occlude the background. Clearly, such holes are irrel-
evant. Fig.6(b) shows the results after augmenting the
background in this way.

While automatic background image filling usually works well,
certain background areas may be uncovered in only a few
frames, and thus cannot be detected automatically. Simple user
interaction is used to add such regions to the background. This
interaction needs only a few mouse clicks, combined with
scanning through the video, and does not take long. Also,
the user may remove regions which have been inappropriately
assigned to the background image (e.g. the stationary feet
of a cartoon character, the rest of whose body is moving).
Both processes more meaningfully separate the cartoon into
foreground and background.

B. Foreground extraction

Due to the fact that cartoons are hand drawn, the shapes of
objects can be slightly different between neighboring frames,
even if unchanged semantically. This issue hinders provision of
temporal coherence. It is important to identify corresponding
regions whenever possible in successive frames, both for high-
level purposes such as editing, and compression of the final
video.

The motion of large foreground objects between adjacent
frames can easily be detected by tracking or matching, as the
motions are typically small. Small regions are more tricky to
track, but tend to move along with neighboring large regions.

We follow the approach in [10], which groups pixels accord-
ing to their motion, with the difference that we use large
foreground objects as seeds for region tracking. We compute
their homographies and place them, together with neighboring
regions with similar transformations, into groups, each in a
different initial layer. This may result in allocation of certain
regions to more than one group, so we use a graph-cut
algorithm [10] to decide the final grouping of regions, as well
as occlusions.

Regions which are successfully tracked are replaced in sub-
sequent frames by the original region plus the corresponding
transformation: the segmentation results found in subsequent
frames are discarded. The groups found typically have seman-
tic significance, which is useful for further editing and other
high-level processes.

C. Vectorization

We now have an intermediate representation with regions
assigned to foreground layers or the background. To achieve a
seamless and accurate vectorization result, the mutual bound-
aries of adjacent regions in the same layer (and hence which
are moving together) must be determined, as well as other
boundaries. Boundary curves are cut at endpoints, which are
points where more than two regions meet (green points in
Fig.7) or boundary points with a local maximum of curvature
(red points in Fig.7). We fit one or more cubic Bézier curves
to each boundary point sequence between adjacent endpoints,
to achieve a given tolerance. We use tolerances between 4 and
20 pixels, allowing a trade-off between quality and file size.

Solid regions are defined by their boundary curves and color
model parameters. Decorative lines are represented by a
polyline with accompanying width and color at each vertex.
Regions in the background layer only need to be vectorized
once, while for key objects in the foreground, its position and
transformation in each frame are stored. It is straightforward
to convert our vectorized output into Adobe Flash swf format
for use in the Flash vector animation editor.

VI. EXPERIMENTAL RESULTS

Fig.1 and Fig. 8 show various cartoon vectorization results.
In the classical cartoons (Figs. 8(a,b)), a flat color model is
sufficient for modeling region colors; in modern 2D cartoons
(Figs.1 and 8(c)), a quadratic color model is more typically
required.

By taking account of the particular relatively simple nature
of cartoons, our algorithms are efficient compared to other
methods, especially with respect to segmentation and inter-
frame region matching, the latter because we are able to stably
find large regions. On 640×480 input, segmentation typically
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Video clip Frames Divx Vec1 Vec2
Fig.1: Saint 91 1049kB 75kB 41kB
Fig.8: Tom 80 1022kB 542kB 283kB
Fig.8: Jerry 54 610kB 388kB 201kB
Fig.8: Naruto 120 1782kB 1255kB 633kB
Fig.10(a): Jerry 82 619kB 192kB 98kB

TABLE I
FILE SIZE COMPARISON (SEE TEXT).

takes 2–3 seconds per frame, background and foreground
extraction take 4–8 seconds, and vectorization takes less than
1 second; times vary with complexity of scene, but around
10 seconds per frame is typical, which means that an entire
cartoon can be vectorized in an acceptable length of time.
In contrast, Ardeco [1] takes 72–125 seconds per frame for
512×512 frames, the Stanford VectorMagic [3] image result
in Fig. 9 took 2 minutes, and the method in [2] takes around
4–15 minutes per object.

We next compare our one-frame vectorization results to those
produced by Stanford VectorMagic [3] and Adobe Illustrator
Live Trace in Fig.9. Our result gives more a visually appealing
segmentation with fewer regions, which also incorporates
decorative lines.

Figs. 10(a), 10(b) show how our results can readily be edited
using Adobe Flash. The left hand example shows how Tom
(the cat) has been extracted from one clip (see Fig.8(a)), and
inserted between the background and foreground (Jerry the
mouse, in bed) of another clip, using simple drag-and-drop.
The right hand example shows a simple edit to Jerry’s ear
which was done on just two frames, and continues as the
region is propagated through the video (the original image
sequence is illustrated in Fig.8(b)). (Editing was needed on
two frames as Jerry’s ear underwent a large change in shape
part way through the original input sequence—note that the
original was hand-drawn).

Table I compares the file sizes of our vectorized output to
the original DivX compressed raster videos. The table shows
DivX 6 compressed video size (DivX), high quality vectorized
output with decomposition detail level 0 and curve fitting
tolerance 4 (Vec1), and acceptable quality with decomposition
detail level 200 and curve fitting tolerance 20 (Vec2). Sum-
marizing these results, when producing high quality output,
our vectorization method leads to an average file size of about
half that required by Divx 6 compressed video. This is further
reduced by another factor of 2 for lower but still acceptable
quality output. Due to the complex content of the Naruto video
clip, less region correspondences were found between frames,
and thus a lower reduction in file size was achieved. We note
that if our method is used to accelerate network transmission
of cartoons, a desired bit rate can be adaptively achieved by
adjusting the curve fitting and fine detail tolerances mentioned
earlier. See Fig. 13.

VII. DISCUSSION

A. Comparison

We provide a side-by-side comparison with the methods
in [4]–[6], [1] and [2] using images taken from their work
(see Fig. 11). Sýkora’s method [4]–[6] imposes very strong
constraints on the cartoons processed, i.e. regions must have
thick, closed black outlines and flat color. As a result, their
method failed on most cartoons we tried, making a direct
comparison difficult. Our trapped ball model for segmentation
means that we can handle region boundaries which need not
be closed or clear, greatly increases the applicability of our
technique.

Compared to Ardeco [1], we can produce almost the same
quality of results even for non-cartoon images, despite these
not being our main goal. In Fig. 11(b), the mean pixel
difference between Lecot’s method and the original image (L2
norm in RGB color space) is 9 units, whereas in our result,
the mean error is 4 units. The resulting vectorized output from
Ardeco looks more stylized (or posterized) than our result: see
in particular the face and shoulder of the woman, which have
more noticeable steps in shading.

Price [17] and Sun [2] give methods for vectorizing images
that contain objects with complex but smoothly changing
textures; they use meshes to describe those textures. Their
work thus has very different motivation from ours: cartoons
often contain untextured regions with generally well-defined
boundaries. (Considering texture as a particular kind of colour
model would be an interesting extension to our current work).
Both of these methods need users to manually create initial
meshes for each object in the image, so would be very hard
to extend to video. As a trade-off, these methods can provide
very low reconstruction errors, of usually less than 1 unit per
pixel, which our method cannot.

We note that often, input video clips suffer from compression
artifacts, and our output may actually have higher visual
quality than the input, so least-squares reconstruction errors
are not really a satisfactory metric for comparing algorithms
for vectorizing such data.

B. Limitations

Our method targets cartoons which have artificial artistic
content, including regularly (but not necessarily uniformly)
colored regions and decorative lines. Our method produces
suboptimal results when:

1) Adjacent regions have similar color: boundaries may
be incorrectly placed or regions incorrectly fused. For
example, in Fig. 11(c) the shadow of the pepper in our
result is poorly segmented), while in Fig. 12(b) poor
segmentation results where light crosses the character’s
hair.

2) Regions are not well fitted by the kind of color model
used. This will result in large reconstruction errors, as
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(a)

(b)

(c)

Fig. 11. Comparison with other vectorization method. Columns: original video frames, our results and others’ results. Rows: results produced by Sýkora’s
method, Ardeco, and Sun’s method respectively.

in Fig. 12(c). Here, the monster’s body is covered in
fur, and unsurprisingly, large coloured regions does not
represent the texture of the fur well. Indeed, any kind
of complex texture is not well handled by our current
approach.

3) Foreground objects adjacent to the background have a
similar color. This can result in foreground objects being
assigned to the background. An example is Jerry’s foot
in Fig. 8(b). (Note that we compare the colors after
color modeling. After color modeling, the region color
of the foot is considered to be similar to that of the
background.)

We note that certain art-styles like watercolor painting, and
highly detailed cartoon clips with shining light effects as well
as those containing complex textures may cause the above
issues, and thus are not well suited to our method. We provide
examples of such cases in Fig. 12. Nevertheless, while the
results are suboptimal in terms of fidelity to the original, or
quality of segmentation, we are still able to obtain meaningful
output—our algorithm degrades gracefully.

In some cartoons, the background is much more complicated
than the foreground (as it only needs drawing by the artist

once, and more effort can thus be expended on it—e.g. see the
forest in Fig. 8(c)). Vectorizing the background image would
result in many small regions, and a large file size. One possible
response is to produce a somewhat less detailed background
by adjusting the region segmentation process to use a larger
value for the fine detail parameter. (This may not be as bad
as it sounds, as the user mainly concentrates his gaze on the
foreground objects). Another solution would be to simply store
the background as a bitmap—as this is a common background
for all frames, this would add relatively little extra storage
requirement to the final result.

VIII. CONCLUSIONS

We have presented a system for transforming 2D rasterized
animated cartoons into vectorized representation. The output
animations are visually flicker free, smaller in file size than
the input, and contain large regions, potentially suited to ap-
plications such as editing an multimedia information retrieval.
Decorative lines are output separately to colored regions.

Our system takes advantage of the particular nature of car-
toons, to achieve high quality image decomposition with
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(a)

(b)

(c)

Fig. 12. Cases producing poor results. First column: original cartoon images, second column: our vectorized output, third column: our decomposition result.

Fig. 13. Vectorized representations with different fidelity of detail. Data sizes: left, 24kB, right, 9kB.

more meaningful segmentation results compared to existing
methods. At the same time, the segmentation supports arbitrary
color models for each object. Nevertheless, we may also apply
our segmentation algorithm to real images, as shown in Fig.14.

A number of extensions would further enhance our system.
The most desirable is to provide higher-level understanding of
the foreground regions, by using a more sophisticated method
to merge adjacent regions with semantic significance. This
requires sophisticated handling of changes in shape of objects
between frames to eliminate hand-drawn error. Furthermore,

a whole film may have many scenes, shared amongst which
there may be common characters in identical poses; these too
should be identified, both to provide further compression, and
to enhance the usefulness of the results for high level processes
such as editing and information retrieval. Currently, we cannot
handle cartoons with ill-defined region boundaries, caused e.g.
by shining light, smoke, flames and motion blurs, nor can we
handle cartoons with textured regions. We hope to extend our
segmentation approach to cope with these.
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Fig. 14. Vectorization of a real video frame (1920×1080). Left: original. Right: vectorized result, with 2000 regions
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