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Abstract— In this paper, we propose a new semi-fragile wa-
termarking algorithm for the authentication of 3D models based
on integral invariants. To do so, we embed a watermark image
by modifying the integral invariants of some of the vertices.
Basically, we shift a vertex and its neighbors in order to
change the integral invariants. To extract the watermark, test
all the vertices for the embedded information, and combine
them to recover the watermark image. How many parts can
the watermark image be recovered would help us to make the
authentication decision. Experimental test shows that this method
is robust against rigid transform and noise attack, and useful to
test purposely attack besides transferring noise and geometrical
transforming noise. An additional contribution of this paper is a
new algorithm for computing two kinds of integral invariants.

Index Terms— Semi-fragile watermark, 3D model watermark-
ing, Integral invariants.

I. INTRODUCTION

Digital watermarking has been studied over many years for
digital content copyright protection and authentication. As 3D
models are used in a wide variety of fields, the necessity to
protect their copyrights becomes crucial.

The first article on 3d model watermarking was published
in 1997 by Ohbuchi et al [3]. Several years passed, and a
lot of new algorithms were developed. Theoretically, there
are two categories of watermarking algorithms, spatial domain
methods and frequency domain methods. Spatial domain meth-
ods embed the watermark by directly modifying the position
of vertices, the color of texture points or other elements
representing the model. The frequency domain methods embed
the watermark by modifying the transformation coefficients.

There is no unified standard to test which algorithm is
better. There are some applications where one method is found
to be best suited than the other. Nevertheless, watermarking
algorithms are usually characterized with the four following
properties: - Validation: the watermark can be fully extracted
from the original model. - Invisibility: watermarked models
should look similar to the original model. - Capacity: this cor-
responds to the amount of information that can be embedded
in the models. - Robustness: the watermark should survive
different types of noise attacks.

Spatial domain algorithms work on certain 3D model in-
variants, like TSQ, TVR [3]–[6], AIE [7], [8], etc. to embed
the watermark. But most of them are very sensitive to noise.
Frequency domain algorithms provide better robustness ability
by using wavelet analysis [9], [10], Laplace transforms [11],

[12] and other transforms [14]–[16]. Nevertheless, the 3d
model distortions fail to be invisible, or extraction routines
require the original watermarked model to obtain hidden
information.

Robust watermarking of 3D models has been widely re-
searched in recent years, and great developments have been
achieved in both frequency domain algorithms [17] and spatial
domain algorithms [18]. Although the problems have been
well defined by researchers working on image watermarking,
fragile watermarking has not been researched abundantly until
recently [13], [19], [20]. This kind of watermarking scheme
focuses on finding where and how the models have been
modified or attacked. For many applications, this watermark-
ing scheme is often too restrictive to be usable, as model
compression and format conversion are not permitted. It is
desired that the hidden data be robust to unintentional changes
like model compression, rigid transformation and random
noise originating from format conversion. Similarly to image
watermarking nomenclature [21], we characterize watermark-
ing algorithms showing this property as semi-fragile.

In this paper, we propose a new semi-fragile spatial do-
main watermarking algorithm for the authentication of 3D
models based on integral invariants. It can survive under rigid
transforms and certain noise attacks. Our idea mainly comes
from other spatial domain algorithms like [3], [7], [13]. Since
we wish to embed the watermark with geometrical invariants,
we introduce integral invariants to achieve this. Based on the
good character of integral invariants that have proven useful in
parameterization [22], registration [23] and classification [24]
applications, we believe they can also be put to use in our
problem. First, we calculate the current integral invariant of the
vertex that will undergo watermarking. We then change these
values slightly to embed the watermark image parts. Finally,
we modify the position of the vertices and their neighbors
in order to change the integral invariants to the new value.
The extraction routine is the inverse process of the insertion
routine. We compute the integral invariants for all the vertices
and try to match the embedded information. Once matched,
we extract the embedded information at each vertex from two
integral invariants and combine this data to form the extracted
watermark. By analyzing the false-positive probability, we
finally make the authentication decision.

Notice that we need to compute the integral invariants of
part of vertices once in the insertion procedure, and the integral
invariants of all the vertices once in the extraction procedure.
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Fig. 1. Area invariant for planar curves

In practice, we find that the known algorithm to compute
the integral invariants is not fit to this application. Therefore,
we have brought a faster algorithm for computing integral
invariants.

The structure of this paper is organized as follows. In
section II, we briefly introduce integral invariants theory for
3D models and provide a new algorithm for computing two
kinds of invariants used in our watermarking method. In sec-
tion III, we explain the watermark embedding and extraction
algorithms in detail. In section IV, we show some of our
experimental results. Finally, in section V, we conclude and
mention potential improvement in future work.

II. INTEGRAL INVARIANTS

A. The concept of integral invariants

The concepts of integral invariants were first introduced by
Manay et al [1]. They studied integral invariants for curves in
a plane. An example of such an invariant is the area invariant.
It is suitable to estimate the curvature of a curve C at a
point p, where C is assumed to be the boundary of a planar
domain D (see Fig 1). Consider the circular disk Br(p) of
radius r, centered at p, and compute the area Ar(p) of its
intersection with the domain D. This is obviously a way to
estimate curvature on a scale defined by the kernel radius r.
Manay et al. show the superior performance of this and other
integral invariants on noisy data, especially for the reliable
retrieval of shapes from geometric databases.

Pottmann el al [2] extended the concept of integral invariants
from R2 to R3. They introduced integral invariants for surfaces
with the integral of a local neighborhood in 3D space (see
Fig 2). Here, we would like to introduce two kinds of them
used in the following sections.

If we extend area invariant from R2 to R3, we get volume
invariant (see Fig 3). Considering the local neighborhood as a
ball Br(p) of radius r, centered at p, and the volume invariant
is defined as V r(p), which is the volume of Br(p) intersected
with the domain D which is the inner part of the model.

Similarly, considering the local neighborhood as a sphere
Sr(p) of radius r, centered at p, and the area invariant (see
Fig 4) is defined as SAr(p), which is the area of Sr(p)
intersected with the domain D.

These kinds of integral invariants have been proved more
robust against noise than traditional differential invariants such

Fig. 2. Local neighborhood in R3

Fig. 3. Volume invariant in R3

as curvature [22]–[24]. Explicitly proving and experimental
results can be found in [2].

B. A faster algorithm for computing integral invariants

In this subsection, we introduce a faster algorithm for com-
puting integral invariants. For convenience, in the following
section, we will suppose that invariants are computed with a
local neighborhood of radius r, centered at vertex p.

The main procedure is to first compute the area invariant
and then the volume invariant.

For a 3D mesh model, we assume that the sphere Sr(p)
can intersect the surface of the model with a set of arcs on
Sr(p). This is always true when the model is closed and when

Fig. 4. Area invariant in R3
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the radius is not large enough to let Br(p) include the whole
model.

The purpose of the algorithm is to compute the area sur-
rounded by this set of arcs. The two end points forming each
arc are the intersection of Sr(p) with edges of the model. It
is easy to calculate them. We then compute an approximation
of the area by replacing each of these arcs with the great arc
on Sr(p) with the same end points. Therefore the intersection
surface becomes a polygon on the sphere.

The formula for computing the area of a spherical triangle
is:

S = α + β + γ − π (1)

where α, β, and γ are the three spherical angles of the
spherical triangle. It is easy to extend this formula to any
spherical polygon as:

S =
∑

αi − (n− 2)π (2)

where αi is the spherical angle between two adjacent great
arcs, and n is the total number of great arcs.

After we get the area invariant, we start to compute the vol-
ume invariant. Fig 5 is sketches of this computing procedure
to help understanding. In Fig 5, a, b, and c are 2D sketches,
and d is a 3D sketch. First, we multiply the area invariant
with r/3, which is the volume of a irregular cone (the shadow
part in Fig 5a). Then, we compute the difference between this
volume and the volume invariant by plus or minus part of the
volume difference (’+’ or ’-’ parts in Fig 5b). This is hard to
compute directly, but can be computed easier by converting
it to plus or minus the tetrahedron constructed with all the
triangular facet inside Br(p) as underside and p as apex (’+’
or ’-’ parts in Fig 5c). Notice that special process will be need
near the boundary of neighbor ball. We need to get rid of the
volume of outer tetrahedron part. There are two kinds of cases,
one vertex of the triangular facet is outside the neighbor ball,
or two vertices of the triangular facet is outside (see Fig 5d,
together with the common case). Finally, we get the volume
invariant.

Overall, we give the list of algorithm flow in Fig 6.
Repeat the algorithm shown in Fig 6 for each vertex of the

model, we will get the invariants for all the vertices.

C. Algorithm analyzing

The complexity of the algorithm is easily derived from the
analysis below.

In step 1 of the algorithm, we traverse all vertices around
point p. If the number of vertices is m, this step costs O(m) in
time. m is proportional to the intersection surface area (O(r2))
and inversely proportional to the average facet area (O(l2)
where l is the average edge length). We conclude that m =
O((r/l)2) so the time complexity in this step is O((r/l)2).

In step 2 and step 3 of the algorithm, we compute the
intersection points as well as the spherical angle formed by
these points. Similar to the last step, the time complexity here
is O(r/l).

In step 4 of the algorithm, we compute the area invariant
value. The time complexity is O(1).

p

Neighbor ball

Model surface

p

Neighbor ball

Model surface

+

-
-

-
+

Neighbor ball

Model surface

+

-
-

+

a b

c d

Neighbor ball
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Fig. 5. Computing volume invariant from area invariant

In step 5 and step 6 of the algorithm, we traverse all the
facets around point p. Similarly to the analysis of step 1, the
time complexity is O((r/l)2).

At last in step 7, we compute the volume invariant value.
The time complexity is O(1).

Overall, the time complexity for computing the area and
volume invariants of a single vertex is O(r2 · l−2). The total
time complexity is O(v · r2 · l−2) where v is the number of
vertices of the mesh model.

Fig 7 shows that the computing time increases with the
amount of facets. We tested our method with seven sphere
models composed of different number of facets. In Fig 7,
the horizontal axis is the number of facets, while the vertical
axis is the computing time (in milliseconds). The seven
curves respectively represent seven different values for r (from
average edge length to seven times the average edge length).

Fig 8 shows the total computing time for different models,
for a radius five times the average edge length. In this figure,
column ”Time cost” shows the computing time using our
algorithm, while the columns ”Grid Build”, ”A. Inv.”, and ”V.
Inv.” respectively show the computing time for the three steps
given by [2]. The grid size parameter in [2] we used is 1/256
of the largest dimension. The time unit is in millisecond.

We can see that, as the number of vertices and facets
increase, the computing time increases as well on the whole,
yet is still shorter than the total computing time.

The reason that our algorithm is faster comes from our usage
of the formula (2). We compute the area and volume invariants
with a less complex and therefore faster method.

From the results, we can also see the advantage of the algo-
rithm from [2]: if we do not need the area invariant, the total
computing time for the volume invariant is almost constant.
This constant time may be shorter than the computing time
from our algorithm when models get large enough (see the
value for Buddha and AsianDragon). Still, there is a bottleneck
in the algorithm from [2] for computing area invariants.

Furthermore, when we analyze why the algorithm in [2]
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1) Find the vertices around point p, divide them into 3
classes: inner, cross, and outer. Vertexes of class inner
are in the ball Br(p), and all of their direct neighbors
(there is an edge between them) are in the ball. Vertexes
of class cross are in the ball Br(p), but at least one of
their direct neighbors is out of the ball. Vertexes of class
outer are out of the ball Br(p).

2) For all the edges that have a vertex of class outer and
a vertex of class cross, compute the intersect point of
the edge and sphere Sr(p). Notice that these points
construct a ”circle”, and we name the assembly of these
points as P r(p).

3) For each point in P r(p), compute its spherical angle
between its two adjacent points, and sum them to
AGr(p).

4) Compute SAr(p) = AGr(p) − (n − 2)π, where n is
the number of points in P r(p).

5) For each facet whose three vertices are of class inner
or cross, compute the volume of the tetrahedron con-
structed by the facet and point p, and sum them to
V Ir(p). Notice that the volume can be negative.

6) For each facet that cross the sphere Sr(p), compute
volume of the pyramid construct with the inner part of
the facet and point p, and sum them to V Or(p). Notice
that the volume can be negative.

7) Compute V r(p) = AGr(p) · r/3 + V Ir(p) + V Or(p)

Fig. 6. Algorithm flow for computing invariants of a single vertex
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Fig. 7. Computing time increases with the increasing of facet number

performs in an almost constant time, we find that the time is
determined by the grid size. The grid size can also determine
the error of the algorithm. An error happens when the Br(p)
intersects a grid cube. As the grid size gets smaller, so does
the error. However, memory costs and computing time increase
significantly.

In the algorithm presented in this article, the volume invari-
ant computing error happens when the model facets intersect
Br(p). If a facet occasionally passes through the center point
p, there is no error.

Since we have no method for precisely computing the invari-
ant, we can compare computed volume invariant values from
these two algorithms and estimate the distance between these
algorithms. For the bunny model, the distance is 0.005695,
while the error of the reference algorithm is 0.008. We can

Model Name

Maxplunk

Armadillo

Bunny

Buddha

AsianDragon

#Vertex #Facet Time cost Grid Build A. Inv. V. Inv.

11370 22658 17840 113958 37877 30358

23201 46398 29357 115944 74630 21461

34834 69451 22531 117364 106983 25310

120875 241782 171104 94423 364659 14657

123365 246730 153779 111049 372119 23046

Fig. 8. Computing time compare with algorithm in [2] with different
models(unit:ms)

conclude from this example that the error of our algorithm is
relatively small.

III. WATERMARKING FOR 3D MODEL

As we mentioned earlier, the integral invariants are robust
against noise. Therefore, if we somehow modify the integral
invariants to a specific value by changing the vertices posi-
tions, we can apply to the model a watermark strong enough
to resist noise attacks.

In this section, we will give more details about how to
change these invariants first, and then show how these proce-
dures serve as subroutines of model watermarking algorithm.
Our current work modifies the area invariant and the volume
invariant.

For convenience, we name O the vertex at the center of the
sphere, R the sphere radius, N the average normal of O, and
T the point that satisfies OT = R ·N .

A. Changing the area invariant

If the neighbor surface is a taper (Fig 9 a), the formula
giving the area of the spherical intersection is S = 2πRh,
where S is the area, R is the sphere radius, and h is the
height of the cap. Thus, to change the area invariant, we have
to change the value of h.

Further, if we only have part of a taper (Fig 9 b), we reach
the same conclusion for the area of the partial cap with the
vertex at the top: we have to change the value of h.

For any 3D surface (Fig 9 c), the area of spherical intersec-
tion can be approximated by a number of partial caps like in
the last step. So if we change the value of h for every cap,
we change the spherical area.

Therefore, in order to change the area invariant of a 3D
mesh model, we can approximately change the value of h of
all outer and cross vertices (see the algorithm shown in Fig 6).
The shift is determined by:

∆h =
∆S

2πR
. (3)

B. Changing the volume invariant

The basic idea is to move the vertex along the direction of
N . Notice that for inner vertices (see the algorithm shown in
Fig 6), if we move them along the direction of N a certain
distance, the influence to the volume can be easily calculated.
That shift is independent of the movement of other vertices of
the same type. As a result, if we specify how many vertices
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Fig. 9. Examples of changing area invariant

Fig. 10. The optimization function used in changing volume invariant

we move and by how much they are moved along the direction
of N , the volume change can be calculated with the formula
listed below.

∆V = −1
3

∑
Aidi (4)

where Ai is the area of polygon formed by neighbors of vertex
i projected in the direction of N , and di is the distance that
vertex i is moved along the direction of N . We can see that
this is a linear formula for the specified model.

The opposite problem is stated as follows: for a given vol-
ume change, by how much should the vertices be moved, while
ensuring the watermark invisibility? This is an optimization
problem. Since there is no well-proven standard to evaluate
invisibility, this optimization problem cannot be formalized
easily. The current method we use is to optimize the moving
distance to a special function (formula (5)) of the distance from
the vertex to O (represented with ri). The modified model
is obtained from the original one stamped with the shape
shown in Fig 10). We think that this method is fit to human
vision: specially referring to the effect known as Troxler fading
(Troxler, 1804), which states that if you attempt to focus on
the center point, the surrounding circles will fade after a few
seconds.

di ∝ 1− cos(2π
ri

R
) (5)

The optimization problem is solved as follows: since for-
mula (5) shows a direct ratio relation, if we set one of the di

(for example d0), all other di and the volume change ∆V (d0)
for that particular d0 can be computed. Let d′0 be the value of

Fig. 11. Replace bits of a float-point number to insert information

d0 that gives the volume change ∆Vwatermark for our watermark.
The ratio of ∆V (d0) and ∆Vwatermark is equal to the ratio of d0

and d′0. From formula 6, we get the d′0. Further we compute
all the d′i, and the new vertices positions are found.

d′0 =
∆Vwatermark

∆V (d0)
d0 (6)

C. Watermarking a model

We now use these two integral invariants to insert water-
marks into the mesh model, as well as to extract watermarks
from models.

First, we choose a monochrome image as the watermark
image. This image may be the logo of a company or a group
that owns the copyright of the model. Before inserting the
watermark into the mesh, we transform it with an Arnold
transformation. This is a scrambling procedure that makes the
image look like white-noise [25]. We will show its use at a
later point in this subsection.

Insertion. The watermark is inserted as follows. First,
we place balls centered on the model vertices, making sure
that none of them intersect each other. Here, intersection
not only means the balls themselves do not intersect, but
the related vertices of the three classes (see Algorithm in
Fig 6) also do not overlap. This can be accomplished with the
following steps. We traverse all the vertices, trying to place
a neighbor ball around each of them. If a new neighbor ball
does not intersect any other existing neighbor ball, we add it
to the neighbor ball set, otherwise we discard it. We do this
procedure on all vertices until no more neighbor ball can be
placed. This makes the process of changing invariants in each
neighbor ball independent of the change the other neighbor
balls.

Then, we change each invariant value (treated as floating
point numbers) by modifying its bit notation, as Fig 11 shows.
The modified bit positions in the invariants are parameters of
the algorithm, namely PL and PH are respectively the distance
from the point to the lower bit and to the higher bit. For
example, in Fig 11, PL = 12 and PH = 6. PL − PH + 1
will be the amount of embedded bits. Higher positions may
cause lower invisibility, and lower positions may cause lower
robustness against noise attacks.

The inserted information is part of the scrambled watermark
image and its the sequence number. We use the indexed local-
ization technique used in [3]. Since we can change two kinds
of invariants, there is enough capacity for both the watermark
image and the sequence number information. In practice, we
change the area invariants to embed the scrambled number and
change the volume invariants to embed the watermark image.
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Notice that changing the area invariant will potentially
change the volume invariant. So we change the area invariant
first, update the vertices coordinates and change the volume
invariant next. By changing the invariants of each neighbor
ball, the insertion process is accomplished.

Extraction. First, we prepare an output image the same size
as the watermarked image. We then traverse all the vertices
to to extract the watermark. We try to place a neighbor ball
around each vertex. If the ball intersects an existing neighbor
ball, we discard it. Otherwise, we compute the invariants and
check the inserted bits. This is the opposite of the insertion
procedure. We assume these bits to be the the watermark image
part and its sequence number. If the assumed sequence number
is in the range of the expected sequence number, we test
whether the assumed part of the watermark image is the same
as the real watermark image part. If both match, we identify
the current neighbor ball as one of the original neighbor balls
of the insertion procedure. We add that neighbor ball to a set
and copy the assumed part of the watermark image to the
output image at the same position. Otherwise, if the sequence
number or the watermark image part do not match, we discard
that neighbor ball and continue the traversal. The procedure
ends when all the vertices have been traversed.

If the watermarked model is not attacked, the output image
should be the same as the watermark image. There is no more
room for neighbor balls. Otherwise, if some part of the model
is attacked, there should be room for neighbor balls in the
attacked area. Also, if the model is cropped, the extracted
watermark image is incomplete.

After the extraction process is finished, we still need to
execute a test procedure. We traverse all the vertices to test if
there is any more room for a neighbor ball. We apply the rules
described in the following table to deduce what kind of attack
the model has been subject to. This is why we declare this
algorithm as a semi-fragile watermarking method: it is able to
detect what area of the model was attacked.

Room for Recovered image What kind
a new ball? Complete? of attack?

N Y Endurable noise
N N Cropped
Y Y Small local attack
Y N Large local attack

Model authentications can be done by evaluating how much
of the output image is complete. We compute the probability
of false − positive claims, corresponding to the incorrect
assertions that a model is watermarked when it is not. This
probability can also act as a confidence level. The method
to compute this probability is presented in the Analysis
procedure, and a practical example is also given.

Finally, since the watermark image is first scrambled, the
output image after descrambling may lose some random pixels
yet still show the information representing the copyright.(See
the results of section )

The flow chart of the insertion process and the extraction
process is shown in Fig 12.

Analysis. The following analysis will compute the proba-
bility that a model is not watermarked and a N size watermark

Fig. 12. The insertion process(Left) and The extraction process(Right)

image is recovered with n size parts.
We consider that the integral invariant values’ bits for a

model that was not watermarked are absolutely random. The
probability that a single point value matches a certain sequence
number and the corresponding watermark image part is p =
1/2Ca+Cv , where Ca = PLa−PHa+1 and Cv = PLv−PHv+
1 (see the insertion procedure) are respectively the capacity of
the area and volume invariants. The probability that at least
one of the V vertices’ invariants matches a certain sequence
number and corresponding watermark image part is P = 1−
(1−p)V . Since there are n watermark image parts, the totally
probability is (1−(1−p)V )·(1−(1−p)V2)·· · ··(1−(1−p)Vn),
where Vi is V minus the number of vertices that have matched
one of the previously i−1 parts of the watermark image. Since
every Vi is smaller than V , we get an upper bound of this
probability, as (1− (1− p)V )n = Pn. For a given problem, p
and V are constants, but we can adjust the value of n in order
to have this probability small enough.

For instance, we embed a 24× 24 watermark image into a
model of 34834 vertices (the bunny model). If we set PLa =
PLv = 12 and PHa = PHv = 6, we have Ca = Cv = 7
and p = 2−14. d24 × 24 ÷ 7e = 83 watermark image parts
will be embedded into the model. For the model made up of
34834 vertices, if we set the radius of the neighbor ball to
5 times the average edge length, a single neighbor ball will
cover approximately 100 vertices. Therefore, there will be at
most V = 34834/100 = 348 neighbor balls. We can then
deduce P

.= 2%. If we want to reduce the probability to less
than 10−10, we should set the threshold to 7 parts (49 bits).
This means that after the extraction procedure, if there are less
than 7 (8%) watermark image parts recovered, we conclude
negatively on the model authentication (the model was not
watermarked). Otherwise, we conclude positively when the
false-positive probability is lower than 10−10.
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If the model is larger, we can either increase the capacity
of invariants or increase the radius of the neighbor ball.
Increasing the capacity of invariants will decrease the value of
the probability p but may lower the robustness. Increasing the
radius of the neighbor ball will decrease the maximum number
of neighbor balls but will decrease the information capacity.
Another solution is to increase the size of the watermark
image, which will have the threshold relatively unchanged. We
chose our final parameters by finding a tradeoff between these
three solutions. Some other cases are shown in Fig 13, where
r/l is the radius divided by average edge length, size is the
minimal watermark image size, and capacity is the maximal
watermark image size. The data is obtained assuming that the
false-positive probability is lower than 10−10. Notice that the
case with a ′×′ is an impossible case: it is impossible to make
the false-positive probability lower than 10−10, so we should
change one or many parameters.

Ca Cv V r/l size(bits) capacity(bytes)
7 8 34834 5 48 348
4 4 34834 5 68 174
7 8 34834 10 32 91
4 4 34834 10 80 45
7 8 123365 5 56 1233
4 4 123365 5 11600 616×
7 8 123365 10 40 325
4 4 123365 10 284 162

Fig. 13. False-positive probability in several cases

IV. EXPERIMENTAL TEST

In this section, we show some experimental test results, in-
cluding the visualization of watermarked models, the distortion
error results, the comparison of anti-noise ability and anti-crop
test results. If there is no special mention, the tests are done
on the bunny model (34834 vertices, 69451 facets) using a
24 × 24 monochrome image as input watermark image (see
Fig 14). Parameters are set as PLa = 12, PHa = 6, PLv = 13,
PHv = 6, the radius of the neighbor ball is 5 times the average
edge length.

A. Watermark invisibility

Fig 15 shows the model before and after embedding the
watermark. In the figure, green, yellow, and red vertices
represent the three vertex classes (inner, cross, and outer)
where the watermark is embedded.

But if we choose some ’bad’ parameters, the difference of
the original and watermarked model would be visible (Fig 16).

Fig. 14. The watermark(Left) and The scrambled watermark(Right)

Fig. 15. The original model(Left) and The watermarked model(Right)

Fig. 16. Bad parameters cause the changing visible. The original model(Left)
and The watermarked model(Right)

Experimental tests using other models is shown in Fig 17.
The first column is the original model, the second is the
watermarked model, and the third is the appearance if they
are put together (the blue one is the watermarked).

Error measurements calculated using Metro [26] are given
in Fig 18, where models 1 to 5 are respectively Maxplunk,
Armadillo, Bunny, Buddha, and AsianDragon. In this figure,
the ’AEL’ row is the model average edge length, the ’Max’ and
the ’Mean’ row is the maximum and mean distance between
the corresponding points before and after watermarking, the
’Area’ and the ’Area W.’ row are the area of all triangles of
the original model and the watermarked model and the ’Haus.’
row is the Hausdorff distance between the original model and
the watermarked model.

We conclude that the watermarking process is nearly invis-
ible.

B. Anti-noise capability

As we stated above, the watermark can survive under noise
attacks. We can easily show that robustness against noise
increases with the radius of the kernel ball (see Fig 19). In
this figure, the horizontal axis is the ratio of the neighbor ball
radius and the average edge length, while the vertical axis is
the noise amplitude when the watermark survives with less
than 1% BER (bit error rates). We add a random number
from −a to +a to each vertex coordinate, where a is the
noise amplitude. In this figure, the noise is applied to every
model vertex.

In order to compare our results with other algorithms from
the literature, we use the method from [9] to test anti-noise
robustness. In Fig 20, we compare our method with those in [9]
and [3]. The horizontal axis is the noise amplitude, and the
vertical axis is the BER result after the previously described
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Fig. 17. The original model (left), the watermarked model (middle) and the
overlayed models (right)

Model No. 1 2 3 4 5
Vertex No. 11370 23201 34834 120875 123365
Facet No. 22658 46398 69451 241782 246730

AEL(1E-3) 30.2 18.8 1.47 7.34 5.90
Max(1E-4) 44.4 30.6 3.22 51.0 43.6
Mean(1E-4) 3.84 1.72 0.17 1.26 1.20

Area 8.665 6.589 0.0571 5.665 3.829
Area W. 8.675 6.596 0.0572 5.68 3.839

Haus.(1E-3) 9.58 7.17 0.322 25.18 21.74

Fig. 18. Distortion error cased by watermark insertion

noise attack was applied to all the vertices. In this figure, we
see that the method in [3] (the red line), which is not known
to be robust against noise, is actually very sensitive to noise.
This means that the watermark can be totally broken with little
noise. The extracted watermark is a random binary string with
a nearly 50% BER. The figure also shows that our method’s
BER is lower than the result from [9] (the black line). Notice
that for 10−2, our BER is nearly 100% instead of a rate around
50% for the TSQ method. This can be simply explained: if the
watermark is completely broken, our method outputs nearly no
bits into the output image.

Similarly to the experiments in [9], we test our method when
noise attacks are applied to certain vertices. The comparison
result is shown in 21. In this figure, the horizontal axis is the
amount of vertices that undergo a noise attack of amplitude
10−5. The figure clearly shows that our method (the blue line)
is more robust against noise than the wavelet method.

Fig. 19. Robustness against noise increases with the radius of the neighbor
ball

Fig. 20. Comparison of anti-noise ability with [3] and [9]

C. Anti-crop capability

As we mentioned in section III, if the model is cropped, the
output image will not be a complete watermark image.

We test the anti-crop capability as follows. First, we crop the
model with a set of parallel planes and count the percentage
of remaining vertices. Then, we select some of these vertices
as the input model to test the anti-crop capability. After the
extraction procedure, only a fraction of the watermark is re-
covered (see Fig 22). The percentage shown in the figure is the
remaining vertices percentage which is only an approximation
(|error| < 1%).

V. CONCLUSION AND FUTURE WORK

We have presented a semi-fragile watermarking method
based on integral invariants. It is a spatial domain method
robust against rigid transforms and noise attacks. Experimental
tests show that this method is suitable to determine whether a
model was attacked.

We could improve our algorithm by increasing its embed-
ding capacity, currently limited to two integral invariants. One
solution would be using multi-resolution analysis methods
to convert the model into a simplified model and embed
a watermark at the corresponding simplified model vertex.
Another solution would be finding a method to change four
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Fig. 21. BER for different rates of noise

Fig. 22. Watermark images extracted from cropped models with different
percentages

kinds of integral invariants simultaneously. These solutions are
the directions of our future work.
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